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Continuum limit of discrete neuronal structures: is cortical
tissue an “excitable” medium?
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Abstract. As a simple model of cortical tissue, we study a
locally connected network of spiking neurons in the con-
tinuum limit of space and time. This is to be contrasted
with the usual numerical simulations that discretize both
of them. Refractoriness, noise, axonal delays, and the time
course of excitatory and inhibitory postsynaptic potentials
have been taken into account explicitly. We pose, and an-
swer, the question of whether the continuum limit presents
a full description of scenarios found numerically (the an-
swer is no, not quite). In other words, can the numerics
be reduced to a continuum description of a well-known
type? As a corollary, we derive some classical results such
as those of Wilson and Cowan (1973), thus indicating un-
der what conditions they are valid. Furthermore, we show
that spatially discrete objects may be fragile due to noise
arising from the stochasticity of the individual neurons,
whereas they are not once the continuum limit has been
taken. This, then, resolves the above question. Finally, we
indicate how one can directly incorporate orientation pref-
erence of the neurons.

1 Introduction

By itself, a neuron can be imagined as an excitable element.
Here we pose, and answer, the question of whether a large
number of locally connected neurons can be described as
an excitable medium (Levin and Segel 1985; Tyson and
Keener 1988; Murray 1989), a continuous structure; see
also Cross and Hohenberg (1993) and Meron (1992) for a
wealth of additional information. Following Murray, we
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define a medium to be “excitable” if a stimulus of suffi-
cient size can initiate a traveling pulse that will propagate
through the medium.

Our motivation to study this type of problem is a
simple and natural one. By now we know (Fohlmeister
et al. 1995) what spontaneous collective excitations can
exist in a spatially discrete network of spiking neurons,
i.e., of neurons on a two-dimensional lattice. Both lat-
eral excitation and inhibition have been included. The
model, which will be sketched in Sect. 2, has been de-
vised so as to describe a piece of tissue in the primary vi-
sual cortex. Our interest in this type of system stems from
both the strong simplifications made possible by studying
spontaneous excitations, i.e., without external retinal in-
put, and the availability of experimental data provided by
hallucinations.

The underlying hypothesis was, and is, that the “form
constants” that occur in hallucinations (Klüver 1966;
Siegel and West 1975; Siegel 1977; Cowan 1985) are gen-
erated in the primary visual cortex. If this is true, our con-
siderations allow a direct check, which we have exploited
elsewhere. Increasing the strength A of the excitatory inter-
actions and starting each time with random initial condi-
tions, we have found four scenarios, which are displayed
below (Figs. 1–4). So A is a kind of bifurcation parameter.
For A low, the only state is a low-activity one, with incoher-
ently firing neurons. It is not very interesting and, hence,
will be discarded most of the time. As A increases, we ob-
tain (i) moving stripes, (ii) rotating spirals and broad mov-
ing bands, which may coexist, (iii) growing rings, which
may form a so-called tunnel, and (iv) complex pulsating
patterns. It is to be stressed, though, that the study of spon-
taneous excitations under the influence of hallucinogens
is not at stake here. We take them as an example of what
can be described mathematically by suitable models and
concentrate on the question of how these behave in the
continuum limit. The numerical simulations are used as a
mere illustration.

The second and third scenarios, spirals and rings, are
well known from the theory of excitable media. So a natu-
ral question is whether we can interpret a highly connected
set of neurons as an excitable medium, the key difference
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Fig. 1a,b. Scenario I – Stripes. a 90 × 90 network
with locally homogeneous couplings Â=0.16,
B̂ =0.02, while r0 =15 and rmax =20; cf. (8).
b 90 × 90 network with locally sparse, excitatory
couplings whose probability decreases with distance;
cf. Sect. 2. Here λGauss =2 and D =0.056. Note the
similarity of the two figures despite their different
microscopic structures. For all figures we have taken
random initial conditions. The parameter values will
be explained shortly. Taken from Fohlmeister et al.
(1995), whom one may consult for all details
concerning the numerics

Fig. 2a,b. Scenario II – Spirals. a 90 × 90 network
with A=0.12, B =0.02, λ1 =15, and λ2 =100;
cf. (7). Two or more spirals may coexist as shown
in b where we have a 90 × 90 network with
excitatory couplings whose probability decreases
with distance; cf. Sect. 2. Here λGauss =2.83 and
D =0.1. Taken from Fohlmeister et al. (1995)

between neurons and an excitable medium being that the
former constitute a discrete structure – in simulations both
in space and in time – whereas the latter handles space-time
as a continuum. Though the similarities as they show up
in scenarios II and III are evident, nonstandard scenarios
such as I and IV already hint at characteristics of neuronal
structures.

In what follows we analyze the continuum limit in de-
tail. In Sect. 2 we list the “wetware” of cortical tissue and
spell out the details of the Spike Response Model (Ger-
stner and van Hemmen 1992, 1993, 1994; Gerstner et al.
1993), which was used in the simulations and is the start-
ing point of the present considerations. It may be well to
realize that the model incorporates both the axonal delays
and the (linear) response of the dendritic tree and the firing
characteristics of the hillock, i.e., its refractory behavior
and a threshold. An incoming spike lasts for about 1 ms.
Since it is convolved with a dendritic response function
that has a characteristic time constant of several millisec-
onds, the precise form of the spike is not very important
and its effect is that of a(n approximate) delta function. In
Sects. 3 and 4 we analyze and perform the continuum limit
both in space and in time for two models that are, on the
one hand, slightly different from, but on the other hand
more general than, the one used in the numerics. They also
differ from those studied by Gerstner (1995), who treated
the continuum limit in time from a rather different point
of view. As a corollary we derive some classical results
such as those of Wilson and Cowan (1973), thus indicating
under what conditions they are valid. The symmetries of
the model and their consequences for bifurcation behav-
ior are studied in Sect. 5. Orientation preference of the
neurons is incorporated into the formalism in Sect. 6. A

discussion can be found at the end of this paper. In view of
the complexity of the material, our approach is sometimes
bound to be somewhat formal, but, as a payoff, this will
allow us to clearly isolate the problems associated with
the continuum limit and its implicit neglect of the inher-
ent stochasticity of discrete elements such as biological
neurons.

Relevant as the issue may be, derivations of a con-
tinuum limit for spiking neurons are rare; in fact, they
are nonexistent. I can only mention an ansatz of Feld-
man and Cowan (1975). The early work of Cowan (1968)
and An der Heiden (1980) refers to a rate instead of a
spike coding. The reader is referred to the latter for a
more detailed account of the various aspects of a rate
coding.

Before proceeding we would like to point out some sim-
ilarities with and differences between a recent paper by
Milton et al. (1995) and the present work. Both analyze
activity waves in neuronal networks. Strikingly, Milton
et al. start by writing down continuum equations and then
question how these might be approximated by a discrete
structure, whereas we do it just the other way around
and start with discrete neurons. Furthermore, they con-
sider a neuron as a leaky integrator, whereas we employ
arbitrary dendritic response functions and include axonal
delays. In addition, we do not assume any a priori distri-
bution of excitation, whereas in the case of Milton et al.
a Poisson distribution is lurking in the background. Fi-
nally, lateral inhibition is handled completely differently:
in their case it does not exist, whereas in our case we
may have a strong, or even a shunting, inhibition. Both
approaches, however, do incorporate neuronal refractory
behavior.



349

Fig. 3a,b. Scenario III – Rings. a 90 × 90
network with A=0.14, B =0.02, λ1 =15, and
λ2 =100; cf. (7). The two rings annihilate each
other where they meet. New rings originate from
the two centers. In b we show a 150 × 150
network with excitatory couplings whose
probability decreases with distance; cf. Figs. 1b
and 2b. Here λGauss =2.83 and D =0.12. Taken
from Fohlmeister et al. (1995)

Fig. 4a,b. Scenario IV – Collective burst.
a 90 × 90 network with A=2.4, B =0.02,
λ1 =8.4, and λ2 =100; cf. (7). b 150 × 150
network with excitatory couplings whose
probability decreases with distance;
cf. Figs. 1b–3b. Here we have an exponential
distribution with λexp =3. Furthermore, D =0.14.
Taken from Fohlmeister et al. (1995)

2 Neurons on a lattice: spike response model

The essentials of neuronal behavior are the absolute and
relative refractory period, the response at the soma result-
ing from synaptic input (here described by a dendritic
response function, in short, an alpha function), the omni-
present delays, and noise. All these ingredients have been
incorporated into the Spike Response Model (Gerstner
and van Hemmen 1992, 1993, 1994; Gerstner et al. 1993).
It presents a faithful but simplified description of the
neurons themselves without recourse to differential equa-
tions. This is an essential simplification if we want to
perform a numerical simulation of the spatiotemporal
activity of a large system of neurons (say, N ≥ 106) with
a realistic response (alpha) function over a long period of
time.

In addition, the Spike Response Model allows for a di-
rect treatment of noise arising from either inherent uncer-
tainties existing in the neuronal firing mechanism, i.e.,
intrinsic noise, or “fluctuating” synapses that may, but
need not, transmit a spike (Rosenmund et al. 1993; Hessler
et al. 1993). Though an application of the arguments be-
low to a pure differential equation description à la Hodg-
kin and Huxley is straightforward, the incorporation of
intrinsic noise into the very same description is not. In
fact, it is an open problem. On the other hand, fluctuating
synapses are relatively easy to handle, and we therefore
refrain from treating them here.

For the moment, we discretize time by units �t =1 ms,
the width of a spike, and label the neurons on a two-dimen-
sional square lattice by the index i. The lattice distance is
a, and we start with a = 1 (in units of, say, 10µm). The
state of a neuron is described by Si ∈{0,1}. If the potential
hi at the hillock of neuron i reaches the threshold ϑ , then

the neuron is expected to fire. We describe this stochastic
behavior through a transition probability

Prob{Si(t +�t)=1|hi(t)}=φ[β(hi(t)−ϑ)] , (1)

whereφ is a function of a real variable with a range between
0 and 1. Equation (1) represents the conditional proba-
bility that neuron i will fire at time t +�t given hi(t). It
does so independently of the other neurons. For the sake of
definiteness we assume that in the noise-free limit β →∞
we get Si(t +�t)=�[hi(t)−ϑ ], where � is the Heaviside
step function: �(x)= 1 for x > 0 and �(x)= 0 for x < 0.
Hence φ has a somewhat restricted asymptotic behavior.
The ensuing arguments do not depend on this assump-
tion and are, in fact, quite general. In the numerics to be
specified shortly we have taken ϑ >0 and

φ(x)= 1
2
(1+ tanh x) . (2)

In passing we note that the past of the neuron has been
incorporated into hi(t) – indeed, at time t . (See below.) We
henceforth absorb ϑ into φ. Furthermore, if noise were to
be dominantly generated by fluctuating synapses, then the
above prescription (1) with φ Gaussian and β replaced
by some other parameter is still correct. Plainly, a Gauss-
ian does not satisfy the above monotonicity requirement
exemplified by (2). In the numerics leading to Figs. 1–5,
β =25 while ϑ =0.12.

The Spike Response Model describes the response of
a neuron – both as sender and as receiver – to a spike. If
a neuron has fired a spike, it exhibits refractory behavior,
i.e., it cannot spike or only hardly spikes. This is taken care
of by the refractory function η, which is, say, −∞ during
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Fig. 5a–f. Scenario II, a sequence of patterns
leading to Fig. 2a. The pictures a–f are taken at
subsequent times 47–396 ms, as indicated above
them. In a we see rings emanating from various
centers. They have a finite thickness and grow in a
discrete structure so that there is a finite
probability that a hole will appear. As one sees,
this is indeed the case: the rings are fragile,
b break up, c form stripes, and d, e reorganize
themselves so as to build a spiral (e). It is not
necessary that the spiral have three arms. Taken
from Fohlmeister (1994)

the absolute refractory period and negative but increasing
to zero thereafter:

hrefr
i (t)=

∑

s≥0

η(s)Si(t − s) . (3)

For instance, in the simulations we have taken η(s)=−∞
for s = 1 and zero elsewhere. By varying η one can simu-
late nearly any neuron (Gerstner and van Hemmen 1992;
Kistler et al. 1997).

The spike travels along an axon leaving neuron j and
reaches a synapse on the dendritic tree of neuron i after
�ij ms. Let the synaptic strength be Jij and denote i’s den-
dritic response function by ε. Then we obtain for the total
synaptic input at the hillock of neuron i

h
syn
i (t)=

∑

j

Jij

∑

s≥0

ε(s) Sj (t − s −�ij ) , (4)

where, e.g., ε(s)=sτ−2
ε exp(−s/τε). A typical value is τε =2

ms, which has been adopted for the numerics. Here we
take �ij =�(rij ), where rij =‖i − j‖ is the Euclidean dis-
tance. The function � describes a temporal delay and thus
increases, e.g., linearly, as the distance r goes to infinity;
of course, �(0)=0. One might think that delays will play
a negligible role in that a few milliseconds’ difference can-
not influence the stability of, e.g., a collective excitation.
This, however, is wrong (Gerstner et al. 1996): they do.

The neurons considered so far are pyramidal cells.
These have both short- and long-range interactions. On
the other hand, e.g., stellate cells (Braitenberg and Schütz
1991) have only short-range interactions and exert a rather
strong influence or even an inhibitory veto on their pyra-
midal neighbors (Kandel and Schwartz 1985, Sect. 48).
For the moment we simplify the whole structure through
an inhibitory loop that is assigned to each “pyramidal”
neuron (Gerstner et al. 1993; Gerstner and van Hemmen
1994; Fohlmeister et al. 1995),
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hinh
i (t)=

∑

s≥0

εinh(s) Si(t − s −�inh
i ) . (5)

For example, in Figs. 1–4, εinh(s) first assumes a (strongly)
negative value for 5 ms and then decays exponentially with
a time constant τinh of the order of 6 ms. The idea behind
the inhibitory loop in (5) is that stellate cells operate lo-
cally. Hence we assume a strictly local interaction; for de-
tails, see Gerstner et al. (1993). In a continuum limit one
cannot but fix �inh

i = �inh so that there is no – or a very
weak – dependence upon i. In Sect. 4 we will model the
stellate cells explicitly and incorporate them into a spatial
structure. Putting things together we obtain

hi(t)=hrefr
i (t)+h

syn
i (t)+hinh

i (t) , (6)

which is to be substituted into (1) so as to generate Si(t +
�t) and, thus, the dynamical evolution. What is left is spec-
ifying the Jij in (4).

For the sake of general theory we need only require
Jij = J (rij ), where rij =‖i − j‖ is the Euclidean distance
between i and j . A widely used example, whose merits
and faults need not be discussed here, is a “Mexican hat”
interaction,

Jij =A exp(−r2
ij /λ1)−B exp(−r2

ij /λ2) , (7)

with λ1 �λ2 and A�B. A second possibility, which we
have also studied, is

Jij = Â for rij ≤ r0 and − B̂ for r0 <rij ≤ rmax , (8)

with Jij vanishing beyond rmax and, again, Â � B̂. We
use free (natural) boundary conditions throughout. In
our numerical simulations we have seen no difference be-
tween (7) and (8). Alternatively, and giving rise to the very
same scenarios, one can replace Jij in (4) by DJ̃ij , where
J̃ij = 1 with probability p(rij ) = exp[−(rij − 1)/λexp)] or
exp−[(rij − 1)/λGauss)]2; otherwise, J̃ij vanishes. Typical
values for the λs were in the range between 2 and 5, the
lattice distance being a = 1. The probabilities have been
chosen in such a way that the nearest neighbors (rij =1) are
always connected.D is a drug parameter, comparable toA.
Both are considered as bifurcation parameters that deter-
mine what spontaneous collective excitations may exist.
Hence we do not include inputs, which could be added
trivially but whose realistic modeling is highly nontrivial.

Summarizing, we have explicitly modeled the various
interactions including inhibitory stellate cells, the delays
that are abundantly present in the cortex, dendritic neu-
ronal response, and noise. We now turn to the continuum
limit of the network behavior as it shows up, for example,
in Figs. 1–4 for discrete neurons.

3 Continuum limit

In the present context, taking a continuum limit means
that we allow both the lattice constant a and the time dis-
cretization �t to go to zero, keeping the synaptic input

and the number of spikes per individual neuron finite and
restricting the time t to a finite and fixed interval. The key
idea is intuitively that in the continuum limit more and
more neurons enter the scene (so that one has to rescale the
interactions) and their behavior continuously interpolates
between fully active (black) and quiescent (white). This
means that the field h(x, t) is continuous both in x and
in t . As long as φβ is smooth, we conclude from (17) and
the more general (24) and (25) below, which describe the
system after the continuum limit has been taken, that this
continuity indeed holds. This will be assumed throughout
what follows.

3.1 Setup of the continuum limit

We will proceed somewhat formally and begin by study-
ing the continuum limit of a rather simple system where
each neuron has an inhibitory loop with delay �inh. The
synaptic contribution (4) from the other pyramidal cells
can be written

h
syn
i (t)=

∑

s≥0

ε(s)




∑

j

JijSj (t − s −�ij )



 . (9)

The sum over j in the square brackets is, typically, over
n≈104 neurons. If �ij did not depend on j , then we could
apply the strong law of large numbers (Lamperti 1966;
Breiman 1968) directly so as to conclude that the very
many terms, which are taken at different sites at the same
time, can be replaced by their nonzero average and ne-
glect the (Gaussian) noise generated by the fluctuations,
the deviations from the mean. This is the key idea: once
the mean φ is nonzero we can take advantage of the strong
law of large numbers so as to get a deterministic synaptic
input. [This is a bit subtle in that one has to apply a sub-
lattice argument (Riedel et al. 1988) to the two sets of ac-
tive and inactive neurons in order to generate the required
homogeneity in h

syn
i (t − s − �ij − 1)]. In the continuum

limit with n→∞, the above argument becomes exact. For
the original system we started with, we can assume that
it is nearly exact since each neuron interacts with about
n≈ 104 other neurons. We now turn to the mathematical
details.

Since �ij varies slowly with j , we obtain a good approx-
imation for the original system and exactly in the contin-
uum limit as n → ∞ that the Sj in the sum (9) can be
replaced by their deterministic average φ(βhj ).1 Thus,
dropping the fluctuation term and replacing t by t + �t
in (9), we end up with the average of (9):

1 In this form, the strong law of large numbers cannot be used in,
e.g., the Hopfield model, which is characterized by an extreme corre-
lation between the Jij and the activity patterns. By the very nature of
the Hopfield model, however, a continuum limit would be senseless
since its patterns, the fixed points to be of the dynamics, are generated
by independent identically distributed stochastic variables ξ

µ

i assum-
ing the values ±1 with equal probability and, thus, do not allow a
continuum limit.
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h
syn
i (t +�t)=

∑

s≥0, j

ε(s)Jijφ[βhj (t − s −�ij )] . (10)

So much for the synaptic input. In biophysical terms, (10)
is a mean-field ansatz that is nearly exact once the activity
is nonzero. The underlying argument is the strong law of
large numbers (Breiman 1968). In this way we have moved
from a spike to a rate coding. Given φ and η, it is a simple
task to compute a neuron’s firing rate for a constant input
(Gerstner and van Hemmen 1992).

The inhibitory loop (5) at time t +�t gives rise to the
simple-looking term

∑

s≥0

εinh(s)Si(t +�t − s −�inh
) , (11)

while the refractory field at i produces a contribution that
seems equally simple:

∑

s≥0

η(s)Si(t +�t − s) . (12)

Well, are they really that simple? The Si are Boolean vari-
ables assuming only two values, viz., 0 and 1. As such,
they can never be realized as solutions of a differential
equation without singularities, e.g., delta functions. We
therefore consider a little “square” around i :=x with |Vx|
elements, average over all sites of the square, which is rea-
sonable in view of the type of solution we are aiming at,
viz., that of Figs. 1–4, and replace the local variables Si

by

|Vx|−1
∑

y∈Vx

Sy(t +�t)−→|Vx|−1
∑

y∈Vx

φβ [h(y, t)] . (13)

This smooths the solution we are looking for and,
hence, will be called smoothing. To concentrate on the
argument of φ, we have promoted β to the status of
an index. It henceforth has a fixed but finite value.
I would like to stress that we cannot but invoke the
above “interpolation” so as to smooth the strictly lo-
cal refractory behavior; there is no way out. In a sense,
smoothing is a fundamental weakness of the continuum
limit.

What to do with the sum on the right in (13)? For any
smooth function f and the four nearest neighbors of x
along the x and y axes, we would find a discretized ver-
sion of the Laplacian � for lattice spacing a:

|Vx|−1
∑

y∈Vx

f (y)=f (x)+ a2

4
�f (x)+O(a4) . (14)

Four neighbors are no good yet for applying the strong law
of large numbers, but it is plain that one can use more elab-
orate averages so as to find (14) or an equivalent thereof. It
is also plain that the continuum limit with n→∞ makes
the argument exact. In view of (6) taken at time t +�t , we
now end up with

τ
∂h(x, t)

∂t
= −h(x, t)

+a−2τ−1
∫

dsdyε(s)J (x−y)�β(x,y, t − s;�)

+τ−1
∫

ds εinh(s)φβ [h(x, t − s −�inh
)]

+τ−1
∫

ds η(s)φβ [ h(x, t − s)]+R , (15)

where for the sake of notational simplicity

�β(x,y, t − s;�) :=φβ [h(y, t − s −�(‖x −y‖))] . (16)

Furthermore, τ =�t = 1 ms and R represents the second
derivatives that occur in (14). The latter are in good com-
pany since they have a2 as a prefactor. Two additional
remarks are in order. First, in a discrete description we
can define η to be −∞ during the absolute refractory pe-
riod, which is sampled exactly by Si = 1 during a spike
and Si =0 otherwise so that 0×∞ gives no contribution.
If we replace Si by φβ(hi), we have to take care of the sin-
gularity of η by assigning to η a finite minimum so that
η(s)φβ [ h(x, t − s)] is negligible once φβ [ h(x, t − s)] has
returned to the “inactive” state. After all, nothing has to
be sampled anymore. Second, if the density of the neurons
is inhomogeneous, we simply add a density function ρ(y)
to J in the first integrand of (15).

3.2 Continuum limit proper

We have to perform the continuum limit a →0 in conjunc-
tion with τ → 0. As for space, packing more and more
neurons into a certain fixed volume one would increase
the density and, hence, the amplitude of the input signals
indefinitely. This is to be compensated by, e.g., weakening
J through the substitution J → a2J . For smooth solu-
tions, the term R disappears from (15) in the limit a →0.

As for time, the key question is: What to do with the
dimensionless fraction τ/∂t in the left-hand side of (15)?
There are at least two ways out. The first is keeping τ >0,
say, τ = 1 ms, as a prefactor of the differential operator.
The second, and preferable, way is to rescale all time vari-
ables by τ−1t → t and redefine the functions h, ε, and η by
putting h(x, τ t) → h(x, t), and so on. The τ s on the left
and on the right then drop out.

Whatever rescaling procedure we take, for a given neu-
ron density ρ we arrive at

∂h(x, t)

∂t
= −h(x, t)

+
∫

dsdy ε(s)ρ(y)J (x −y)�β(x,y, t − s;�)

+
∫

dsεinh(s)φβ [h(x, t − s −�inh
)]

+
∫

dsη(s)φβ [h(x, t − s)] . (17)

We note that the above equation is in the style of Hopfield
(1984). A similar equation for the fraction of time Xr when
neuron r is not refractory, a rate description, dates back
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to Cowan.2 One has to realize, though, that in the present
case, (17) has been derived with the dynamics of spiking
neurons as a starting point.

It is now an easy matter to understand why the noise
arising from the stochastic fluctuations in (9) can be
dropped. The argument is the following. The average of
(9), which is (10), amounts to

h
syn
i =

∑
s≥0, j

ε(s) Jijφ(βhj ) .

Here we have suppressed all temporal arguments. The sum
is of the order n times a spatial mean 〈φ(βh)〉. Deviations
from the mean are approximately Gaussian. The mean
should therefore be compared with the square root of the
variance
∑

s≥0,j

ε2(s) J 2
ij φ(βhj )[1−φ(βhj )] , (18)

which itself is also of the order n times a small factor since
typically φ(βhj ) in φ(βhj )[1−φ(βhj )] is either near 0 or
near 1 so that the only appreciable contribution stems from
a narrow region around the contours, where φ changes
from 0 to 1, or, conversely, from 1 to 0. Contours have
measure zero as compared to the surface area of the exci-
tations. The narrow region surrounding them has a small
area as compared to the surface that they enclose. Fur-
thermore, in the continuum limit with a → 0 we have to
rescale Jij . The integrand contains J 2

ij , and we thus get
an extra a2 approaching zero. The variance converging to
zero, we end up with (10).

Up to now we have considered the synaptic strengths
as given deterministic quantities. At the end of Sect. 2 we
discussed a stochastic model where J̃ij =1 with probabil-
ity p(rij ), and J̃ij =0 otherwise. The pictures on the right-
hand side of Figs. 1–4 suggest that a continuum limit is well
defined and similar to the one already discussed. Indeed,
it is. Here, too, the key argument is the strong law of large
numbers (Breiman 1968) , this time applied to the sam-
pling of the bonds. We can do so since the global activity
pattern is not correlated with the random bond structure –
as illustrated by Figs. 1–4. Exactly as in the deterministic
case, more and more neurons enter the interaction range
of a specific neuron so that the strong law of large num-
bers applies as soon as the mean values of the J̃ij , viz., the
p(rij )s, are nonzero. They are. The upshot of the present
discussion is, then, that we can perform the substitution
Jij →Dp(rij ). The new interaction is deterministic and of
the form we already discussed: J (rij ), as advertised.

3.3 Comparison with large-scale numerics

To see the relation with the numerics discussed above, we
define the variable E(x, t) := φβ [h(x, t)]. The function φ
varies between 0 (white) and 1 (black) and assumes “gray”

2 See footnote 1 of his 1968 paper, which, partially in our own
notation, should read: Xr(t +�t) :=ϕ[εr +β−1

r

∑
s αrsXs(t −�rs )].

A differential equation with �t := τ directly follows.

values indicating the amount of activity in between. The
Figs. 1–5 representing discrete neurons show black and
white only since the state variable Si assumes only two
values, viz., 0 and 1. The variable E(x, t) is indispensable
in plotting spatiotemporal activity of the excitatory (E)
pyramidal cells. It smooths the boundaries between black
and white. In other words, it interpolates between black
and white.

Scenarios II and III are typical representatives of what
is to be expected in an “excitable medium.” What, how-
ever, about scenarios I and IV? The physics of scenario IV
is simple. We start with a set of discrete neurons that are
all inactive, i.e., with a “white” plane. Due to a steadily
decreasing inhibition and the fact that neurons are sto-
chastic elements, sooner or later a few of them will start
firing. Scenario IV requires an uppercase A so that the
excitation is high. Hence these neurons ignite the system
and a “firestorm” rushes through it; cf. Fig. 4. The inhi-
bition that follows vetos any activity, and we end up with
a totally inactive network, i.e., with a white plane again.
As time proceeds the shunting inhibition decreases. Once
again some neurons will start firing – and so on. In other
words, we are going to obtain a (set of coupled) nonlin-
ear integrodelay differential equation(s) as specified below
and should add some noise by hand. In scenarios II and III
the noise can be dropped. Because of the local inhibition
it is bound to vanish behind the wave fronts anyway. It
is essential, however, to IV so as to allow the system to
evolve in a “natural” way. Otherwise it might get stuck
on a “whitish” plane. Scenario I is going to illustrate that
finite objects in a noisy discrete structure are fragile; we
return to fragility in Sect. 7.

3.4 Comparison with other work I

Despite the similarities that show up at first glance, there
are several fundamental differences between the equations
of Ermentrout and Cowan (1979) and ours. These authors
do not allow delays, consider only the J integral in (17),
and call any function of the form f̂ (t)= ∫ ds ε(s)f (t − s)
a “coarse-grained” version of f in the sense that it approx-
imates f rather well. (That is correct: for smooth f we get
f̂ (t)≈f (t − τε), where τε is of the order of a few millisec-
onds.) Before being able to show that, in an approximate
but explicit way and cutting down (17), the two formula-
tions are equivalent we have to perform what is called a
�−� exchange for the analog neurons of Hopfield (1984).
It was already used by Ermentrout and Cowan (1980) and
can be found in nearly any decent textbook on electric
circuit theory. Simply stated, we have a set of differential
equations

u̇i =−ui +
∑

j

Jijφ(uj ) , (19)

with Jij multiplying φ, and we would like to obtain an
equation with φ outside the sum so that the summation
and multiplication have been interchanged. To this end we
suppose that the matrix J is invertible and define a vector
v through vk =∑i (J

−1)kiui . Use this in (19) so as to get
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v̇k =−vk +φ

(
∑

i

Jkivi

)
, (20)

as desired. We now return to our original problem, (17),
keep only the first two terms on the right, insert �≡0, and
assume that the integral operator J , a convolution kernel,
is invertible. By unitary equivalence through the Fourier
transformation on IR2, this is the case if the Fourier trans-
form of J , say, a Gaussian kernel, does not vanish. Let,
then, H =Jh be the equivalent of the above v so that
∂H(x, t)

∂t
=H(x, t)

+
∫

dsε(s)φβ [
∫

dyJ (x −y)H(y, t − s)] . (21)

If we assume that ε is an approximate δ-function, at least
on the time scale of the functions considered here (cer-
tainly in the spirit of Ermentrout and Cowan), then we
are left with equations of the form

∂H(x, t)

∂t
=−H(x, t)+φβ [

∫
dy J (x −y)H(y, t)] , (22)

as advertised. A key difference between the two ap-
proaches is that Ermentrout and Cowan start with a rate
description, whereas we start with spiking neurons and
then use the strong law of large numbers so as to obtain the
average over the noise, i.e., φ, for each of them. Further-
more, we assume that inhibition (Kandel and Schwartz
1985) plays an important role. Finally, a linear combi-
nation of Gaussians such as (7) does not give rise to an
invertible H , and it remains to be seen whether a Fred-
holm alternative proves that the two formulations (H and
h) are equivalent.

4 Models of cortical tissue

We are going to analyze several models of cortical tissue.
In all cases, our starting point is a spatially discrete struc-
ture giving rise to a continuum limit. The model that we
have studied until now, viz., (17), is the simplest and will be
called model A. A second one, viz., model B, will be intro-
duced next. We then relate this model to that of Wilson and
Cowan (1973). As before, the time t is in a fixed bounded
interval.

4.1 Excitatory and inhibitory interactions

A square lattice Ł can be considered as the disjoint union
of two intertwining lattices, Ł=Ł1 ∪Ł2. We put pyramidal
cells on each vertex of Ł1 and homogeneously assign stel-
late cells to, say, a quarter of the vertices of Ł2. The model
is finished once we have specified the couplings on and
between Ł1 and Ł2. On Ł1 we have the interaction func-
tion JEE that is defined on IR2. The pyramidal cells excite
the stellate cells through JIE and are inhibited by them
by way of JEI. The former is accompanied by a response
function resembling ε in (4); the latter goes with εinh of (5)
or a variation thereof. Of course, the EE inhibitory loop

has now been dropped. We also assign an interaction JII
to Ł2.

Finally, the range of JEE can, and in the visual cor-
tex will, exceed that of JEI (Braitenberg and Schütz 1991;
Sholl 1956). The JEE may become negative as in (7) and
(8) due to the influence of, e.g., interneurons. Typically,
e.g., as in the primary visual cortex, one has an excit-
atory near-neighbor interaction in addition to an indirect
inhibition with a slightly longer range so that the net ef-
fect is a “Mexican hat.” Alternatively, one makes the in-
terneurons explicit and incorporates them into JEI and
JIE. We will discuss the range of the interactions in detail
later on. Thus we end up with two equations à la (15).
In the right-hand side below we then find, in self-evident
notation,

hE(x, t) = h
syn
EE +h

syn
EI +hrefr

E ,

hI (x, t) = h
syn
IE +h

syn
II +hrefr

I , (23)

where, for instance, hsyn
EE and h

syn
EI are the analogs of (4) and

(5) operating on the pyramidal cells (E). In a similar vein
to model A, one finds that the equations of (23) give rise
to a set of two coupled integrodelay differential equations
for excitatory and inhibitory neurons distributed accord-
ing to densities ρE and ρI ,

∂hE(x, t)

∂t
=−hE(x, t)

+
∫

dsdy ε(s) ρE(y) JEE(x −y)�β,E(x,y, t − s;�)

+
∫

dsdy εinh(s) ρI (y) JEI(x −y)�β,I (x,y, t − s;�)

+
∫

ds η(s)φβ [hE(x, t − s)] , (24)

where, analogously to (16),

�β,X(x,y, t − s;�) :=φβ [hX(y, t − s −�(‖x −y‖))] ,

with X =E or I . Furthermore,

∂hI (x, t)

∂t
=−hI (x, t)

+
∫

dsdy ε(s) ρE(y) JIE(x −y)�β,E(x,y, t − s;�)

+
∫

dsdy εinh(s) ρI (y) JII(x −y)�β,I (x,y, t − s;�)

+
∫

ds η(s)φβ [hI (x, t − s)] . (25)

What has been said about η being finite in conjunction
with (15) applies equally well to εinh. One can allow the
delay functions �XY to depend on X and Y , the latter two
being either E or I. In addition, one can straightforwardly
introduce more general response functions than the ε and
εinh studied here. These generalizations come for free; the
extra amount of labor in solving the equations does not.
The following theorem summarizes the present discussion.
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Limit Theorem: For a smooth φβ and t in a fixed bounded
interval, the continuum limit a → 0 in conjunction with
�t →0 transforms the dynamics of the discrete model B
into the system of delay integrodifferential equations (24)
and (25).

This finishes the construction of model B. Equations
(24) and (25) may be compared with but – as we have
seen – are different from those of Ermentrout and Cowan
(1979). They differ even more from those of Milton et al.
(1995). Depending on the range and nature of the interac-
tions, we see remarkable differences between the solutions,
which we will study and comment elsewhere.

4.2 Comparison with other work II

It is now a straightforward task to derive the equations
of Wilson and Cowan (1973), thus indicating under what
conditions these equations are valid. In so doing we as-
sume that the neurons have an absolute refractory period
of re (or ri) milliseconds. The continuum limit is implicitly
assumed throughout. The refractory field η no longer ap-
pears, and the only input is taken to be the synaptic one. If
desired, an external input is trivial to add. Let E(x, t) be
the fraction of excitatory neurons per unit volume becom-
ing active per unit time at position x and at time t . As time
is discretized with �t > 0 this notion is well defined. We
then find for a small volume Vx around x

E(x, t +�t)= 1
|Vx|

∑

i∈Vx

Si(t +�t) , (26)

the time discretization �t being 1 ms. By the strong law
of large numbers the weighted sum equals the expecta-
tion value of the event that a neuron at x fires at time
t + �t and did not fire during re milliseconds before so
as to take care of the absolute refractory period. The
firing probability, once the absolute refractory period
is over, is determined by the synaptic input hsyn only
and equals φβ [hsyn

E (x, t)]. The probability of not firing
re milliseconds before is

∏
t−re<s≤t {1 − φβ [hsyn

E (x, s)]}. If,
now, φβ [hsyn

E (x, t)] is small and slowly varying – which
is à la Wilson and Cowan – then this probability may
be written 1 −∑

t−re<s≤t φβ [hsyn
E (x, s)] and replaced by

1− reφβ [hsyn
E (x, t)]. Thus we find

E(x, t +�t)={1− reφβ [hsyn
E (x, t)]}φβ [hsyn

E (x, t)] . (27)

Under the very same assumption we can rewrite this

E(x, t +�t)={1− reE(x, t)}φβ [hsyn
E (x, t)] . (28)

In view of their very definition (26), activity E and its com-
panion I can also enter h

syn
E (x, t), originally a sum over the

other j , so as to finally reappear in the form

h
syn
E (x, t)=

∫
dsdy ε(s) ρE(y) JEE(x −y)E(x,y, t − s;�)

+
∫

dsdy εinh(s) ρI (y) JEI(x −y)I(x,y, t − s;�) . (29)

Here we have inserted, analogously to (16),

E(x,y, t − s;�) :=E(y, t − s −�(‖x −y‖)) ,

I(x,y, t − s;�) := I (y, t − s −�(‖x −y‖)) .

The continuum limit is important in that it allows us to de-
fine smooth deterministic averages such as E and I . Com-
bining (28) and (29) we obtain the first of the two equations
of Wilson and Cowan (1973):

τ
∂E(x, t)

∂t
=−E(x, t)+{1− reE(x, t)}

×φβ,e

[∫
dsdyε(s)ρE(y)JEE(x −y)E(x,y, t − s;�)

+
∫

dsdyεinh(s)ρI (y)JEI(x −y)I(x,y, t − s;�)

]
. (30)

The second follows in the very same manner:

τ
∂I (x, t)

∂t
=−I (x, t)+{1− riI (x, t)}

×φβ,i

[∫
dsdy ε(s) ρE(y) JIE(x −y)E(x,y, t − s;�)

+
∫

dsdyεinh(s)ρI (y)JII(x −y)I(x,y, t − s;�)

]
. (31)

As usual, τ =�t = 1 ms. Without changing a single sylla-
ble we could generalize the above argument so as to allow
the update φ to depend on the specific kind of neuron,
here denoted by the subscripts e and i. Plainly, the very
same holds true for (24) and (25). If desired, one can now
perform a time coarse graining.

5 Symmetries

In uniform systems with constant densities ρ, the key
equations (24) and (25) of Sect. 4 have quite a few spa-
tial symmetries, which are determined by the convolution
kernel(s) J and delays �. Usually these only depend on
the distance [e.g., J (x − y)= J (‖x − y‖)] and, hence, ex-
hibit the full two-dimensional rotation symmetry, as does
the ordinary Lebesgue measure. Let us now imagine that
we multiply the excitatory ε by a constant A that is to be
considered as a bifurcation parameter. For (24) and (25)
there exists a homogeneous stationary state S, and one
may wonder what kind of state bifurcates from S as A
increases.

In principle – and forgetting about the delays – the
underlying analysis has been done by Ermentrout and
Cowan (1979), who took advantage of Sattinger’s (1979,
1980, 1983) beautiful work on bifurcation at an eigen-
value whose (infinite) degeneracy stems from a spatial
symmetry group. The only proviso of their analysis is that,
roughly, the inhibition has so long a range that the pat-
terns turn out to be stationary parallel stripes; in more re-
cent terminology (Murray 1989), they find Turing patterns.
Figures 1–4 do not belong to the Turing class so that some
work remains to be done, the more so since delays such as
�(‖x −y‖) had not been included yet. Moreover, e.g., the
spirals of Fig. 2 rotate – in agreement with hallucination
reports (Siegel and West 1975).
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Does a bifurcation analysis starting from S solve the
problem of determining all the spontaneous excitations?
No, alas not. To see why, we return to the discrete case
where we always started with the stationary state S of
incoherently firing neurons and then let the system evolve
under its own dynamics – given A. Scenarios II and III
occur long after S has become unstable and greatly differ
from scenario I, which bifurcates from S. Of course, one
could argue that it is A that determines what kind of exci-
tation evolves out of the random initial state. So S might,
but – as we have just seen – need not, carry the relevant
information.

It is straightforward to determine S from the fixed-
point equations

hS
E = c1φβ(hS

E)+ c2φβ(hS
I ) (32)

and

hS
I = c3φβ(hS

E)+ c4φβ(hS
I ) . (33)

The constants c1–c4 contain integrals over JEEε and η,
JEIε

inh, JIEε, and JIIε
inh and η, respectively. In passing we

note that the bifurcation parameter A occurs in c1 and c3.
State S is characterized by a stationary incoherent firing
of the neurons and, thus, described uniquely by hS

E and hS
I

as they follow from (32) and (33).

6 Orientation preference

Many neurons have a direction selectivity in the sense that
they prefer a certain direction more strongly than others.
We now indicate how one can incorporate this orientation
preference of neuronal cells in a simple manner. Thanks
to optical imaging (Bonhoeffer and Grinvald 1991, 1993),
direction selectivity is now known in rather great detail.
It has been shown that iso-orientation domains are small
patches organized in so-called pinwheels around orienta-
tion centers, singularities. In cat visual cortex their density
is 1.2 mm−2. Furthermore, the direction changes continu-
ously – except at the singularities. For a given singularity
and rotation (clockwise or counterclockwise) structure,
the field n of preferred direction is more or less fixed. We
therefore assume that n(x) is a given function of position
x in the primary visual cortex. Neurons with the same ori-
entation interact excitatorily; those with different orienta-
tion preferences inhibit each other. This is not a shunting
inhibition. It does not contradict Dale’s principle, either,
as the inhibition is delivered via interneurons. Then the
synaptic strength between neurons at x and those at y with
preferred directions n(x) and n(y) is a smooth function K
of, say, the scalar product n(x) ·n(y). Note that n is a unit
vector. We have K(1) = 1; K is decreasing fast to nega-
tive values (or zero, depending on the modeling) once we
move away from x = 1, and it depends on the local situa-
tion (e.g., Bonhoeffer and Grinvald 1991, 1993) whether
K(−1) ≈ K(1) or K(−1) < 0. In (24) we now assume
JEE ≥0 and perform the substitution

JEE →JEE K(n(x) ·n(y)) . (34)

It must be constantly borne in mind, however, that n(x) is
a given vector field. As for the rest, no essential changes
are expected to be necessary. Direction selectivity may
strongly modify the elementary excitation patterns, as is
brought out clearly by the figures of Kistler et al. (1998).

7 Discussion

The aim of the present paper was to show two things. First,
though neurons are to be modeled as stochastic elements,
the strong law of large numbers (Breiman 1968) allows for
a strong data reduction in the continuum limit. One has to
verify, however, whether this limit is allowed. Under rather
mild conditions as specified in Sect. 4, it is.

In fact, the argument is simple and straightforward and
also allows a derivation of classical results such as those
of Wilson and Cowan, thus showing under what condi-
tions they are valid. The continuum limit transforms a
discrete system of neurons into an “excitable” medium.
This medium is described by the hillock potential h(x, t),
where x and t represent space and time, continuous vari-
ables. In a cortical context, the quantity h contains global
input from many (≈ 104) neighbors. Neurons exhibiting
refractoriness have a memory, a local one. We therefore
needed some smoothing of the local refractory behavior
so as to transform it into a function of h.

The second issue is a far more subtle one, viz., the role
of noise as time proceeds. A large system of discrete noisy
neurons may asymptotically behave in a way not predicted
by continuous equations such as (24) and (25). As for sce-
nario IV starting from the (unstable) homogeneous fixed
point, one can simply add some noise by hand or, simulat-
ing it, wait for a numerical instability. Discrete structures,
however, may break up as t →∞. That is, they are frag-
ile. This is nicely illustrated by Fig. 5, where rings, which
have a finite thickness, are not stable and break up as they
grow. Because the rings are discrete and growing, it is sim-
ply a matter of time before a hole appears in a ring of
finite thickness and the ring opens up and forms a stripe.
In scenario IV small sets of noisy neurons ignite the sys-
tem; in scenario I small noisy holes, nonactive neurons,
destroy coherence. Hence describing noise seems to be a
separate problem and makes the answer to the question
raised in the abstract, “Does the continuum limit pres-
ent a full description of scenarios found numerically?”a
biological one: No, not quite.

Does all this contradict the limit theorem of Sect. 4?
The answer is a simple no. In mathematical terms, an inter-
change of the continuum limit a →0 in conjunction with
�t → 0 and the limit t →∞ is not allowed. For practical
work, however, discrete structures being fragile greatly re-
strains the applicability of the limit theorem – that is to
say, valuable as it may be, it should not be overestimated.

Equipped with the benefit of hindsight, the reader
might wonder whether the present approach is consis-
tent with analyses leading to partial differential equations
of the Fitzhugh–Nagumo or similar type, which one can
immediately write down (Murray 1989, §12.4). Indeed one
can, but they do not describe a true neuronal system. Typ-
ically, one has a variable u representing the membrane
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potential and a “refractory” variable v. The interaction
with other neurons is taken into account by a Laplacian,
a strictly local operator. Postsynaptic potentials do not
appear, and thus it is impossible to describe their essential
role in generating stable coherent excitations (Gerstner
et al. 1996). So the way in which spikes convey informa-
tion is not considered at all. Furthermore, noise has not
been included, either. In short, this continuum description
is far from being complete.

It is to be noted that a “discretization” of the delay
integrodifferential equations derived here is a completely
different affair. The discrete structure we started with had
single neurons as noisy elements that were updated inde-
pendently of each other. This rule is in agreement with the
underlying biophysics. A numerical discretization starts
with a continuous structure and divides, say, function φ
into several slices. Two neighboring slices, however, are
similar, whereas two neighboring neurons may behave in
a completely opposite way by firing and not firing, despite
the same input. So it looks as if Nature gives rise to a richer
behavior and our conclusion is to be: Cortical tissue is not
quite an excitable medium.
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