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Abstract. A Bayesian inference framework for estimat-
ing the parameters of single-trial, multicomponent,
event-related potentials is presented. Single-trial record-
ings are modeled as the linear combination of ongoing
activity and multicomponent waveforms that are rela-
tively phase-locked to certain sensory or motor events.
Each component is assumed to have a trial-invariant
waveform with trial-dependent amplitude scaling factors
and latency shifts. A Maximum a Posteriori solution of
this model is implemented via an iterative algorithm
from which the component’s waveform, single-trial
amplitude scaling factors and latency shifts are esti-
mated. Multiple components can be derived from a
single-channel recording based on their differential
variability, an aspect in contrast with other component
analysis techniques (e.g., independent component anal-
ysis) where the number of components estimated is equal
to or smaller than the number of recording channels.
Furthermore, we show that, by subtracting out the
estimated single-trial components from each of the
single-trial recordings, one can estimate the ongoing
activity, thus providing additional information concern-
ing task-related brain dynamics. We test this approach,
which we name differentially variable component anal-
ysis (dVCA), on simulated data and apply it to an
experimental dataset consisting of intracortically re-
corded local field potentials from monkeys performing a
visuomotor pattern discrimination task.

1 Introduction

Relations between brain and behavior are often studied
by recording event-related potentials (ERPs) over
repeated presentations of a sensory stimulus or task
performance. The obtained data are commonly modeled
as the linear combination of ongoing activity and
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event-related components that are relatively phase-
locked to the onset of the event. The ongoing activity
includes signals that are not related to the event and
possibly also signals that are induced by the event but
that are not phase-locked to its onset. Based on the
classic signal-plus-noise model, the event-related signals
are extracted by averaging across the ensemble of trials,
resulting in the average event-related potential (AERP).
The main assumption of this approach is that an event-
related signal exists that is invariant across trials.
However, evidence amassed thus far indicates that this
assumption is no longer tenable. More realistic models
have been advanced where trial-to-trial amplitude and
latency variability are taken into account (Woody 1967,
Coppola et al. 1978; Truccolo et al. 2002a).

The existence of trial-to-trial variability in event-re-
lated activity implies that the simple ensemble mean is
not the optimal estimator for event-related components.
Woody (1967) proposed a method for estimating the
latency of single-trial event-related activity by use of a
matched filter. Following Woody’s technique, averages
can then be computed after adjusting for the estimated
latency variability over trials. Subsequent work has ex-
tended Woody’s idea by including amplitude variability
and by placing the estimation of single-trial parameters
in a maximum likelihood framework (Jaskowski and
Verleger 1999; Lange et al. 1997; McGillem et al. 1985;
Pham et al. 1987). Other techniques based on wavelet
(Bartnik et al. 1992; Quiroga 2000; Quiroga and Garcia
2003) and clustering analysis (Haig et al. 1995) have also
been introduced in the literature.

The goal of the present paper is threefold. First,
starting from a Bayesian perspective, we propose a
comprehensive framework that can serve as a theoret-
ical guideline for modeling and estimating parameters
of single-trial multicomponent ERPs. The ERPs are
modeled as the linear combination of multiple com-
ponents whose waveforms, single-trial latency shifts,
and amplitude scaling factors are to be estimated based
on the components’ differential variability from trial to
trial, a technique we entitle differentially variable
component analysis (dVCA). In this regard, Woody’s



(Woody 1967) and related algorithms are seen as spe-
cial cases implementing the maximum a posteriori
solution of the posterior probability. Second, we
emphasize that single-trial parameters such as ampli-
tude scaling factors and latency shifts are themselves
interesting physiological variables, providing essential
information for understanding stages of information
processing in the cortex (Nowak and Bullier 1997;
Schmolesky et al. 1998; Schroeder et al. 1998). Espe-
cially interesting is the finding of differential variability
for estimated components in the same or different
channels. Third, recent work shows that the ongoing
activity, which contains non-phase-locked signals, is the
main source for the study of functional interdepen-
dences between neuronal populations (Truccolo et al.
2002a). Traditionally, ongoing activities have been ob-
tained via subtraction of the AERP from single-trial
recording. We demonstrate that a more appropriate
way to extract the ongoing process is to perform single-
trial estimation of event-related potential components
and then subtract them from the single-trial time series.

The entire dVCA approach is first tested on simulated
data and then applied to an experimental dataset con-
sisting of intracortically recorded single-trial local field
potentials (LFPs) in monkeys performing a GO/NO-GO
visuomotor pattern discrimination task.

2 Theory
2.1 Model of single-trial LFPs

Our starting point is a generative model for the recorded
single-trial LFPs. Such a model should capture at least
four main properties of LFP recordings in the event-
related paradigm: (a) the existence of signals that are
relatively phase-locked to a specific event onset, (b) the
trial-to-trial variability in amplitude and latency of the
event-related signals, (¢) the possibility that the event-
related response may be the superposition of multiple
components with differential variability in their single-
trial amplitude scaling factors and latency shifts, and
(d) the existence of signals that are not phased-locked to
the event, including activity that is unrelated to the
experiment (e.g., measurement noise) and activity that is
induced by the event. As a first approximation, the
waveforms of the event-related components are assumed
to be invariant across trials. A model that incorporates
all these features can be written as

N
x.(1) = Zamsn(t —T0) +1,(0) (2.1)
n=1

where x,(¢) is the LFP recording from the r-th trial, s,(¢)
is the n-th event-related component waveform with a
trial-to-trial variable amplitude scaling factor and
latency shift given by a,, and 1,,, respectively, and N is
the total number of components. The process #,(¢),
henceforth referred to as the ongoing activity, includes
all the non-phase-locked signals and is assumed to have
a zero mean. From a physiological point of view we note
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that each component could correspond either to the
activity of a distinct neural source or generator, or to the
activity of the same source but at a different neural
processing stage.

2.2 Bayesian estimation framework

The problem of estimating the single-trial parame-
ters s,(t), a,, and 1, is formulated from a Bayesian
perspective. According to Bayes theorem, the posterior
probability of model parameters M given data D and
prior information / can be written as

p(DIM, I)p(M|I)
p(DII)

For the LFP model in Eq. 2.1, the posterior probability
becomes

psa(0)} {an} {Tu}, 0y () {x:(2)}, 1)
_ % ()}{sa(0)}, {an}, {Tar}, 04 (1), 1)
p({x(0) 1)
PO} {an b, {Tar}, 04 (D)

where {-} refers to the set of parameters for all the
components and the whole ensemble of trials, 0,(¢)
denotes the parameters for the ongoing process, and
p{sa()}, {an}, {tnr}, 0,(¢)|I) is the prior probability for
the model parameters. For this additive model, the
likelihood  p({x,(¢) }{sx ()}, {an-}, {Tnr}, 0,(¢),1) turns
out to be simply given by the probability model of the
ongoing activity, i.e., p(1(¢)|I). In the absence of precise
knowledge about the temporal structure of the ongoing
activity, we assign 7(¢f) to be independent identically
distributed with an (unknown) time-independent vari-
ance af, and zero mean. In this way, Eq. 2.3 is rewritten
as

p{sn(D)}, {awts {Tr}s oy {x: ()}, 1)
_ p{n®)}Hoy Dp({sa()}, {an}s {tw }, oy |1)
p({x:() }1) '

Under the constraint of a given mean and 05 and
following the principle of maximum entropy (Sivia
1996), a Gaussian density is assigned to the likelihood
function. After dropping the normalization term
1/p({x.(¢)}|), the posterior can be rewritten as

P({sa (O}, L@}, Lt} 0yl o (6)}, 1)
o¢ p{sa(0) s b, T}, 0|1 (2m02)

- i i xr(t) - éanrsn(t - an)

r=1t=1
2 )
20,1

p(M|D, 1) = (2.2)

(2.3)

(2.4)

2

- exp (2.5)

where R is the total number of trials and T is the total
number of sampled data points in a given trial. For
notational simplicity we have assumed the sampling
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interval to be unity in the above expression. In practice,
the real time can be recovered by multiplying the integer
time index ¢ by the sampling interval.

In the absence of detailed knowledge about the
parameters a,,, T, and s, (), we take their prior distribu-
tions to be uniform, with appropriate cutoffs reflecting
physiologically reasonable ranges of values. That is,

p(s,(t)|I) = const.,Vn , (2.6)
pla,|l) = const., for 0 < a, < amax, V1 (2.7)
p(t,|I) = const., for Tmin < Ty < Tmax, V7 . (2.8)

Treating the variance of the ongoing activity as a
nuisance parameter and assigning the Jeffreys prior
ploy) = a,! (Sivia 1996), we marginalize the posterior
OVer oy

Psa(O)} {an s {tn H{x(0)},1)
oc p({sa(8)}s {@nr ¥, {Tur }II)

=R g
(2may) 2 0,

=

(2.9)
and obtain
p({sn(O}, {an}, {tw H{x(0)}, 1)
o pl{52 (0}, ), fma} I FT( )
e 2\
2o [ Za”’s” T”’] . (210

where T'(+) is the gamma function.

The evaluation of the posterior probability and
computation of its moments can be obtained via Mar-
kov Chain Monte Carlo (MCMC) methods. Although
highly informative, these methods carry the disadvan-
tage of being computationally intensive. Here, instead,
we summarize the posterior density by seeking the
maximum a posteriori (MAP) solution, i.e., a set of
parameters that maximize the posterior probability. In
the context of Eq. 2.2, the MAP solution for the model
parameters M is

M= arg max[p(DIM, 1)p(M|D)

= argﬂrlnax[lnp(MU) +Inp(DIM,I)] . (2.11)

Because waveforms, amplitude scaling factors, and
latency shifts are being estimated simultaneously, the
model has degeneracy. We solve this problem by
constraining the ensemble mean of the amplitude scaling

factors and latency shifts of each component to equal
one and zero, respectively.

Intuition about the characteristics of the MAP solu-
tion can be gained by examining the partial derivatives
of the logarithm of the posterior probability with respect
to each of the model parameters. This leads to a prac-
tical and simple estimation algorithm. In what follows,
the time ¢ assumes discrete values corresponding to
digital sampling. Let

R T
= E § xr § anrsn an

r=1 t=1 =

2
(2.12)

Let P represent the posterior probability in Eq. 2.10.
Then its logarithm can be simply written as
RT

lnP:—Tan—Fconst . (2.13)
For the partial derivatives we use j, p, and ¢ to denote
specific index values for the generic running indices n, ,
and ¢, respectively. The first partial derivative with
respect to s;(g) is

dlnP  RT ., 3Q

- , 2.14
@ 22 & 219
where
R
as, 2;[%,, — (ay) ,(q)} (2.15)
and
W =x(q+ 1) Z AnySn(q — Tr +Tjr) (2.16)
n#/
Settlng a = 0 gives
Z Waj,
§i(q) = —— (2.17)
Z (ajr)

with §;(¢g) denoting the estimated parameter. The above
equation does not have a closed-form solution since the
right-hand side depends on the other estimated param-
eters. However, intuition about the type of solution can
be obtained by examining the term /. Basically, this
term involves the following two elements: (a) the data
are shifted according to the latency shift of the estimated
component, i.e., x.(q¢ + 7;-); and (b) the other scaled and
time-shifted components, i.e., a,5,(¢ — Tpr + 7;), for
n # j are subtracted from the data. The properly scaled
residuals, where the scaling is given by the term a;,, are
then averaged across trials.

Similarly, we obtain the estimate for the amplitude
scaling factors a,,:

, (2.18)



where U = x, (1) — 3. L AnpSn(t — Tpp) and V = s;(t—
7jp). Notice that the formula derived for @, is related
to a matched filter solution. That is, a;, is given by
projecting U, which is the data after removing the
contribution from the other scaled and time-shifted
components, onto ¥, which is the current component
under estimation.

For the latency shift parameter, setting BQ =0 leads
to the following equation:

/
E :anpsn = Tup) “jpsj(t = Tjp)

T
2> | |
t=1

n#/
— =Tl — )| =0 (2.19)
where s7(f — rjp) is the time derivative of s;(t — 1j,). The

solution for 7 7;, is more difficult since t appears in the
argument of the waveform function. Again, intuition
can be gained by directly examining the condition for the
maximization of the logarithm of the posterior, which is
equivalent to the minimization of the term Q in Eq. 2.12.
Expansion of this term results in

S | le Zanrsn r

— 2x,.(t) Z QS (t — an)]

n=1

(2.20)

As 1, is varied, only the cross terms in x,(¢)-
N .

Yy npSn(t — T,p) for n=j are relevant for the

minimization of Eq. 2.12 (as long as the event-related

components s,(#) can be considered zero outside some

time interval (f9,7/)). Thus the optimal parameter %, is

found by maximizing

§ anpsn )

n#/

(2.21)

T
E ajps;(t

which, if properly normalized, is just the cross correla-
tion between the estimated component and the data
after the contributions from the other components have
been subtracted out. Thus

1j, = argmax p(t) . (2.22)

This result corresponds to Woody’s matched filter

algorithm for latency estimation (Woody 1967).

2.3 Algorithm implementation

Given that the partial derivatives and the Hessian matrix
of the posterior probability are readily available,
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techniques such as conjugate gradients and quasi-Newton
trust region methods can be employed in the search for the
MAP solution. At each iteration step, the optimization
can be carried out in stages, i.e., first with respect to the
latency shifts, then the waveforms, and finally the
amplitude scaling factors. These techniques are much less
computationally intensive than MCMC but still require
multiple searches starting at different initial conditions or
stochastic annealing to avoid local maxima.

However, the analysis in the previous section suggests
a simpler heuristic algorithm. After an initial guess, at
each iteration step the parameters for all components are
updated in sequence as mentioned before: first the
latency shifts, then the waveforms, and finally the
amplitude scaling factors. Specifically, let s7(z), @, T
denote the estimated values of the parameters in the
m-th iteration. Also, let the latency shifts assume only
discrete integer values, with unit corresponding to the
sampling interval. To avoid degeneracy in the model, the
averages of the amplitude scaling factors and latency
shift values in each iteration are constrained to (a}), = 1
and (7 J> = 0. In this way, if there is no trial- {o-trial
variability both in amplitude and latency, the superpo-
sition of the estimated component waveforms should
equal the AERP. For a single channel dataset {x,(¢)},
the algorithm consists of the following steps:

0) At m =
scaling factors and latency

0, the initial guess for the amplitude
shifts are set to

ajr = 17rjr = 0,Vj,r. For simplicity, the decision on
)
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Fig. 1. Synthetic data generated to evaluate the performance of the
dVCA algorithm (see text for details)
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the number of components N is based on the
inspection of the AERP (see Figs. 1 and 4). Simi-
larly, N non overlapping segments of the AERP are
taken as the initial guesses for the N components’
waveforms s]( ). After this initialization, each iter-
ation consists of four steps:

(1) For all trials, estimate the single-trial latency shifts
for one component at a time, starting with the first
and proceeding up to the N-th component, according
to r;”“ = argmax p"(t). Reexpressed in time units,
the estimated Fatency shift is simply 7;.Az, where At is
the sampling interval. Given an approximate
knowledge of where in time the component is ex-
pected to happen, an interval for the search of the
optimal latency shift 7; can be stipulated. In this
way, the possibility that the component matches by
chance the waveform of unrelated ongoing activity is
diminished. In the application to experimental data
in Sect. 4, the following intervals for the search of
the optimal latency shift were employed: [—30 ms, 30
ms] for early components and [—60 ms, 60 ms] for
later components.

(2) Estimate the waveforms according to

R
> W,

m+1 r=1

Sj (t) - R 5 9
r:Zl(a}?,’)

with

W=x(t+1") Za;;';t—rm+‘+rm+') :

n#/
(3) For all the trials and components, estimate the
amplitude scaling factors according to

uv

M~

m+1 __ ¢
jro

0=
<
o

1

with U =x, (t?)— Z](v# ha msmtl(p — ¢ty and

nr-n
V = S;Vl+1 (l‘ ,L.m+

(4) Increment the iteration index: m = m + 1; repeat (1)
through (3) for M iterations.

~
Il

Jr

We note that the differential variability of the
components on a trial-by-trial basis is the foundation of
the estimation technique. We thus term our algorithm
differentially variable component analysis (dVCA). For
the experimental data employed here, where the overlap
between the components is not large and the signal-to-
noise ratio (SNR) is high, two iterations already give
reasonable results. The above algorithm is especially well
suited for single-trial analysis of LFPs, e.g., intracortically
recorded potentials, where the spatial overlap of different
and distant sources is not severe as in noninvasive
recordings like EEG and MEG. However, if we suspect

that the components might be highly overlapped or that a
more automatic way to specify the number of components
and initialize their waveforms is called for, the algorithm
can be improved with the following consideration.

The algorithm is initialized with a single component
whose waveform can be taken to be a short segment
around the largest fluctuation of the AERP. Single-trial
amplitude scaling factors and latency shifts for this
component are initialized as before, and the same se-
quence of steps (1-4) is performed until the estimated
parameters converge (given a tolerance criterion) or a
maximum number of iterations is reached. Then the
estimated single-trial scaled and translated component is
subtracted from the corresponding single-trial data,
resulting in residual data. The ensemble average of these
residual data is computed, leading to a new AERP. A
new component is introduced into the estimation if the
largest fluctuation of this new AERP happens to be
outside of a confidence interval (e.g., +24(¢)/V/R, where
a(t) is the ensemble standard deviation of the residual).
The initial value of this new component is taken to be
the segment around this largest fluctuation. The whole
procedure is repeated until the ensemble average of the
residual data no longer shows any significant structure,
i.e., fluctuations outside the confidence interval. Besides
the use of a confidence interval as mentioned above, a
model selection approach using information criteria
(e.g., Akaike’s information criterion) for the selection of
the number of components could also be explored.

3 Application to simulated data

Simulations were used to evaluate the robustness of the
dVCA in the presence of noise. The synthetic data
mimicked local electric field potentials containing two
independent, event-related components as shown in
Fig. 1 (top panel). The components have Gaussian
waveforms motivated by those found in the experimen-
tal data presented in the next section. A single-trial time
series was produced by a linear summation of compo-
nent 1, component 2, and the ongoing noise process that
was assumed to have a 1/f spectrum with standard
deviation denoted by oyise. (For white noise ongoing
processes we obtained similar results.) Trial-to-trial
variations in each component were introduced by
multiplying the component with an amplitude scaling
factor and by shifting it in time with a specific latency
shift. Single-trial amplitude scaling factors for compo-
nent 1 were varied as a lognormal distribution with
sample mean f,,, = 1.0 and sample standard deviation
Gamp = 1.0. For component 2, the amplitude scaling
factors had a sample mean w,,, = 1.0 and a sample
standard deviation of g,mp = 1.5. Single-trial latency
shifts for component 1 were varied as a normal distri-
bution with sample mean y;,, = 0.0 and sample standard
deviation gy, = 10.0 ms. For component 2, the latency
shifts had a sample mean u;,;, = 0.0 and sample standard
deviation o,y = 25.0 ms.

Twelve synthetic datasets were generated, each
consisting of 222 simulated trials sampled at 200 Hz and



corresponding to a given ongoing noise level opoise.
Specifically, the signal-to-noise ratios (SNR) of the
datasets were {—34.6574, -27.7259, -20.7944, —13.8629, —
9.8083, —6.9315, -2.8768, 0, 6.9315, 13.8629, 20.7944,
27.7259 dB} with respect to component 2, where the
SNR was defined as:

SNRcomponent =20 1Ogl() MdB .

Onoise

(3.1)

Here 6component Was calculated as the square root of the
variance of the component across time. It was critical to
assign SNRs separately for each component in each
experiment since the standard deviations of the two
components differ.

Examples of single-trial time series are shown in the
middle panel of Fig. 1 where the SNR with respect to
component 2 is approximately —7 dB. It is clear that
component 2 is not readily visible in these single-trial
time series and that component 1 is not immediately
obvious except in trial 222.

The dVCA algorithm was applied to each of the
synthetic datasets as explained above in Sect. 2.3. The
initial estimates for the component waveforms were ta-
ken as the AERP between nonoverlapping time periods
and as zero elsewhere. Inspection of the AERP in each
of the synthetic datasets revealed that the first peak,
defined as component 1, occurred between 65 and 125
ms while the second peak, defined as component 2, oc-
curred between 140 and 235 ms (see Fig. 1 bottom
panel). Initial estimates of the single-trial amplitude
scaling factors were initialized to 1.0, and those for the
single-trial latency shifts were set to 0 ms. After initial-
ization, dVCA was applied to each synthetic dataset
until the estimated component waveforms varied less
than 1% between iterations or until 15 iterations of the
algorithm were performed. Performance of the
algorithm was evaluated by comparing the estimated
waveforms, amplitude scaling factors, and latency shifts
with their original counterparts. The accuracies of
estimated waveforms were measured by calculating the
fractional root mean square (RMS) error for the j-th
component as follows:

\/z (s,) — 5(0))°

B =

wave ?

> (s(0)°

t=1

—

(3.2)

where 7T is the total number of time points, s;(¢) is the
original component waveform, and §;(¢) is the estimated
component waveform. As shown in the top panel of
Fig. 2, the error in the estimated waveforms decreases as
the SNR increases for both components. A waveform
error of less than 25% is achieved at around —10 dB and
is below 10% at a SNR of 0 dB for each component.
The accuracy of estimated amplitude scaling factors
and latency shifts was evaluated by examining the dis-
tribution of the differences between estimated and ori-
ginal values. Figure 2 (middle and lower panels) shows
the results of comparing the estimated values and the
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Fig. 2. Accuracy of the dVCA estimates of component waveforms,
amplitude scaling factors, and latency shifts across various signal-to-
noise ratios (see text for details)

original values for the two components across various
SNR levels. The horizontal black lines denote the one
standard deviation of the original latency shift and
amplitude scaling factor values with respect to their
means. The broken lines represent the one standard
deviation of the differences between the estimated values
and the original values. We note that, when these broken
lines fall within the black horizontal lines, it means that
the trial by trial estimated latency shifts and amplitude
scaling factors are better representations of the true
values than the ensemble or grand average. For ampli-
tude estimation, trial-by-trial estimations produced
better results than grand average for all the SNR levels
examined (middle panels). For latency estimation, we
achieved this result for SNR above —11 dB (lower
panels). The dashed lines in the middle and lower panels
are two standard deviations of the differences between
the estimated values and the original values.

For two datasets with very different SNRs we
examined directly the correlation between the estimated
and the original values for waveform, amplitude scaling
factor, and latency shift. The results are shown in Fig. 3.
When the SNR is approximately 14 dB (high SNR, left
column) with respect to component 2, the estimated
waveforms of components 1 and 2 are an almost perfect
replication of the original waveforms, as shown in the
top left panel of Fig. 3. Similarly, the estimated ampli-
tude scaling factors are nearly perfectly correlated with
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Fig. 3. Cortical sites (from fop to bottom: striate, parietal, and
somatosensory)

the original values (rgompmml =0.99; rgomponemz =0.99)
(middle left panel). Good results are also achieved for
latency  shifts (rgomponeml =0.52; rgomponemz =0.70)

(lower left panel). For the second dataset, the SNR of
the data with respect to component 2 was approximately
—21 dB (low SNR, right column). The estimated wave-
forms capture the major features of the original com-
ponents but also contain some error. The estimated
amplitude scaling factors are still well correlated with
the original values (rZ,mponent1 = 0-77; "eomponeni2 = 0-83),
but the latency shifts are no longer well correlated with
the original values (reomponents = 0-045 7eomponent> = 0-10).
We note that the SNR 1in this case is extremely small. It
is rather remarkable that the waveform and amplitude
scaling factor estimations are still able to produce rea-
sonable results.

Application of the dVCA algorithm to synthetic data
demonstrates that the technique is robust in estimating
the parameters of the two components from a single
channel of data. Our results suggest that the method
works effectively for all the component parameters for
SNRs down to approximately —11 dB. For waveforms
of the components and their amplitude scaling factors,
the method works effectively for SNRs down to —21 dB.
As the SNR decreases, the dVCA estimates of the la-
tency shifts are most affected. It is worth noting that the
simulation here used two components that have a tem-
poral overlap of about 35 ms. This is rather substantial
given that each component has a length of about 60 to

70 ms. For situations with less component overlap, the
dVCA technique is expected to work even more effec-
tively. In summary, the results illustrated here demon-
strate that the dVCA can be a valuable and accurate tool
in identifying multiple components from a single chan-
nel of data and that its application to real data shown
below, where the components do not appear to overlap
temporally, should yield reasonable results.

4 Application to experimental LFP data

The experimental dataset was collected by Dr. Richard
Nakamura in the Laboratory of Neuropsychology at the
U.S. National Institute of Mental Health. Visual evoked
responses in two macaque monkeys were sampled at
200 Hz from chronically implanted surface-to-depth
bipolar electrodes at 15 and 14 cortical sites in the
hemisphere contralateral to the hand executing the
response. Prior to estimation of the single-trial param-
eters, the time series were resampled (linear interpola-
tion) to 1 kHz. The monkeys performed a GO/NO-GO
visual pattern discrimination task. The prestimulus stage
began when the monkey, while viewing a computer
screen, depressed a hand lever with the preferred hand.
Following a random interval from 0.5 to 1.2 s, a visual
stimulus appeared for 100 ms on the screen. Two types
of visual patterns were presented: four dots arranged as
a DIAMOND or as a LINE. The monkeys were
rewarded for lifting the hand in response (GO) to one
pattern type or for maintaining pressure (NO-GO) to
the other pattern type. The contingency between stim-
ulus pattern and response type was reversed on succes-
sive sessions. For the applications in this paper, two
ensemble datasets were employed: one with 222 GO
response trials to the DIAMOND pattern and another
consisting of the 100 GO response trials to the LINE
pattern that also had the fastest response times. A
detailed description of the experiment and data prepro-
cessing have been presented elsewhere (Bressler et al.
1993; Ding et al. 2000).

Examples of the estimation framework covering two
main applications to the analysis of LFP data are pre-
sented. First, the algorithm is applied to LFPs from
three diverse cortical sites: striate, parietal, and
somatosensory (arm area), illustrating the capability and
versatility of the dVCA algorithm to recover single-trial
parameters. Second, by subtracting out the event-related
phase-locked potentials from the single-trial time series
we estimate the ongoing activities. From the ongoing
activity we study the event-related modulation of power
spectra as a function of time.

4.1 Differential variability of event-related phase-locked
components

Figure 4 shows the AERPs from three very diverse
cortical sites: striate, parietal, and somatosensory (arm
area). Inspection of the AERPs suggests the presence of
two main components. The time intervals for the
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Fig. 4. Event-related phase-locked components and AERPs (see text
for details)

components are delineated by dashed vertical lines.
Figures 5, 6, and 7 show the results of applying the
dVCA estimation algorithm to the two components
from each of the three cortical areas. The left (right)
columns of the three figures are the reconstructed
waveforms (top), histograms of the estimated amplitude
scaling factors (middle), and histograms of the estimated
latency shifts (bottom) of the first (second) component.
We sometimes also refer to the first and second
components as the early and later components. It is
interesting to note that the latency shift histograms and
amplitude scaling factor histograms (bottom plots) all
show a single peaked distribution, suggesting that
the estimation is capturing the trial-to-trial variations
of the underlying events that are relatively phase-locked
to the stimulus onset.

Two observations are in order. First, for all the cor-
tical sites, the variability in both amplitude scaling factor
and latency shift is larger for the later component (right
column in Figs. 5, 6, and 7) in comparison with the
earlier one (left column in Figs. 5, 6, and 7), as indicated
by the broader latency shift distributions. This by itself
argues for the existence of differential variability of the
event-related phase-locked components. Although the
AERP may suggest a monolithic structure, the differ-
ential variability entails that the event-related compo-
nents should be treated individually. Second, the
variability both in amplitude scaling factor and latency
shift increases as the cortical site becomes more distant

Fig. 5. Estimated components and estimated parameter distributions
for the striate channel. Ensemble size: 222 trials. Two iterations of the
algorithm were performed

from the primary visual cortex, suggesting that other
intervening processes contribute to the increased vari-
ability.

Given the trial-to-trial variability of latency shifts
and amplitude scaling factors, one is naturally led to
investigate their relations to the variability of behavioral
variables (e.g., relationships between response time and
latency shift or amplitude scaling) and also to examine
the relations between the components’ parameters (i.e.,
between amplitude scaling factors and latency shifts).
Here we focus on the relationships between the single-
trial response time (RT) and component latency shifts.
Scatter plots in Fig. 8 show that significant correlation
appears for both components at the parietal site (middle
plots), although it is much higher for the second one,
indicating that this component is more related to the
motor phase of the task than the sensory phase [ values
of 0.09 and 0.25 for the first and second components
(» < 0.001); the two coeflicients were significantly dif-
ferent (p < 0.02)]. Indeed, the mean response time is
around 260 ms after stimulus onset, which is about the
same time as the peak of the second parietal component.
A much stronger correlation with RT is observed for the
components in the somatosensory site (top plots) (r
values of 0.60 and 0.62 (p < 0.001) for the first and
second component, respectively). The first component
actually precedes the single-trial RT, indicating that this
component arises possibly as an early activation from
frontal cortex (motor or premotor). No significant
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Fig. 6. Estimated components and estimated parameter distributions
for the parietal site. The same conventions as in Fig. 5 are employed.
Ensemble size: 222 trials (see text for details)

correlations are observed for the striate site (p < 0.05)
(bottom plots).

To provide supporting evidence for the above corre-
lation results, we sorted the trials according to the level
of RT and plotted the single-trial time series as a gray-
scale-coded “‘raster plot” in Fig. 9. The RT is superim-
posed on the raster plots as the black curve. It is quite
apparent that for the striate site (top plot) little relation
exists between RT and the component latency. For the
somatosensory site (bottom plot), the latency for both
components clearly tracks the RT curve.

Another useful application of single-trial parameter
estimation is in the investigation of cortical processes at
different cortical sites that appear to be related by
examination of their AERPs. The AERPs alone, how-
ever, cannot reveal whether transient phase-locked pro-
cesses are related. An illustrative case is presented for the
striate and the somatosensory channel. As seen in Fig. 4,
the second component at the striate site peaks at about
the same time as the first component at the somatosen-
sory site, just before the mean response time (260 ms).
However, the single-trial latency shifts for the somato-
sensory component are highly correlated with RT, while
there is no significant correlation for the striate site
(Fig. 8). Further corroboration of this result is obtained
by visual inspection of the single-trial waveforms sorted
according to the respective single-trial RTs (Fig. 9). It is
clear that, although the striate and somatosensory
AERPs exhibit components at similar times, indicated by
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Fig. 7. Estimated components and estimated parameter distributions
for the somatosensory site. The same conventions as in Fig. 5 are
employed. Ensemble size: 222 trials (see text for details)

the temporal coincidence of peaks or large fluctuations,
the activation in the somatosensory cortex systematically
tracks the RT, whereas the striate activation seems to
behave independently. This indicates that the activations
measured by these potentials are related to different and
possibly largely independent processes.

4.2 Separation of ongoing activity and event-related
phase-locked components

Single-trial LFP time series can stem from many distinct
cortical processes. In early sensory cortices, for example,
phase-locked transient signals are thought to arise
mainly from the response to thalamic inputs, while
modulations observed in ongoing activity signals are
thought to represent changes in effective connectivity or
other intrinsic parameters of the cortical networks
(Pfurtscheller and Lopes da Silva 1999). An important
step in the analysis of LFPs recorded in the event-related
paradigm is then to decompose the time series into these
two main signals. Once the decomposition is achieved,
the analysis proceeds by the investigation of the
temporal dynamics in each of the decomposed signals
separately.

The model of event-related recordings presented in
Sect. 2 implies that simple subtraction of the AERP
from each single-trial time series does not result in the
desired decomposition due to the trial-to-trial variability



striate: s ; striate: s,
» 300 ol 300 eoe s
S Ce Lt e L
- . X e
= = R Y % KX
= SEra
..-.:O. - :-.0 o o
200 200
70 105 140 170 235 30C
parietal: s ; parietal: s,
— o e . -,
o 300 -a . . 300 . W
S Fork ST
— P L
* o0 . . L]
E|.eaEEm =
wemye . Gl
200 200
110 145 180 200 260 32C
somatosensory: s ; somatosensory: s,
—~ . . e e
®“ 300 . . S 300 Lo
S . T
E | a1 L.
g s o
200 200
180 240 300 300 355 41C

latency (ms) latency (ms)

Fig. 8. Correlation between response time (RT) and single-trial
latency shift for each estimated component in three cortical sites
(see text for details)

of event-related activity. The problems resulting from
this simple-minded decomposition have been analyzed in
Truccolo et al. (2002a). We reproduce some basic
arguments here for completeness. For simplicity, con-
sider the case of a single component with trial-to-trial
variability in amplitude scaling factors only:

%, (1) = as(t) + (1) -

The ensemble average (AERP) based on this model
becomes (x,(¢)), = (a,)s(t). After the AERP is sub-
tracted from each single trial, the residual time series is
given by

(1) = ars(1) = (1)), + (1)

(4.1)

= (ar - <ar>)s(t) + nr(t)
=S5 +n.(0) , (4.2)

which contains two components — the ongoing activity
n,(¢t) and a component related to the AERP waveform
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SH(t) = (ar — (a,))s(2) . (4.3)

Thus, a phase-locked component still remains in the
residual LFP time series even after the AERP is
subtracted from each trial. Consequently, the variance
of x,(¢) over the ensemble of trials at a given time ¢
becomes

0

([0,
(S0, + (I ()]),
a5(t) + ap(t)

which is also clearly modulated by the time dependence
of o%(¢). Similarly, the power spectral density time
function of the residual, (|&.(f,7)]?), computed in a
sliding time window centered at time ¢ will also exhibit
temporal modulations at frequencies characteristic of
the AERP waveform. Specifically, since s(¢) is often
oscillatory with a very distinct main frequency, the
quantity (|&,(f,#)|?) at this frequency will be modulated
and should also exhibit a significant increase during the
event-related response time period. In other words, even
if the ongoing activity is not changing significantly in
time, a significant transient change in the ensemble
variance and power time functions will be observed, with
the time course of this transient being related to s(#) and
to the shape of the AERP. Another important possibility
considered below appears in the case where large
transients resulting from the remnant phase-locked
component can mask important changes in the ongoing
activity.

Therefore, rather than simply subtracting the AERP,
a better solution for the decomposition is obtained when
the single-trial phase-locked components are estimated
and subtracted from each single-trial time series. The
ongoing activity, #,(¢), is then obtained as

(4.4)
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A,(0) = x0(0) = St — 2wy - (4.5)
n=1

We now illustrate this approach by looking at the time
course of neural oscillations observed from a frontal site
(superior principle) for one of the monkeys. The 100
trials corresponding to the fastest response times to the
GO response (stimulus LINE) were employed. This
choice was done primarily to highlight the modulation
of ongoing activity between the pre- and postsensory
activation periods.

Figure 10 (top plot) shows the AERP’s waveform
with a characteristic frequency around 13 Hz and a main
peak at ~ 130 ms following stimulus onset. To contrast
the performance of the ongoing process estimation in
Eq. 4.5 with that of the simple AERP subtraction
method, we first compute the power spectrum time
function on the residual time series that is obtained by
subtracting out the AERP from each single-trial time
series. The spectrum is derived by fitting a fifth-order
autoregressive model to the residual time series using a
50-ms-long analysis window that is shifted one data

point at a time (Ding et al. 2000) through the trial. As
shown by the thin solid line in the bottom plot of
Fig. 10, there is a clear peak in the spectrum at 19 Hz for
the time window centered at 50 ms. This oscillatory
phenomenon is also characteristic of the whole presti-
mulus period. Analysis done in Liang et al. (2002)
implicated the 19-Hz oscillation corresponding to this
peak as possibly related to anticipatory attention. To
rule out the possibility that this oscillation was linked to
reward anticipation or motor preparation, it was nec-
essary to study the time course of the oscillation. The
solid line in the middle plot of Fig. 10 is the power at
19 Hz as a function of time. It shows no decline as the
trial progresses. But the small peak seen around 130 ms
poststimulus (coinciding with the main peak of the
AERP) and the time course of the power at 13 Hz
(dashed line in the middle plot of Fig. 10), peaking also
at 130 ms, suggest that the persistence of the power at
19 Hz is an artifact due to the interference from the
evoked activity that is not cleanly removed by the simple
subtraction of the AERP.

To address this possibility, we estimate the evoked
activity on a single-trial basis. A single component is
modeled with the initial guess for its waveform obtained
from the AERP around 130 ms. The final estimated
component’s waveform preserves the main shape of the
AERP, including its characteristic oscillation around
13 Hz. The power spectrum performed on the ongoing
activity obtained from (3.5) is then computed. A single
time snapshot for the power computed from a window
at 160 ms is shown in Fig. 10 (bottom plot). Interest-
ingly, the power peak at 13 Hz is no longer present, and
the 19 Hz ongoing activity is reduced to one third of the
presensory activation level. Based on these findings it is
concluded that the prestimulus oscillation in the beta
frequency range is not related to motor preparation or
reward but to anticipatory attention.

5 Discussion

The main contribution of this paper is to present, from a
Bayesian perspective, a unified framework for the
estimation of single-trial ERP parameters where all the
assumptions in the inference process are made explicit.
The resulting algorithm is referred to as differentially
variable component analysis (dVCA). The framework
makes it easy to analyze and relate different algorithms.
For example, Woody’s matched filter method is seen as a
way of implementing the MAP solution for the posterior
probability under specific assumptions. The dVCA
approach is thoroughly tested on simulated data and
then applied to the analysis of LFP data from behaving
monkeys, where we demonstrate the benefits of single-
trial parameters and the proper extraction of the
ongoing process in delineating the physiological mean-
ing of the various aspects of LFP recordings. Our
experience shows that the dVCA implemented here
works well for the estimation of relatively low-frequency
and large-amplitude event-related components. High-
frequency components (e.g., evoked gamma bursts) may



represent a challenge to this heuristic algorithm because
of their low SNR and the larger impact of trial-to-trial
latency variability when the recordings are obtained
from broad field potentials.

The framework deals mainly with the analysis of
recordings from a single channel. This channel-
by-channel strategy is reasonable for multichannel
recordings where the separation between electrodes is
sufficiently large that different channels are not mea-
suring the same generators. However, for recordings
made with densely packed sensors such as in high-den-
sity scalp EEG recordings, the incorporation of multiple
channels into the component estimation process be-
comes important. A multichannel implementation
within this same framework has been briefly described
by Truccolo et al. (2002b) and Knuth et al. (2001) and
used to perform a detailed investigation of intralaminar
cortical interactions (Shah et al. 2001). It is worth noting
that many currently used component separation tech-
niques, including cluster analysis, factor analysis, PCA,
and ICA (Bell and Sejnowski 1995; Jung et al. 1999), can
be seen as special cases of the multichannel multicom-
ponent Bayesian approach depending on variations of
the underlying model, the choice of the prior proba-
bilities, and the parameters to be estimated (Knuth 1999;
Hinton and Ghahramani 1997; Knuth et al. 2002; Knuth
et al., manusript in preparation).

Improvements in the proposed framework are ex-
pected to come especially in three main aspects. First,
the current LFP model assumes the linear superposi-
tion of event-related phase-locked components and
ongoing activities. Future experimental evidence may
result in better models, allowing for nonlinear effects as
well as for more informative priors for the estimated
parameters. Second, the current approach models the
ongoing activity as white noise. This is clearly an
oversimplification. There are some important consid-
erations regarding improvements in this respect,
though. To begin with, we note that the inclusion of
temporal correlations of ongoing activity does not
change the location of the modes of the posterior
probability. (This partly explains why in Sect. 3 we are
able to get good estimation results even though the
ongoing process is modeled as 1/f noise.) It only affects
their width, i.e., the spread of the probability, and by
consequence the variance of the estimators. In this way
the MAP solution remains the same regardless
of whether the ongoing activity is assumed to be white
or temporally correlated. Furthermore, the inclusion of
the autocorrelation function or any other higher-order
statistics in the time domain is very cumbersome. A
better solution would be to rewrite the generative
model in the spectral domain (Brillinger 1975) and use
the power spectrum of the preevent LFP as an estimate
for the ongoing activity. However, based on our
experience and the considerations of Sect. 4.2, the
ongoing activity may be highly nonstationary during
the transition from pre- to postevent segments. Future
research could consider the alternative of including the
power spectrum of the ongoing activity as a parameter
to be simultaneously estimated. That would also reduce
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the risk of overfitting the data, in other words spurious
“locking”™ of the estimated components’ waveforms to
the ongoing activity.

Finally, a third aspect for improvement refers to the
algorithmic implementation itself. The choice of the
number of event-related components and how to model
each component is a key aspect of the algorithm. The
solution implemented in this work depends largely on
inspection of the AERP waveform and is somewhat ad
hoc. An improvement in this aspect may be obtained by
taking explicit advantage of differential variability for
amplitude scaling factors and latency shifts between
different components (Sect. 4.1). The alternative for an
automatic and more principled way of selecting the
number of components suggested in Sect. 2.3 makes use
of such differential variability as a source of separability
for the component analysis. This approach is currently
under investigation in the context of a multichannel
multicomponent framework (Knuth et al., manusript in
preparation).
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