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Abstract. The hippocampus plays an important role in
the course of establishing long-term memory, i.e., to make
short-term memory of spatially and temporally associated
input information. In 1996 (Tsukada et al. 1996), the spa-
tiotemporal learning rule was proposed based on differ-
ences observed in hippocampal long-term potentiation
(LTP) induced by various spatiotemporal pattern stimuli.
One essential point of this learning rule is that the change
of synaptic weight depends on both spatial coincidence
and the temporal summation of input pulses. We applied
this rule to a single-layered neural network and compared
its ability to separate spatiotemporal patterns with that of
other rules, including the Hebbian learning rule and its
extended rules. The simulated results showed that the spa-
tiotemporal learning rule had the highest efficiency in dis-
criminating spatiotemporal pattern sequences, while the
Hebbian learning rule (including its extended rules) was
sensitive to differences in spatial patterns.

1 Introduction

Since Scoville and Milner (1957) first reported the short-
term memory storing function of the hippocampal for-
mation, it has been considered to play an important role
during the learning stage of establishing long-term mem-
ory. Later, long-term potentiation (LTP) found in the hip-
pocampus (Bliss and Lømo 1973) provided physiological
evidence that information from learning and memory is
stored in the weight space of the hippocampal network by
adjusting its connecting weights.

Several neurophysiological studies have reported that
many hippocampal neurons respond to specific locations
in the environment (place cells) (O‘Keefe and Nadel 1978;
Dragoi et al. 2003). In these studies, it was suggested that
an important function of hippocampal neurons was to
create a cognitive map that associated a “place” with ob-
jects in its surroundings. Studies of hippocampal activ-
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ities during a short-term-memory task suggested that
hippocampal neurons are also involved in setting the
temporal context of external information (Wilson and Mc-
Naughton 1993; Muller et al. 1996). Therefore, it is be-
lieved that the hippocampus plays an important role in
making short-term memory of spatial and temporal input
information.

The Hebbian synaptic learning rule requires coactivity
of presynaptic and postsynaptic neurons. However, un-
der some conditions, information regarding the postsyn-
aptic action potentials, carried by backpropagating action
potentials, can be strongly degraded before it reaches the
distal dendritic synapse of the hippocampal CA1 (Sprus-
ton et al. 1995; Andreasen and Ross 1995; Callaway and
Ross 1995; Stuart et al. 1997; Golding et al. 2001). Yet,
recent results (Golding et al. 2002) have shown that LTP
can indeed occur at synapses on distal dendrites of hippo-
campal CA1 pyramidal neurons, even in the absence of a
postsynaptic somatic spike.

Based on results observed in hippocampal LTP induced
by various spatiotemporal pattern stimuli (Tsukada et al.
1990, 1994), the spatiotemporal learning rule (STLR) was
proposed by Tsukada et al. (1996, 1998). The novel point
of this learning rule was “cooperative plasticity without a
postsynaptic spike” and its temporal summation.

The learning rule incorporated two dynamic processes:
fast (10–30 ms) and slow (150–250 ms). The fast process
works as a time window to detect a spatial coincidence
among various inputs projected to a weight space of the
hippocampal CA1 dendrites, while the slow process works
as a temporal integrator of a sequence of events.

In a previous paper (Aihara et al. 2000), the decay con-
stant of fast dynamics was identified as 17 ms by parameter
fitting to the physiological data of LTP. Cell assemblies
were synchronized at this time scale, which matches the
period of the hippocampal gamma oscillation, and that of
the slow is 169 ms, which corresponds to a theta rhythm.

In this paper, we systematically examine the functional
difference between STLR and Hebbian learning rules in a
single-layered neural network, computing their ability to
differentiate spatiotemporal sequences.
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Fig. 1. Structure of the single-layered feedforward neural network
and the input-output patterns. The network consists of N neurons;
each neuron connects all input nodes (x1, x2, xj , xN ). During the
learning period, the input is the spatiotemporal pattern, the spatial
snap at one moment corresponds to the spatial frame in the spatio-
temporal pattern, and the output is also a spatiotemporal pattern.
After learning, a spatial test pattern, which is the last frame of the
learned spatiotemporal pattern, is input to the network to generate
a spatial output pattern

2 The network and learning rules

2.1 The single-layered network

The structure of the neural network is illustrated in Fig. 1.
It is a single-layered feedforward network and consists
of N neurons. The elements of input patterns are con-
nected to each neuron through a separate weight wij

(i = 1,2, . . . ,N , j = 1,2, . . . ,N). The potential of each
neuron depends on both a weighted sum of the simulta-
neously provided inputs (spatial summation) and the in-
puts that arrived in the near past (temporal summation).

The above-mentioned functions are expressed in the
following equations:
Spatial summation:

si(tn)=
N∑

j=1

wij (tn)xj (tn) ; (1)

Temporal summation:

pi(tn)=
n∑

m=0

si(tm) exp
(−(tn − tm)

λ1

)
; (2)

And the output of the neuron:

yi(tn)=f (pi(tn)− θ1) , (3)

where a set of variables, x1, x2, . . . , xN , are inputs to neu-
rons, xi(tn) is an input to neuron i at time tn; wij (tn) is
the synaptic weight from neuron j to neuron i at time tn;
pi(tn) is the potential of neuron i at time tn, with yi(tn)
as its output; λ1 is the time decay constant of temporal
summation, which corresponds to the fast dynamic pro-
cess (λ1= 10 ms) (Aihara et al. 2000); θ1 is threshold. The
output function of neurons is defined as:

f (u)=
{

1 u>0
0 u≤0

. (4)

Fig. 2. A sample frame and 24 spatiotemporal patterns applied to
the single-layer network. The upper panel shows a sample of the spa-
tial frame, i.e., A1, consisting of N (N = 120) elements. The lower
panel shows 24 spatiotemporal patterns, each pattern having a tem-
poral sequence of 5 frames. The Hamming distance between every
two spatial pattern is 8 bits. Pi (i = 1,2,. . . ,24) is the spatial output
pattern of the trained network, which is generated by the input of a
spatial test pattern to the network

2.2 The learning rules

Learning rules modify network weights to produce output
vectors. The most widely used learning rules have evolved
from a model developed by Hebb (1949) in which synaptic
weight increased if and only if both the source and des-
tination neurons were activated simultaneously. Effective
learning rules have been developed by extending this Heb-
bian learning concept. Recently, we (Tsukada et al. 1996,
1998) proposed a spatiotemporal learning rule, which is
unique and more effective in pattern separation than the
various Hebbian rules.

2.2.1 Hebb+ learning rule. This is the original Hebbian
learning rule that only assumes an increase of connecting
weights according to the product of the excitation levels
of the source and destination neurons.

In symbols:

�wij (tn)=wij (tn+1)−wij (tn)=ηxj (tn)yi(tn) , (5)

where wij (tn) is the value of a weight from neuron j to neu-
ron i prior to adjustment, wij (tn+1) is the value of weight
from neuron j to neuron i after adjustment, η is the learn-
ing rate coefficient, xj (tn) is the level of excitation of input
to neuron j , and yi(tn) is the output of neuron i.
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2.2.2 Hebb± learning rule. In the Hebb± rule, synaptic
modifications of both increasing and decreasing synaptic
weight are assumed.

In symbols:

�wij (tn)=ηg(xj (tn)yi(tn)) , (6)

where

g(xj (tn)yi(tn))=





1 xj (tn)=1, yi(tn)=1
0 xj (tn)=0, yi(tn)=0
−1 otherwise

.

2.2.3 Extended Hebb (local) learning rule. As we have
seen, synaptic weight is modified by the temporal history
of input sequences (Tsukada et al. 1996). The represen-
tational ability of the network can be improved by intro-
ducing the temporal summation of inputs from a single
input neuron (local interactions) into the Hebbian learn-
ing rule. In this case, the Hebbian equation is modified
into the following from:

Inj (tn)=xj (tn)

Outi (tn)=h

(
n∑

m=0

wij (tm)xj (tm) exp
(−(tn − tm)

λ2

)
− θ2

)

�wij =
{

0 Inj (t)≤0 and Outi (t)≤0
ηInj (tn)Outi (tn) otherwise

(7)

h(u)= 2(
1+ exp(−u

ε
)
) −1 ,

where Inj (tn) is an input to neuron j at time tn; Outi (tn) is
the potentiation force (Aihara et al. 1997), which depends
on the temporal summation of inputs to neuron i, through
synaptic weight wij ; h(u) is a sigmoid output function of
the potentiation force; θ2 is the thresholds; λ2 is the time
decay constant of temporal summation, which is a slow
dynamic process (λ2 =223 ms) (Aihara et al. 2000).

2.2.4 Extended Hebb (global) learning rule. This modifi-
cation is extended to global interactions between neurons
by introducing a spatiotemporal sum. This is expressed by
the following equation:

Inj (tn)=xj (tn)

Outi (tn)

=h




n∑

m=0

N∑

j=1

wij (tm)xj (tm) exp
(−(tn − tm)

λ2

)
− θ2



 (8)

�wij =
{

0 Inj (t)≤0 and Outi (t)≤0
ηInj (tn)Outi (tn) otherwise

,

where Outi (tn) is the spatiotemporal summation of in-
puts to neuron i and the other parameters are the same as
described previously.

2.2.5 The spatiotemporal learning rule. To make the rule
of synaptic modification more sensitive to the spatial cor-
relation of input, we introduced the spatial coincidence
factor based on the assumption that the change in quantity

Fig. 3. Distributions of Hamming distances of output patterns for
five learning rules. a Hebb+. b Hebb±. c Extended Hebb (local).
d Extended Hebb (global). e Spatiotemporal learning rule

of glutamate binding depends on the coincidence between
inputs from a fiber and its surroundings. Combining the
above-mentioned spatial and temporal summations, the
spatiotemporal learning rule (STLR) can be expressed by
the following equation:





Iij (tn) =wij (tn)xj (tn)
N∑

k �=j
k=1

wik(tn)xk(tn)

Iadd(tn) =
n∑

m=0
Iij (tm) exp

(
− (tn−tm)

λ2

) (9)

�wij (tn)=





ηh(Iadd(tn)− θ2) Iadd >θ2

0 θ2 ≥ Iadd ≥ θ3

ηh(Iadd(tn)− θ3) Iadd <θ3

,
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Fig. 4. Distributions of Hamming distances of output patterns for
two learning rules. The gray columns represent the distribution for
the spatiotemporal learning rule (STLR) with the spatial coinci-
dence, while the black columns are the distribution for the modi-
fied spatiotemporal learning rule (MSTLR) without coincidence. The
STLR produces the bimodal distribution on Hamming distance, but
the MSTLR only one-modal distribution. The main cluster of the
MSTLR corresponds to the cluster with short HD in STLR

where Iij (tn) is the value of spatial coincidence from neu-
ron j to neuron i and Iadd(tn) is the temporal summation
of Iij (tn).

To demonstrate the significance of spatial coincidence,
we introduced a learning rule similar to STLR but that
does not incorporate a spatial coincidence factor. This rule
is expressed as follows:




Iij (tn) =wij (tn)xj (tn)+
N∑

k �=j
k=1

wik(tn)xk(tn)

Iadd(tn) =
n∑

m=0
Iij (tm) exp

(
− (tm−tn)

λ2

) (10)

�wij (tn)=





ηh(Iadd(tn)− θ2) Iadd >θ2

0 θ2 ≥ Iadd ≥ θ3

ηh(Iadd(tn)− θ3) Iadd <θ3

.

The two learning rules given by (9) and (10) look very sim-
ilar. The only difference is that the input from channel j
multiplies the sum of inputs from the other channels in (9),
while in (10) the two values are simply summed together.
The latter rule is called the modified spatiotemporal learn-
ing rule (MSTLR).

2.3 The spatiotemporal pattern

The spatiotemporal pattern used in this simulation con-
sists of five frames of spatial patterns (Fig. 2), i.e.,
A1,A2,A3,A4,A5 (Ai is a spatial frame).

Every frame consists of N elements (N =120), and each
element is chosen as “1” or “0” randomly, but the total
number of “1”s activity is maintained throughout the vari-
ous spatial patterns (in this simulation, half of the elements
in one spatial frame are “1” and half are “0”). The Ham-
ming distance (HD) between every two spatial patterns is
8 bits (if not specified in the simulation). In some cases it
is 2 or 24 bits (mentioned). Calculating all of the permuta-
tions of four spatial patterns, 24 spatiotemporal patterns
were grouped as a training set. The last frame of each spa-
tiotemporal pattern is the same (A5). During the learn-
ing process, the 24 spatiotemporal patterns in the training

set were learned by each neural network under the same
initial conditions. The spatiotemporal pattern is mapped
onto the synaptic weight space of a single neural network.
This stored information in the weight space is read by a test
pattern (which is given by the last frame of the learned spa-
tiotemporal pattern). For each learning rule, the threshold
of neurons, θ1, is set so that about half of the elements in
the output pattern are “1.” We compared HDs between
output patterns for each learning rule. The averaged HD
is often adopted to compare the ability of discriminating
spatiotemporal patterns, which is defined as:

averaged HD=
∑

(number of pairs×HD of this pair)∑
number of pairs

.

(11)

3 The simulated results

3.1 Spatiotemporal pattern separation

Five learning algorithms were used to train each of 24
spatiotemporal input patterns in single-layer neural net-
work models. Each of the neural networks had the same
initial condition. The differentiation of output patterns
represented in learned networks was analyzed by their
Hamming distances (Fig. 3). Hebb+ produced the same
output pattern, with a Hamming distance of zero, for all of
the different spatiotemporal input patterns (Fig. 3a). This
proves that the Hebbian learning rule cannot discriminate
different spatiotemporal input patterns. Hebb(±) and ex-
tended Hebb (local) showed a slight improvement in their
pattern separation ability (Fig. 3b, c). Extended Hebb
(global) produced a wider histogram with a high peak
at 12 Hamming distance (Fig. 3d). These results indicate
that the global interaction contributes to an improvement
in pattern separation. Finally, the network trained by the
spatiotemporal learning rule produced the widest bimodal
distribution of Hamming distance (Fig. 3e), which shows
that it has the highest efficiency in pattern separation.

The two factors responsible for the high efficiency in
pattern separation are spatial coincidence and temporal
summation. The network trained by the learning rule with-
out spatial coincidence from (10) produced the one-model
distribution, corresponding to the histogram produced
by extended Hebb (global), shown in Fig. 4. From this
fact we can conclude that the distribution in the longer
range of bimodal distribution (Fig. 3e) in the histogram is
generated by the spatial coincidence factor in (9), while
the distribution in the short range is generated by the
spatiotemporal summation. Thus, the ability to separate
patterns in the network can be improved by introducing
two factors: spatiotemporal summation and spatial coin-
cidence, but the latter is more important.

3.2 Spatiotemporal pattern convergence

From the results shown in Fig. 4 it can be noted that the
output patterns of the network trained by the spatiotem-
poral learning rule were separated into two groups by
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Fig. 5. Separated distributions of output patterns on the Hamming
distance under the spatiotemporal learning rule (STLR). The Ham-
ming distance between spatial patterns is 8 bits. The spatiotemporal
input patterns that are classified into group 1 and group 2 have 16 bits
of HD. Those in group 3 and group 4 have 24 bits of HD; and pat-
terns in group 5 have 32 bits of HD. The first frames of the input

patterns in group 1 and group 3 are the same, while the first frames
of the input patterns in group 2, group 4, and group 5 are different.
The spatiotemporal patterns in group 1 and group 3 are mapped into
the cluster with short HD, and those in group 2, group 4, and group 5
are mapped into the second cluster with long HD

Hamming distance. One is the distribution in the short
range of HD, and the other is that in the long range
of HD. We classified the trained patterns according to
Hamming distance and the first frame, i.e., A1 (shown be-
low). Given a random spatiotemporal pattern, i.e., SP1
(A1A2A3A4A5), other spatiotemporal patterns can be di-
vided into five groups according to the given pattern SP1.
The first group (group 1) includes those input patterns that
have 16 bits HD from pattern SP1 and whose first frames
are the same as that in SP1. The input patterns in group 2
have the same HD as in group 1 but a different spatial
pattern than the SP1 in the first frame. Groups 3 and 4 are
divided in the same way as groups 1 and 2, but the patterns
in these two groups have a 24-bit HD with pattern SP1.
Group 5 patterns have a 32-bit HD between pattern SP1,
and, in this case, their first frames must be different. Here
are some examples of each group. If the given spatiotem-
poral pattern in the training set is SP1 – A1A2A3A4A5 –
then:

Group 1 includes patterns such as:

A1A3A2A4A5,A1A2A4A3A5; . . .

Group 2 includes patterns:

A2A1A3A4A5,A3A2A1A4A5; . . .

Group 3 includes patterns

A1A3A4A2A5,A1A4A2A3A5; . . .

Group 4 includes patterns:

A2A3A1A4A5,A3A1A2A4A5; . . .

Group 5 includes patterns:

A2A3A4A1A5,A3A1A4A2A5. . . .

Figure 5 demonstrates the HD distributions of the out-
puts for these five groups of input patterns after being
learned by the STLR. Comparing Fig. 5 (component his-
togram) and Fig. 4 (whole histogram), it is very clear that
patterns in groups 1 and 3 are mapped into a cluster with
short HD, and those in groups 2, 4, and 5 are mapped into a
second cluster with long HD. The similar property of pat-
terns in groups 1 and 3 is that their first spatial frames are

Fig. 6. The effect of the position of different spatial patterns on aver-
aged HD. The network learned the spatiotemporal patterns using the
spatiotemporal learning rule (STLR). The spatiotemporal input pat-
terns consist of five spatial frames. There are five input pattern sets,
with each set having 24 spatiotemporal patterns. In the first set, the
first frames of all input pattern are different, while other frames are
same, for example, P1A2A3A4A5, P2A2A3A4A5, and so on. The other
four sets are produced by the same method. After learning, the last
frames of the input pattern are input to the network to generate the
output pattern. The averaged HD is calculated based on these output
patterns

the same, while the first frames of patterns in groups 2, 4,
and 5 are different. Although the HDs in the latter three
groups are very different (16, 24, and 32, respectively),
their distributions of output patterns are very similar and
are all mapped into one cluster. This suggests that the first
frame in the spatiotemporal pattern is more effective than
the other frames in contributing to the STLRs ability to
separate input. It also shows that differences in temporal
sequence are more important than differences in spatial
pattern in separating input patterns. Other learning rules
have not been able to produce any such clear difference in
the mapping of input and output pattern spaces.

It has been shown that the first frame is essential in
differentiating spatiotemporal patterns. Next, to compare
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Fig. 7. The comparison of averaged HDs between two learning rules
to learn three kinds of spatiotemporal patterns. The HDs between
spatial patterns is 2 bits, 8 bits, and 24 bits. The black columns repre-
sent the spatiotemporal learning rule (STLR), and the gray columns
are the learning rule without coincidence (MSTLR)

the importance of temporal frames, a new set of spatiotem-
poral patterns were generated. A spatiotemporal pattern
in this set consists of five frames of spatial patterns and the
HD between every two spatial patterns is 8 bits. Patterns
in the set were divided into five groups. In the first group,
the first frame of each of the spatiotemporal patterns is
different, while in the other frames they are the same. In
the second group, only the second frames are different and
other frames are the same. Similarly, we produced patterns
labeled group 3, group 4, and group 5 in which only the
third, fourth, and fifth frames are different, respectively.

These spatiotemporal patterns in the five groups were
applied to the network trained by the STLR. After train-
ing, a spatial test pattern was applied to the network to ob-
tain its output. The test pattern was the last spatial frame
of the trained pattern. The averaged HD of the five groups
is shown in Fig. 6, where it is clear that the averaged HD in
group 1 is the largest. Thus, it can be interpreted that the
first frame is the most important in separating spatiotem-
poral patterns. But noting that the averaged HD in group 5
is larger than those in groups 2, 3, and 4, it is possible that
the network incorporating the STLR remembers the last
and first frames better than the other frames.

It has been shown that temporal sequence is important
in separating input patterns. We then investigated the ques-
tion of how the HD between spatial patterns affects out-
put separation. Two new groups of spatial patterns were
introduced. One group had spatial patterns with a HD of
2 bits, and the other group had a HD of 24 bits. We com-
pared outputs for three different input patterns with HDs
of 2 bits, 8 bits and 24 bits, under the STLR and MSTLR.
These three input patterns gave similar outputs under the
STLR, but produced very different outputs when using
the MSTLR. The averaged HD of output patterns is illus-
trated in Fig. 7. When the HD between spatial patterns
varied from 2 to 24 bits, the averaged HD increased greatly
for the MSTLR but only changed slightly for the STLR.
These results indicate that the STLR pays more attention
to the difference in temporal sequences than to that of

Fig. 8. The relation of averaged HD to the number of neurons in the
network. a Dependence of the averaged HD on the number of neu-
rons in the network for three learning rules. The triangle-line is the
spatiotemporal learning rule (STLR), the square-line is the learning
rule without coincidence (MSTLR), and the circle-line represents the
global Hebbian learning rule (GHLR). b Positions of three peaks with
the number of neurons in the network for the STLR. The triangle-line
is the first peak (nearest to the origin), the square-line is the second
peak (the middle one), and the circle-line is the third peak (furthest
to the origin)

spatial patterns. For the MSTLR, on the other hand, the
HD of spatial patterns is more important than the differ-
ence in temporal sequences for separating spatiotemporal
patterns.

3.3 Effect of neuron quantity in the network

During the simulation it was found that the STLR’s abil-
ity to perform pattern separation increases with the num-
ber of neurons in the network, as shown in Fig. 8a. In
this figure, the triangle-curve represents the STLR, the
square-line represents the MSTLR, and the circle-line is
the global Hebbian learning rule (GHLR). During the
simulation, the HD between spatial frames is always kept
at 8 bits. With the increasing number of neurons in the
network, the averaged HD increases significantly for the
STLR. For the other two rules, however, their averaged
HDs remain unchanged. Furthermore, the peaks of the
distributions for GHLR and MSTLR are not affected by
the number of neurons. On the other hand, the shape of
the STLR is divided into three groups (three peaks): first
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peak (nearest to the origin), second peak (middle), and
third peak (furthest from the origin). When the number
of neurons increases, the position of the third peak moves
further away, leaving the position of the first and second
peaks unchanged, as illustrated in Fig. 8b. If the number
of neurons is less than a particular value (about 80), the
STLR generates similar results as the GHLR and MSTLR
in which the three peaks are merged together. These results
indicate that the STLR is sensitive to the scale of the net-
work; the more neurons, the greater the STLR’s ability to
discriminate spatiotemporal patterns.

4 Conclusion and discussion

Hebbian learning is characterized by coincident pre- and
postsynaptic activity; the interconnected weights that con-
tribute to fire a postsynaptic neuron are strengthened
according to the delta rule. In the training process, once
a neuron is fired, the same neuron tends to fire and the
similar weights are strengthened because the succeeding
spatial pattern is slightly different (only 8/128 bits) from
the previous one.

The Hebb+ learning rule, therefore, cannot separate
different spatiotemporal sequences with identical mean
rates of firing and shows a tendency to draw these se-
quences into a fixed spatial pattern (Fig. 3a). Hebb± and
local Hebb rules show a slight improvement in their abil-
ity to separate patterns (Fig. 3b, c). This improvement ob-
served in Fig. 3b depends on the effect of the decreasing
weight and that of Fig. 3c on the temporal summation
from a single input neuron. Further improvement seen
in Fig. 3d was dependent on the effect of spatiotemporal
summation.

On the other hand, when the STLR is applied, the
weights are strengthened according to the magnitude of
correlation between input spatial pattern X and weight
vector W in a neuron, and so the weight change produced
by the spatial pattern is distributed among neurons in the
layer depending on the magnitude of correlation. There-
fore, the distributed weights resulting from the STLR are
strongly influenced by initially distributed weight vectors.
The network weights are set to initial values before train-
ing starts by randomizing the weights to small numbers.
The pattern separability corresponds to the second peak
shown in Fig. 3e, while the time history with exponential
decay constant λ2 in the STLR corresponds to the first
peak in Fig. 3e.

From these simulated results it can be concluded that
the STLR has the highest ability to discriminate spatio-
temporal patterns. It was also demonstrated that spatial
coincidence is essential for this ability of the learning rule.
One of the interesting properties of the STLR is that its
ability to separate input patterns depends on the number
of neurons in the network. Although more neurons can
increase its separation ability, if the number of neurons
decreases below a certain value, the STLR will lose this
ability. It may also be noted that the STLR is more effec-
tive than the Hebbian learning rule (including its extended
rules) in differentiating between spatiotemporal sequences
with identical mean rates. While the Hebbian learning rule

is suited for memorizing abstract global context, the STLR
is better for memorizing concrete, local context. This sug-
gests that the STLR and the Hebbian learning rule may
have different functional roles in hippocampal memory.

Although the STLR considers the coincidence between
multiple inputs, it does not consider the coincidence be-
tween inputs and outputs. The latter plays an important
role in memory formation. In the present study, the STLR
was implemented only in a single-layered feedforward neu-
ral network to discriminate patterns. The next step will be
to propose a more realistic model of the hippocampus
consisting of excitatory and inhibitory neurons and feed-
forward and feedback circuits to test the spatiotemporal
learning rule. These results will be compared to experimen-
tal data (such as: LTP, LTD) and help approach a closer
understanding of the memory-formation processes of the
hippocampus.
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