
Abstract. Perceptual multistability, alternative percep-
tions of an unchanging stimulus, gives important clues
to neural dynamics. The present study examined 56
perceptual dominance time series for a Necker cube
stimulus, for ambiguous motion, and for binocular
rivalry. We made histograms of the perceptual domi-
nance times, based on from 307 to 2478 responses per
time series ðmedian ¼ 612Þ, and compared these histo-
grams to gamma, lognormal and Weibull fitted distri-
butions using the Kolmogorov–Smirnov goodness-of-fit
test. In 40 of the 56 tested cases a lognormal distribution
provided an acceptable fit to the histogram (in 24 cases it
was the only fit). In 16 cases a gamma distribution, and
in 11 cases a Weibull distribution, were acceptable but
never as the only fit in either case. Any of the three
distributions were acceptable in three cases and none
provided acceptable fits in 12 cases. Considering only the
16 cases in which a lognormal distribution was rejected
ðp < 0:05Þ revealed that minor adjustments to the
fourth-moment term of the lognormal characteristic
function restored good fits. These findings suggest that
random fractal theory might provide insight into the
underlying mechanisms of multistable perceptions.

1 Introduction

Few images are as fascinating as those whose appear-
ances change spontaneously (Attneave 1971). That is,
during continuous observation of an unchanging
stimulus, the perceptual system will first adopt one
and sometime later another interpretation, switching
over time between alternative dominant percepts. This
can be demonstrated using the classical Necker cube
shown in Fig. 1a. Multistable visual perception, such
as of the Necker cube, is a phenomenon that intrigued
scientists for centuries. For example, psychologists

have performed numerous experiments with the Necker
cube to explore the effects of contrast, luminance,
completeness, size, base angle, use of a fixation point,
interpolation of squares or cubes, and varying the side-
to-base ratio of the stimuli, as well as subject-related
variables such as experience, gender, volitional control,
attention, or heat and noise in the environment (see
review by Merk and Schnakenberg 2002). The signif-
icance of research on multistable perception is that it
can offer a starting point to investigate consciousness
(Crick and Koch 1990) as well as visual information
processing, perceptual organization, and the transition
from sensation to perception (Blake and Logothetis
2002).

Conventional explanations of multistable visual phe-
nomena suggest that the spontaneous perceptual
switches are due to antagonistic connectivity within the
visual system (Leopold and Logothetis 1999). A prime
example of this is binocular rivalry, a form of interocular
competition that arises when patterns in the two eyes
cannot be fused stereoscopically (see Fig. 1b and c).
Recent electrophysiological and functional imaging
studies reveal important clues to the origins of visual
multistability during binocular rivalry in striate, extras-
triate, parietal, temporal, and possibly even frontal
cortex (Elbert et al. 1985; Lumer et al. 1998; von
Steinbüchel 1998; Tong et al. 1998; Inui et al. 2000;
Sengpeil 2000; Leopold et al. 2002; Sterzer et al. 2002;
White et al. 2002).

The dynamics of alternating perceptual dominance
has also offered clues about the underlying mechanisms.
The dominance times are irregular and rather unpre-
dictable, so that they need to be described by their sta-
tistical properties. Since the classic work of Borsellino
et al. (1972) on gamma distribution of experimental
perceptual dominance time series researchers have gen-
erally compared their experimental data or theoretical
model results with gamma distributions, e.g., experi-
ments by Gómez et al. (1995), Pettigrew and Miller
(1998), and Vetter et al. (2000) and models by Ditzinger
and Haken (1990), Haken (1994), Nagao et al. (2000),
Otterpohl et al. (2000), Wilson et al. (2000), and Laing
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and Chow (2002). The gamma distribution is related to
Poisson processes in which the numbers of changes in
nonoverlapping intervals are independent for all inter-
vals. Recently, however, Merk and Schnakenberg (2002)
found that the gamma distribution did not pass
chi-square tests against their data. Lehky (1995) dem-
onstrated that binocular rivalry is not chaotic and
dominance durations in binocular rivalry had a
lognormal distribution. Kruse et al. (1996) showed that
percepts of stroboscopic alternative motions, including
fluttering motion, turning motion, and oppositional
motion, have lognormal distributions. These papers
encouraged us to continue our research. In the event
that a lognormal distribution can fit the present per-
ceptual dominance data for several multistable percep-
tion, it encourages the application of multifractal theory
to investigate self-similarities (possibly long-range cor-
relations) in the underlying time series (Bershadskii et al.
2001; Gao et al. 2003).

In the present paper, the gamma, lognormal and
Weibull distributions will be compared to observed
perceptual dominance time series histograms using sta-
tistical goodness-of-fit tests. Four groups of perceptual
dominance time series will be analyzed. One group
represents changing apparent depth relationships of the
Necker cube (11 cases). A second group of 7 cases rep-
resents time series for the changing apparent motion
directions of a ‘‘turning ball’’ stimulus (Bonneh and
Gepshtein 2001), and the remaining two groups repre-
sent binocular rivalry time series either with orthogonal
gratings (27 cases) or orthogonally oriented ‘‘turning
balls’’ (11 cases) used as the stimuli.

2 Experiment brief

For one experiment, a Necker cube as shown in Fig. 1a
was placed in the middle of a computer screen displayed
as black lines on a white background with a visual
subtense angle of 4�. A small spot in the middle of the
cube served as the fixation point. Subjects drawn from a
group of unpaid volunteers were instructed to press a
key on the computer keyboard in front of them each
time their perception of the cube changed its 3D
orientation. The overall observation time was 50min,
consisting of ten runs of 5min each. The runs were
interrupted by breaks of a length freely chosen by the
subjects to minimize fatigue effects.

For a second experiment a ‘‘turning ball’’ stimulus,
described by Bonneh and Gepshtein (2001), was placed
in the middle of a computer screen displayed as white
dots on a black background with a visual subtense angle
of 4.5�. A single frame from the 120-frame animation
(presented at 60 frames per second) is illustrated in re-
verse contrast in Fig. 1b. A small black X in the middle
of the ball, not visible on this figure, served as the fixa-
tion point. Subjects pressed a key on the computer
keyboard to indicate their perception of the direction of
the ball’s apparent rotation. The overall observation
time was 48min, consisting of 15 runs of 3.2min each.
The runs were interrupted by breaks of a length freely
chosen by the subjects.

The binocular rivalry experiments were more in-
volved. The horizontal or vertical square-wave grating
images, as shown in Fig. 1c, were respectively drifting
vertically or horizontally. They were displayed in alter-
nate video frames at the middle of the computer screen.
Liquid crystal shutter glasses were synchronized to the
frame rate, alternately exposing the display to the two
eyes at the same frequency as the display frame rate, so
that one orientation of grating was presented to only one
eye and the other orientation only to the other eye. Due
to the rapid shuttering and persistence of our perceptual
system, each eye will fuse its successive images into an
apparently continuous smoothly moving grating. When
both eyes view the orthogonal gratings, the resulting
perceptual experience typically is of unpredictable
switches between the mutually exclusive perceptions: a
second or more seeing only the horizontal grating, then a
second or more seeing only the vertical grating. A 2�-
disk filled with 2.5 -cycle -per -degree horizontal grating
drifting two cycles per second was presented to the right
eye while a similar vertical grating was presented to the
left eye (or vice versa). Both eyes continuously viewed
ample binocular fixation guides. In one experiment the
subjects pressed mouse buttons to indicate their per-
ceptual state. On each of 2 days, these 9 subjects per-
formed 14 2-min runs, with rests between runs at the
subjects’ discretion. In total 18 data sets of 28min each
were obtained in this experiment. In a second experi-
ment 8 subjects pressed keys on a keyboard to indicate
their perceptual state. These subjects performed 15 runs
of 3.2min each, with rests between runs at the subjects’
discretion. In total nine data sets of 48min each were
obtained (one subject participated twice, on separate

Fig. 1. Schematic stimuli that generated the multistable perceptions
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days). The dominance periods (time interval) were ex-
tracted for each reported dominant percept, horizontal
or vertical, from all of the data sets.

Lastly, subjects who had judged the ‘‘turning ball’’
stimulus as described above also participated in an
additional binocular rivalry experiment, but in these
runs the orthogonal grating stimuli were replaced by
orthogonally oriented ‘‘turning ball’’ stimuli. Subjects
pressed a key on the computer keyboard to indicate
their perception of the direction of the ball’s apparent
rotation, which could have been up or down as well as
left or right. The overall observation time was 48min,
consisting of 15 runs of 3.2min each. The runs were
interrupted by rests at the subject’s discretion, as
usual.

3 Parameter estimation for the theoretical
probability distributions

Recall that the gamma distribution has previously been
used to model binocular rivalry and other perceptual
dominance time series (see review by Blake and Logo-
thetis 2002). Its probability density function (pdf) is
given by

f ðxÞ ¼ 1

abCðbÞ x
b�1e�x=a for x � 0; a > 0; b > 0 ; ð1Þ

where CðbÞ is the gamma function at b. The parameters a
and b can be estimated for each sample data set by
a ¼ r2=l and b ¼ l=a, where l, r are the mean and the
standard deviation of the random variable x (perceptual
dominance times), respectively.

The Weibull distribution is one of the most com-
monly used distributions in reliability engineering. One
preferred pdf form of two-parameter Weibull distribu-
tion can be expressed by

f ðxÞ ¼ abxb�1e�axb
for x � 0; a > 0; b > 0 : ð2Þ

One robust way to estimate the parameters is to fit each
sample data set with the straight line relationship (in
log–log coordinates) given by

lnð� lnð1� F ðxÞÞÞ ¼ b ln xþ ln a ; ð3Þ

where F ðxÞ is the cumulative distribution function
(CDF). As we can see, b is the slope of the line and
ln a is its intercept at the y-axis. For b greater than unity
the pdf of a Weibull function is unimodal, and for
b < 2:6 the pdf is positively skewed (i.e., a long right
tail).

The lognormal distribution also occurs in practice
quite often. Its pdf is given by

f ðxÞ ¼ 1
ffiffiffiffiffiffi

2p
p

rx
e�ðln x�lÞ2=2r2

for x > 0 ; ð4Þ

where l, r are, respectively, the mean and the standard
deviation of the logarithm of random variable x for
x > 0. A straight-line relationship such as (3) can be
derived to check the fitness of lognormal distribution as

erf�1ð2 � F ðxÞ � 1Þ ¼ ðln x� lÞ=
ffiffiffi

2
p

r ; ð5Þ

where erf is the error function.
Confidence limit formulae for these parameter esti-

mates can be found in Kennedy and Neville (1986) and
Miller and Freund (1985). It is worth pointing out that
maximum likelihood estimation iterations sometimes
showed poor convergence when a sample data set was
quite dissimilar from one of these theoretical distribu-
tions under consideration. That might also indicate that
the chosen distribution could not fit well the measured
data.

4 Goodness-of-fit between observations
and theoretical distributions

Given the chosen theoretical distribution with its
parameters estimated for a particular data set, we
determined whether the data plausibly could have arisen
from that distribution by performing a goodness-of-fit
test. For continuous-time data as a function of a single
variable, such as the perceptual dominance times, the
preferred test is the Kolmogorov–Smirnov one-sample
test (Siegel 1956). The Kolmogorov–Smirnov one-sam-
ple test is based on the maximum deviation of the
empirical cumulative distribution function from the
theoretical one, for each data set and each candidate
distribution. The values of a particular empirical CDF,
F ðxiÞ, equal i=N , where i is the number of data points
not larger than xi and N is the total number of data
points, determined after the dominance times (x) in that
data set have been sorted into ascending order.

Corresponding theoretical CDFs, FtðxiÞ, were calcu-
lated for each candidate distribution with its parameters
estimated for that particular data set. The test statistic is
the maximum discrepancy between the empirical and
theoretical CDFs across all data points, that is,

De ¼ max
1�i�N

F ðxiÞ � FtðxiÞj j : ð6Þ

For each data set and each candidate distribution, De
can be compared against the critical value Dcrit associ-
ated with the chosen level of significance ðp < 0:05Þ and
the sample size (N). If De is greater than Dcrit then the
null hypothesis will be rejected and the data cannot
plausibly be thought of as arising from the specified
distribution. An alternative way to make this decision is
to calculate the tail probability p corresponding to each
observed De as obtained approximately by Press et al.
(1992):

p ¼ QKSðð
ffiffiffiffi

N
p
þ 0:12þ 0:11=

ffiffiffiffi

N
p
ÞDeÞ ; ð7Þ

where

QKSðxÞ ¼ 2
X

1

j¼1
ð�1Þj�1e�2j2x2 : ð8Þ

If p calculated from (7) is less than 0.05 (the chosen
significance level), then the null hypothesis can be
rejected. Ideally, the parameters for the theoretical
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functions should be estimated from data that are not
from the sample used for the empirical CDF (Press et al.
1992), but this was not practical for the present paper.

5 Data analysis

Based on the algorithms described in the preceding
sections, the parameters of each type of distribution
were estimated for each of the 56 data sets. Figure 2
shows representative binocular rivalry perceptual dom-

inance time series for three subjects, with two data sets
shown for one of the subjects. Example dominance time
series for the Necker cube are shown in Fig. 3. For the
same examples, the empirical pdfs and fits of the three
candidate theoretical distributions are shown in Fig. 4
(binocular rivalry) and Fig. 5 (Necker cube). Visual
inspection (especially near the peaks) indicates that the
lognormal distribution yields the best fit for all these
examples.

The Kolmogorov–Smirnov one-sample goodness-of-
fit test was performed to compare each of the 56

Fig. 2. Dominance time series for the binoc-
ular rivalry experiment (three subjects, but
note that subject ‘‘E’’ has two time series
shown)

Fig. 3. Dominance time series for the Necker
cube experiment (four subjects)
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empirical CDFs to each of the three theoretical candi-
date distributions (168 evaluations of (6–8)). Each of
those evaluations resulted in a tail probability for the
test statistic De, which served as the index of goodness-
of-fit. Table 1 shows those goodness-of-fit indices for all
multistable perception data series that passed the
goodness-of-fit test, and Table 2 shows those indices of
data series that failed in the test. Note that the results are
sorted into groupings. In Table 1, we have 40 data sets
in which subject ID B02 through Q01 represent results
from the binocular rivalry experiments (std rivalry), R01
through Sub2 from binocular rivalry using the turning
balls (ball rivalry) instead of gratings, Sub4 through
Sub9 from the ambiguous motion turning ball (ambig
motion), D.A. through V.S. from the Necker cube. In
Table 2, we have 16 data sets in which subject ID A01

through N01 represent results from the binocular rivalry
experiments, S01 and T01 from binocular rivalry using
the turning balls instead of gratings, Sub3 from the
ambiguous motion turning ball, A.F. through M.T.
from the Necker cube. In Table 1, most likely outcomes
(24 of 40 cases) were that the lognormal distribution
plausibly fit the empirical pdfs, but the other two can-
didate distributions were rejected. The next most likely
outcomes (9 of 40 cases) were both lognormal and
gamma distributions plausibly fit the empirical pdfs (but
not Weibull). Least likely outcomes were: (a) both log-
normal and Weibull but not gamm distributions would
give a plausible fits (4 of 40 cases), and (b) all three
candidate distributions would give plausible fits (3 of 40
cases). Counting the 56 cases in the two tables, when a
distribution was not rejected, ðp < 0:05Þ yields 40 for

Fig. 4. Comparisons of empirical and theo-
retical probability density functions (pdfs) for
binocular rivalry dominance times

Fig. 5. Comparisons of empirical and theo-
retical probability density functions (pdfs) for
Necker cube dominance times
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lognormal, 16 for gamma, and 11 for Weibull, and when
three distributions were all rejected yields 12.

The error function can be used to compare empirical
dominance time CDFs against the lognormal distribu-

tion (see (5)). Ideally, the data plotted in this fashion
should be a straight line of unity slope when the fit is
very good. This was true for the 40 cases of satisfactory
lognormal fit given in Table 1. Figure 6 shows error

Table 1. Data sets passing the
goodness-of-fit test for a log-
normal distribution

Stimulus ID p (Weibull) p (Lognormal) p (Gamma) N

Std rivalry B02 < 0:001 0:111 0:010 889
Std rivalry D01 < 0:001 0:071 < 0:001 802
Std rivalry D02 < 0:001 0:713 0:040 787
Std rivalry F01 < 0:001 0:073 0:014 628
Std rivalry I02 0:025 0:474 0:041 343
Std rivalry G02 < 0:001 0:237 < 0:001 589
Std rivalry J01 < 0:001 0:056 < 0:001 1250
Std rivalry J02 < 0:001 0:326 < 0:001 976
Std rivalry K01 < 0:001 0:108 < 0:001 838
Std rivalry O01 0:005 0:914 0:016 426
Std rivalry P01 < 0:001 0:712 < 0:001 403
Ball rivalry R01 0:038 0:583 < 0:001 670
Ball rivalry U01 0:012 0:278 0:011 605
Ball rivalry W01 0:006 0:455 < 0:001 591
Ball rivalry X01 < 0:001 0:564 < 0:001 580
Ball rivalry Z01 < 0:001 0:369 < 0:001 478
Ball rivalry Sub2 0:027 0:124 0:011 469
Ambig motion Sub4 0:003 0:299 < 0:001 400
Ambig motion Sub5 0:017 0:406 < 0:001 385
Ambig motion Sub6 0:004 0:581 < 0:001 379
Ambig motion Sub9 0:008 0:787 < 0:001 307
Necker cube H.S. < 0:001 0:060 0:009 1353
Necker cube J.C. < 0:001 0:070 < 0:001 547
Necker cube M.S. < 0:001 0:967 0:002 620
Std rivalry E01 0:021 0:496 0:699 753
Std rivalry G01 0:009 0:717 0:306 532
Std rivalry I01 0:037 0:518 0:182 439
Std rivalry L01 0:039 0:789 0:154 695
Std rivalry M01 0:028 0:381 0:460 632
Std rivalry Q01 0:044 0:751 0:246 355
Ball rivalry V01 0:038 0:659 0:082 591
Necker cube D.A. 0:024 0:317 0:056 654
Necker cube V.S. 0:011 0:830 0:267 575
Ball rivalry Y01 0:062 0:264 0:030 525
Ball rivalry Sub1 0:072 0:772 0:016 473
Ambig motion Sub7 0:084 0:222 0:002 340
Necker cube F.S. 0:055 0:490 0:009 416
Std rivalry H01 0:064 0:716 0:396 448
Std rivalry H02 0:298 0:063 0:665 486
Ambig motion Sub8 0:136 0:862 0:624 339

Note: Bold font denotes satisfactory fit, that is, p � 0:05

Table 2. Data sets failing
goodness-of-fit tests for a
lognormal distribution

Stimulus ID p(Weibull) p(Lognormal) p(Gamma) N

Std rivalry A01 < 0:001 < 0:001 0:037 1269
Std rivalry A02 < 0:001 < 0:001 0:008 1041
Std rivalry B01 < 0:001 0:026 0:014 971
Std rivalry C01 < 0:001 0:023 < 0:001 788
Std rivalry C02 < 0:001 0:026 < 0:001 807
Std rivalry F02 < 0:001 0:033 < 0:001 663
Ambig motion Sub3 0:011 0:012 < 0:001 444
Necker cube A.F. < 0:001 0:020 < 0:001 937
Necker cube F.D. < 0:001 < 0:001 < 0:001 1724
Necker cube H.K. < 0:001 0:007 < 0:001 807
Necker cube J.M. < 0:001 < 0:001 < 0:001 1117
Std rivalry N01 0:968 < 0:001 0:094 605
Ball rivalry S01 0:209 0:044 0:166 665
Ball rivalry T01 0:104 0:029 0:372 665
Std rivalry E02 0:170 0:010 0:096 731
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function plots for 15 of the cases combined into three
groups that rejected the lognormal distribution, drawn
from Table 2. Nine of those cases were similar in dis-
playing a platykurtic pattern of deviations (observed
frequencies too large near both ends of the distribution
and too small near the mean). Curve 1 represents the
average of these nine data sets, shifted one unit to the
left on the abscissa for clarity. Error bars (�1 standard
deviation) are often smaller than the plotted points.
Thus, undershoots near the mean and symmetrical
overshoots near the two ends appear to be significant.
Curve 2 represents the average of three cases drawn
from Table 2 that were similar, displaying a leptokurtic
pattern of deviations (observed frequencies too small
near both ends of the distribution). Curve 3 represents
the average of the last three cases drawn from Table 2
that were similar in displaying a leptokurtic and skewed
pattern of deviations (observed frequencies too small
near the negative but not the positive tail of the distri-
bution); this curve shifted one unit to the right on the
abscissa for clarity. Linearity is generally good near the
middle of each plot (i.e., near the means of the empirical
distributions). The discrepancies we find tend to happen
most often either: (i) at the ends of Curves 1–3, where
observations are more sparsely distributed and the low
likelihood of occurrence is therefore difficult to estimate
reliably, or (ii) in the middle of Curve 1, close to the
mean, where the likelihood of occurrence can be esti-
mated with better confidence. We believe that suitable
fits even to these cases, which reject the lognormal fit,
could be made by slight adjustment to the weight of the
fourth moment (kurtosis) component.

6 Discussion

The lognormal distribution shape may have implications
for mechanisms underlying multistable perception. In

principle, if we consider perception to be a complex task
composed of n independent subtasks, and the probabil-
ity of success in the complex task is the product of the
probabilities of all n subtasks succeeding, then task
successes will have a lognormal distribution when n is
sufficiently large to apply the central limit theorem.
Leopold and Logothetis (1999) have proposed that
perceptual multistability might be accidental conse-
quences of rather general neural mechanisms that
mediate a variety of behaviors, and this would seem to
be consistent with the statistical principle above.

The lognormal distribution shape may also have
implications for analysis of the time series dynamics. For
example, Bershadskiiet al. (2001) have recently shown
that the inter spike intervals of individual neurons can be
plausibly explained by a thermodynamic model of cell
membrane thresholds, resulting in a lognormal-like dis-
tribution of these time intervals as well as multifractal
relationships in the higher-order statistics of their time
series. Relationships of self-similarity in the spike trains
are consistent with long-range correlations in their time
series. All of these mathematically elegant features arose
from their fundamentally simple thermodynamic pre-
mises. We have in fact followed the lead of Bershadskii
et al. (2001) and of Gao and Rubin (2001) by applying
monofractal and multifractal analysis to the time series
of perceptual dominance responses. Our preliminary
findings do, as expected, show indices of self-similarity
(generalized Hurst parameters), indicative of long-range
correlations in multistable perceptions (Gao et al. 2003).
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