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Abstract. Partial coherence measures the linear relation-
ship between two signals after the influence of a third
signal has been removed. Gersch proposed in 1970 that
partial coherence could be used to identify sources of
driving for multivariate time series. This idea, referred
to in this paper as Gersch Causality, has received wide
acceptance and has been applied extensively to a variety
of fields in the signal processing community. Neurobio-
logical data from a given sensor include both the signals
of interest and other unrelated processes collectively
referred to as measurement noise. We show that partial-
coherence-based Gersch Causality is extremely sensitive
to signal-to-noise ratio; that is, for a group of three or
more simultaneously recorded time series, the time series
with the highest signal-to-noise ratio (i.e., relatively noise
free) is often identified as the “driver” of the group, irre-
spective of the true underlying patterns of connectivity.
This hypothesis is tested both theoretically and on exper-
imental time series acquired from limbic brain structures
during the theta rhythm.

1 Introduction

A single random variable is characterized by its mean and
variance. The degree of linear relationship between a pair
of random variables is assessed by the correlation coeffi-
cient. For three random variables, an additional quantity
called partial correlation can be computed that measures
the linear relation between a pair of variables after the
influence of the third variable has been removed or “par-
tialled out”. This assesses whether the correlation between
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a pair of variables can be fully accounted for by the pres-
ence of the third one. Specifically, if the partial correlation
between two previously correlated variables is zero, we say
that the original correlation is spurious. Similar techniques
exist for situations with more than three variables (Bendat
and Piersol 1986).

Neurobiological signals are often collected in the form
of time series. For multiple time series in the spectral
domain, quantities analogous to variance, correlation
coefficient, and partial correlation coefficient are spec-
tral power, ordinary coherence, and partial coherence,
computed as functions of frequency. It is often the case
that symmetric interdependence measures like ordinary
coherence are not completely satisfactory, and further par-
titioning of relationships among a set of simultaneously
recorded neural signals is required to parcel out functional
connectivity of complex neural networks. Recognizing
the potential of partial coherence in achieving this goal,
Gersch, in an investigation of identifying epileptic foci
using three electrodes, proposed that “one channel is said
to drive the other channels if the first channel explains or
accounts for the linear relation between the other two”
(Gersch and Goddard 1970). Here the quantity computed
is partial coherence, and we henceforth refer to this
partial-coherence-based driver identification approach as
Gersch Causality.

Over the years Gersch Causality has been explicitly
(or implicitly) employed by many researchers as a way
of identifying connectivity, sources of driving, or causal
influence. A variety of neurobiological data including
EEG signals, multiple spike trains, and unit-EEG mixed
recordings have been analyzed using partial coherence
(Cohen et al. 1995; Rosenberg et al. 1998; Larsen et al.
2000). Currently, partial coherence analysis and the
associated Gersch Causality interpretation is generally
perceived as a robust and powerful method for the
identification of plausible patterns of neural circuits
(Lopes da Silva et al. 1980; Turbes et al. 1983; Turbes and
Schneider 1989; Kocsis and Vertes 1994; Halliday et al.
1995; Sherman et al. 1997; Kocsis et al. 1999; Mima et al.
2000; Timmermann et al. 2003; Kubota et al. 2003). For
neurobiological data, a complicating factor is that a time



series recorded by a sensor inevitably involves a mixture
of the signal of interest (e.g., theta oscillations in the
hippocampus) and other unrelated processes collectively
referred to as measurement noise (Fuller 1987). The
effectiveness of partial coherence and Gersch Causality in
situations in which biological data consists of signal plus
noise is the fundamental question addressed in this paper.

The experimental preparation considered here is the
limbic system of the rat during the theta rhythm. Recent
evidence suggests that in addition to the hippocampus
(Hipp), the anterior thalamus (ATh) and the retrosplenial
cortex (RCx) are elements of this system. For instance, we
have recently shown that single cells of ATh fire rhyth-
mically, synchronous with the theta rhythm (Vertes et al.
2001; Albo 2003). We have further identified slow rhyth-
mical activity (EEG) at theta frequencies in the RCx and
sought to determine the source for the generation of theta
in the three structures. In an examination of simultaneous
recordings of unit activity from ATh, and EEG signals
from the Hipp and RCx of the rat (Albo et al. 2001), we
found that the application of partial coherence and Gersch
Causality led to contradictory conclusions. We hypothe-
size that the root of the conflict lies in the degree of noise
embedded in each recorded signal; that is, signals with
higher signal-to-noise ratios will have disproportionately
stronger influence on an interrelated set of signals than
those with lower signal-to-noise ratios. We develop this
hypothesis by heuristic argument, confirm it using a simu-
lation involving multiple time series configured in a known
connectivity pattern, and obtain supporting evidence from
the acquired biological data.

2 Methods
2.1 Data acquisition

Experiments were performed on nine male Sprague—Daw-
ley rats (Charles River, Wilmington, MA, USA) weighing
325-450 g in accordance with all federal regulations and
National Institutes of Health guidelines for the care and
use of laboratory animals and approved by the Florida
Atlantic University Institutional Animal Care and Use
Committee.

A polyethylene catheter was inserted in the left femo-
ral vein under methoxyflurane anesthesia. The IV admin-
istration of urethane (80%) maintained proper levels of
anesthesia throughout the duration of the experiment. The
level of anesthesia was kept in such a way that the with-
drawal reflex was abolished but a gentle tail pinch would
elicit the appearance of the hippocampal theta rhythm.

For hippocampal and cortical EEG recordings, two
Teflon-coated stainless steel twisted wires (125 pm) sep-
arated by 1 mm at the tip were stereotaxically implanted
in the left dorsal hippocampus (coordinates: rostrocau-
dal —7.5, mediolateral 1.5, dorsoventral —3.0) and on the
left retrosplenial cortex (coordinates: rostrocaudal —3.7,
mediolateral 2.2, dorsoventral —3.5). Bipolar EEG sig-
nals were amplified and filtered (bandpass 0.1-75 Hz). An
additional screw electrode was implanted in the frontal
bone and used as ground.
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For ATh unit recording, a 2-mm circular opening was
made over the region of the ATh (coordinates: rostrocau-
dal —1.2 to —1.9, mediolateral 0.8 to 2.2, dorsoventral
—4.8 to —7.5). A tungsten microelectrode (~ 10 MQ) was
lowered through the opening to record unit activity from
the ATh region. On average five units were recorded per
animal. Unit activity was amplified, filtered (0.3-10 kHz),
and acquired with an A/D 12-bit resolution (RC Electron-
ics). Single units were isolated with a window discrimina-
tor (FHC, Bowdoinham, ME, USA) when a stable and
reproducible waveform and/or a 4:1 or greater signal-to-
noise ratio was observed. At the end of each experiment
the rat was sacrificed with an overdose of anesthetic and
immediately perfused with PBS followed by 10% formalin.
Brains were cut on a freezing microtome. Sections (50 pum)
were mounted on glass slides and stained with cresyl vio-
let. Small electrolytic lesions made before the end of the
experiment, and recording locations were later determined
by histological analysis.

2.2 Methods of analysis

For each cell, a recording epoch consisted of 20- to 80-s
continuous rhythmic (theta) activity induced by a gen-
tle tail pinch. Two to four separate epochs were collected
for each cell. For spectral analysis the data were digitally
resampled at 200 Hz. The time series for each cell were
divided into 60 trials of 256 points each. These trials were
viewed as an ensemble of 60 independent realizations (tri-
als) of the underlying stochastic process. For each EEG
channel the ensemble mean was subtracted from each trial
and the trial was then normalized by dividing the ensem-
ble standard deviation. For the unit data each spike was
converted into a shape similar to a Gaussian derivative
and then filtered by using a zero-phase first-order lowpass
Butterworth digital filter with a cutoff frequency at 30 Hz.

The squared coherence function between any two time
series x(t) and y(t) is defined as

Co (D) =18y (NP /Sex(F)Syy(f)

where S, (f) and S,,(f) are the power spectral density
functions of x('¢) and y(t), respectively, and Sy, (f) is the
cross-spectral density function between x(¢) and y(¢). For
signals from three channels x(¢), y(?), and z(t), the par-
tial coherence can be calculated from the auto- and cross
spectra as
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(Bendat and Piersol 1986). Power spectral densities and
ordinary coherence were pairwise computed using the
function spectrum in MATLAB, which performs a stan-
dard Fourier spectral analysis of the two time series X
and Y using a Hanning window. Partial coherence was
then computed according to the equation above.

The variability of ordinary and partial coherence val-
ues was assessed using the bootstrap resampling technique
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(Efron 1982; Efron and Tibshirani 1993). To perform
a significance test, a “shuffled” control condition was
created randomly from the data. Specifically, data for each
of the three channels from different trials were put into a
new synthetic trial. For the synthetic ensemble of such tri-
als, the temporal structure for each individual channel was
preserved, but their interdependence was removed based
on the random trial combination. For each cell, 500 boot-
strap resamples of such a synthetic ensemble were
produced, creating a baseline distribution with which to
compare the coherence values. The mean plus two stan-
dard deviations of ordinary coherence and partial coher-
ence were then computed from the distribution across the
bootstrap resamples of the synthetic ensemble to obtain
a 95% confidence interval. Partial coherence values were
considered statistically abolished when they fell below the
95% confidence level.

3 Results

We start by describing the potential confounding effects of
noise in assessing directional influences (driving) in mul-
tivariate time series with partial coherence and Gersch
Causality. We present heuristic arguments and test these
arguments using numerical simulations. The biological
data set is analyzed to provide evidence supporting the
hypothesis.

3.1 Heuristic arguments
Suppose that there are three signals exhibiting strong pair-

wise coherence in a certain frequency (e.g., theta range).
Let the three signals at that frequency be represented by

X1=0+n,
Xo=0+mn2,
X3=0+n;.

Here the common variable 6 reflects the fact that each
channel contains a component that is coherent with the
components of other channels, and »; denotes indepen-
dent local noise. We perform many independent trials. For
each trial we collect values for X, X», and X3. Our work-
ing assumption is that X is correlated with X;. To study
the correlation between X; and X, after removing the
effect of X3, we carry out the following operation. Exam-
ine the entire collection of trials and select those trials
where X3 is roughly the same constant to form a subset
of trials. For this subset of trials compute again the corre-
lation between X and X,. This is the essence of partial-
ling. If the correlation between X and X, for the subset
is zero, then we say that the original coherence is spurious
and identify X3 as the driver according to Gersch’s idea
(Gersch and Goddard 1970).

To see how this partialling operation is affected by the
signal-to-noise ratio effect, let us imagine that n; is zero.
When X3 is held constant in this case, 0 is held at the
same constant value, since X3 =0. For the subset of trials
where 6 is held constant, the variability in X; and X is

Fig. 1. Effect of noise on partial-coherence-based Gersch Causality.
A schematic diagram with three random variables is used to illustrate
how the partialling operation is affected by the signal-to-noise ratio
effect. When n3 is zero, holding X3 at a constant value means that 6
is held at the same constant value. The correlation between X, and
X, after partialling out X3 will be zero since n; and 1, are assumed to
be independent noise sources. If n3 were not zero, then the value of 6
could still vary in X and X», and in that case this common variation
would make the partial correlation between X; and X, nonzero

entirely due to the local noise n; and n;. Thus the cor-
relation between X; and X, after partialling out X3 will
be zero since n; and 1, are assumed to be independent
(Fig. 1). On the other hand, if 53 is substantial compared
with 6, then holding X5 constant only means that the sum
of 6 and n3 is a constant. The values of 6 can still vary in
X, and X», and this common variation is the reason that
the partial correlation between X and X, will not be zero.

x(t) = 0.8x,(t-1) - 0.5x (t-2) + n,(t)

Fig. 2. The mathematical model used for the simulation. Data were
generated with a simple second-order autoregressive model: X(¢) =
0.8Xo(t — 1) —0.5Xo(t —2) + no(#), where no(r) is a Gaussian white
noise with zero mean and standard deviation 1. We assume there are
three recording sites (channels) X, X5, and X3, each of which con-
tains a version of X (¢) with different delays and local additive noise.
Specifically, X receives the input from X, after a delay of three time
units and X3 receives the same input after a delay of five time units.
X3 can also be thought of as receiving an input from X after a delay
of two time units
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Fig. 3a, b. Results from simulation. Ordinary (black solid lines) and
partial (gray dotted lines) coherences for the three distinct pairs of
channels for both Case I and Case II are shown in al and b1, respec-
tively. For Case I (al), we note that the noise-free channel X3 is iden-
tified as the driver according to Gersch Causality since the coherence
between X; and X, (top panel) disappears after partialling out X3.

The foregoing discussion indicates that when a struc-
ture is identified as the driver in a multivariate situation, it
may simply mean that the signal recorded from that site is
the best representation (i.e., noise free) of the signal shared
by all the recorded channels.

3.2 Numerical simulations

The ideas presented above are tested in simulations where
the causal interactions are built into the model. We cre-
ate the data by using a simple second-order autoregressive
model. Let

Xo(1)=0.8Xo(t —1) = 0.5Xo(t =2) +no(1),

where no(¢) is a Gaussian white noise with zero mean
and standard deviation one. Assume that there are three

The connectivity pattern based on this interpretation is shown in a2.
For Case II (b1) the coherence between X, and X3 (bottom panel)
disappears by partialling out X, the noise-free channel, leading to
X being identified as the driver. The connectivity pattern in b2 shows
this conclusion

recording sites (channels) each of which contains a version
of Xo(¢) with different delays and local additive noise.
Specifically,

X1(1) =Xt =3)+m@),
Xo(t) = Xo(®) +na(t),
X3(t) = Xo(t —5) +m(@).

Here Channel 1 receives the input from Channel 2 after
a delay of three time units. Channel 3 receives the same
input after a delay of five time units. In a sense, Channel 3
also receives an input from Channel 1 after a delay of two
time units. The connectivity patterns in this model can
be summarized in Fig. 2. As indicated previously, partial
coherence essentially identifies the driver as the channel
with a nearly noise-free signal. To test this idea, we con-
sider the following two cases.



322

For Case I, we let n3(¢) =0, var(n;(z)) =0.04, and
var(n,(t)) =0.06. Our theory predicts that X3(z) will be
identified as the driver. Figure 3al shows the coherence
(darker curves) between the indicated channels and the
partial coherence between the same channel pair after
removing the influence of the third channel. As expected,
the partial coherence between X; and X, becomes zero,
implicating X3(¢) as the driver. The corresponding Gersch
Causality pattern is shown in Fig. 3a2. For Case II, we
let n1(z) =0, var(n,(¢)) =0.06, and var(ns3(¢)) =0.04, and
we predict that X (¢) will be identified as the driver. Fig-
ure 3bl bears this prediction out, and the corresponding
causal pattern according to the Gersch interpretation is
shown in Fig. 3b2.

Both driving patterns in Fig. 3 are in contradiction with
the true pattern in Fig. 2. We note that in no case is the
true driver, Channel 2, identified as such because the lo-
cal noise is never made zero. This example clearly dem-
onstrates that partial-coherence-based causality measures
are extremely sensitive to the presence of noise and thus
are highly problematic in inferring directions of driving in
biological applications when signal-to-noise ratios cannot
be accurately determined a priori.

3.3 Experimental findings

In the following discussion, we illustrate the principles dis-
cussed above on a biological data set involving simulta-
neous recordings of EEG signals from the Hipp and RCx,
and unit activity from the ATh. Results from two represen-
tative cells recorded from two different animals, referred
to as R cell and K cell, are shown in Figs. 4 and 5. Fig-
ure 4 shows the power spectra from the three signals for
R cell (left) and K cell (right). Clear peaks in the power
spectra ~4 Hz are seen in the Hipp and RCx EEGs as well
as in the unit recordings. R cell is characterized by having
the greatest theta power for the Hipp channel, whereas K
cell has the largest theta power for the RCx channel. ATh
unit channels always have the lowest power among the
three. This observation will become important for under-
standing the partial coherence results presented below in
accordance with the theoretical ideas outlined above.
Figure 5 shows ordinary coherence (solid lines) and
partial coherence (dashed lines) results for channel pairs
RCx-Hipp (top panel), RCx-ATh (middle panel), and
Hipp-ATh (bottom panel) for the two cells. The ordinary
coherence is very high for all the channel pairs. For the R
cell in Fig. 5al, substantial partial coherence at theta fre-
quency is evident between RCx-Hipp (top panel) (i.e., after
partialling out the effect of the ATh unit). In like manner,
there is pronounced coherence between Hipp-ATh
(bottom panel) after partialling out the effect of RCx.
However, partial coherence disappeared between
RCx-ATh (middle panel) after removing the influence of
Hipp. Thus, based on the principle of Gersch Causality,
the hippocampus is identified as the driver of theta activ-
ity among the three structures studied. These findings are
summarized in Fig. 5a2. For the K cell shown in Fig. 5b1,
the ordinary coherence results are similar to those of the
R cell. The partial coherence results, however, are very
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Fig. 4a, b. Power spectra for recordings of two representative cells,
R cell (a) and K cell (b). Top panels show the power spectra from
the RCXx, the middle panels from the Hipp, and bottom panels from
the two thalamic units (ATh). The two cells were recorded in two
different animals. The unit of the vertical axis is V2 Hz

different. Specifically, the coherence between ATh and
Hipp disappears after removing the influence of RCx,
suggesting, according to Gersch Causality, that the cortex
is the principal driver of Hipp and ATh theta activity
for this cell. Figure 5b2 shows the connectivity pattern
according to this interpretation.

We believe that the contradictory results in Fig. 5 are
not a reflection of the true underlying connectivity pattern.
They are the consequence of a signal-to-noise ratio as pos-
tulated in the heuristic discussion above. The power spec-
tral results in Fig. 4 support this assertion. Specifically,
for the R cell, the hippocampus has a much larger and
sharper spectral peak in the theta range, indicating a rel-
atively strong signal in that location. As expected, for this
cell the hippocampus is identified as the driver. On the
other hand, for the K cell the cortex has the largest power
peak among the three signals, and it is thus identified as
the driver by the partial coherence method. Further sup-
porting evidence for the signal-to-noise ratio hypothesis
comes from the fact that for all cells examined, we failed
to encounter a single case in which the ATh unit was iden-
tified as the driver using partial coherence analysis. The
reason appears quite obvious — the ATh single-unit activ-
ity signal, although showing theta rhythmicity, always has
the lowest power when compared to the large EEG signals
from the hippocampus and the cortex (Fig. 4).

To show that the signal-to-noise ratio effect in Figs. 4
and 5 is not an isolated phenomenon, we further analyzed
data from 16 units showing strong coherence with hip-
pocampal EEG. We refer to these units as “theta-rhyth-
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Fig. 5a, b. Ordinary and partial coherence for the recordings of two
representative cells, R cell (a) and K cell (b). The solid lines in the
top panels show the ordinary coherence between RCx and Hipp. The
dotted lines show the partial coherence between RCx and Hipp after
partialling out ATh. The solid lines in the middle panels show the or-
dinary coherence between ATh and RCx. The dotted lines show the
partial coherence between ATh and RCx after statistically removing

Table 1. Peak coherence of units in different anterior thalamic nuclei
with hippocampal theta

Nuclei AV AD AM

Peak coherence 046 +0.16 0.34+0.17 0.324+0.10
(Mean + SD)

Number of units (n) 12 2 2

mic” units. Most of these theta-rhythmic units (n = 12)
were located in the anteroventral (AV) nucleus of ATh.
Two units were located in the anterodorsal (AD) nucleus,
and two units were located in the anteromedial (AM)
nucleus. The average peak coherence between the units
in each of these three nuclei and the corresponding hippo-
campal theta EEG are summarized in Table 1.

5 10 15

the influence of Hipp. The solid lines in the bottom panels show the
ordinary coherence between ATh and Hipp. The dotted lines show
the partial coherence between ATh and Hipp after removing RCx.
Partial coherence identifies the hippocampus as the driver for the R
cell (middle panel in al) and the retrosplenial cortex as the driver for
the K cell (bottom panel in b1). The corresponding Gersch Causality
diagrams are shown in a2 and b2, respectively

The heuristic arguments and the results in Figs. 4 and 5
suggest that the relative theta spectral power in the two
EEG channels (Hipp and RCx) is a determining fac-
tor concerning which structure will be identified as the
driver according to partial coherence. In Fig. 6 we exam-
ine partial coherence as a function of this relative power
for all 16 cells. In Fig. 6a, the filled squares denote the
variable, power(Hipp)/ (power(Hipp) + power(RCx)), for
each cell and the open squares are the partial coher-
ence between RCx and ATh after removing the influ-
ence of Hipp. The filled triangles represent the variable,
power(RCx) / (power(Hipp) + power(RCx)), for each cell.
The partial coherence between Hipp and ATh after remov-
ing the influence of RCx is shown as open triangles. For
12 units (1-12), the hippocampus has a relatively high
power, and as a consequence, the partial coherence be-
tween RCx and ATh is statistically abolished, implicating
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Fig. 6a, b. Relationship between relative power and partial coher-
ence. a Normalized relative power for RCx (filled triangles connected
by solid black lines) and for Hipp (filled squares connected by dashed
black lines) for all theta-rhythmic cells studied (n = 16). Partial coher-
ence between RCx and ATh after removing Hipp (open squares con-
nected by dashed lines) and partial coherence between Hipp and ATh
after partialling out RCx (filled triangles connected by solid lines).
The shadowed area corresponds to the three cases where the relative

Hipp as the driver. (The R cell in Figs. 4 and 5 is cell 2
here.) For cells 14-16, the relative theta power from RCx
becomes greater than that from Hipp, and, as expected, the
partial coherence between RCx and ATh increases signif-
icantly, whereas the partial coherence between Hipp and
ATh declined substantially. For cell 16 (the K cell in Figs. 4
and 5), the partial coherence between Hipp and ATh is
statistically abolished, implicating the retrosplenial cortex
(RCx) as the driver.

(Power (Hipp) + Power (RCx) )

power of the cortex becomes more predominant than the relative
power of the hippocampus. b The same data shown differently.
b1 Partial coherence between RCx and ATh as a function of normal-
ized relative power of hippocampus. b2 Partial coherence between
Hipp and ATh against normalized relative power of the cortex. Note
that the R cell and K cell in Figs. 4 and 5 correspond to cell 2 and
cell 16 in the present plots

To highlight the relation between the partial coher-
ence and the relative power of the recording channel that
has been partialled out, we replot the data in Fig. 6a in
Fig. 6b1 and 6b2. Figure 6b1 displays the partial coherence
between RCx and ATh after partialling out Hipp vs. the
relative power of hippocampus. We note that as the power
of the hippocampus signal increases, the partial coherence
tends toward zero and the hippocampus becomes identi-
fied as the network driver. In Fig. 6b2, as the power of the



cortex becomes stronger, the partial coherence between
Hipp and ATh diminishes to the point where the cortex
becomes the driver.

4 Discussion

Partial coherence and the accompanying framework of
interpretation in the form of Gersch Causality is a widely
used technique for identifying sources of influence and
causal relations in neurobiological multivariate recordings
(Lopes da Silva et al. 1980; Turbes et al. 1983; Turbes and
Schneider 1989; Kocsis and Vertes 1994; Halliday et al.
1995; Cohen et al. 1995; Sherman et al. 1997; Rosenberg
et al. 1998; Kocsis et al. 1999; Mima et al. 2000; Larsen
et al. 2000; Timmermann et al. 2003; Kubota et al. 2003).
The result of the present work makes it clear that this
approach is susceptible to noise contamination, question-
ing its usefulness in biological signal processing.

For our biological data, partial coherence analysis
leads to contradictory results. For the two cells examined
in Figs. 4 and 5, Gersch Causality led to the conclusion
that in one case the hippocampus was the driver of theta
activity for both the cortex and thalamus (R cell), whereas
in the other case the cortex was the driver for the hippo-
campus and thalamus (K cell). The main difference
between these two cells is that, for the R cell, power in the
theta range for the hippocampus was the greatest among
the three signals, whereas for the K cell, power in the theta
range is the highest for the cortex. The population result
of all 16 cells in Fig. 6 is also consistent with this idea.

In accordance with our heuristic arguments and simu-
lations, we interpret the foregoing to indicate that the purer
the signal (less noise), the greater its influence (driving) on
simultaneously recorded signals in multivariate time series
using partial coherence analysis. The consistent identifica-
tion of the “strongest” signal as the driver may, however,
not represent true causal or directional influences and,
further, may not be easily reconciled with known anatom-
ical and physiological data. For instance, it is well known
that the hippocampus projects to the mammillary bodies
(MB), the MB to the ATh, and the ATh in turn to the RCx.
There are also direct projections from the hippocampus
(subiculum) to the ATh (Swanson and Cowan 1977; Sikes
et al. 1977). Based on these connections, the Hipp could
serve as the driver for the ATh and RCx, and the ATh for
the RCx, but it seems unlikely that the RCx is the driver
of theta activity in both the Hipp and ATh as shown for
the K cell by the partial coherence analysis. Thus, flaws in
the methodology underlie the contradictory results seen
in this case.

Causal influence is fundamentally a concept involving
the temporal order of events. From its definition partial
coherence incorporates no such information. This is
another reason why partial coherence analysis is not suited
for identifying causal influence or direction of driving. In
recent years another way of assessing the causal relations
between a pair of random time series stemming from the
idea of Wiener (1956) has begun to receive attention in
the neuroscience community (Bernasconi and Konig 1999;
Liang et al. 2000; Baccala and Sameshima 2001; Kamin-
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ski et al. 2001). Acknowledging the importance of tem-
poral ordering in the inference of causal relations from a
purely statistical point of view, Wiener (1956) proposed
that, for two simultaneously measured time series, one
series can be called causal with respect to the other if we
can better predict the second time series by incorporat-
ing the knowledge of the first one. This concept was later
adopted and formalized by Granger (1969) in the context
of linear regression models of stochastic processes. Eval-
uation of this technique using data from the theta-gener-
ating circuit is currently underway.
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