
Abstract. Neurons receive a continual stream of excit-
atory and inhibitory synaptic inputs. A conductance-
based neuron model is used to investigate how the
balanced component of this input modulates the ampli-
tude of neuronal responses. The output spiking rate is
well described by a formula involving three parameters:
the mean l and variance r of the membrane potential
and the effective membrane time constant sQ. This
expression shows that, for sufficiently small sQ, the level
of balanced excitatory-inhibitory input has a nonlinear
modulatory effect on the neuronal gain.

1 Introduction

Gain modulation is a change in the amplitude of the
response that a neuron generates in response to an
additional stream of input (the modulatory one) but that
does not affect the receptive field characteristics (or
selectivity) of the neuron. It provides a nonlinear
mechanism by which information is combined between
different pathways of neural processing, which may be of
sensory, motor, or cognitive origin. Gain modulation
has been shown experimentally to play a role in sensory-
motor integration, such as eye and reaching movements,
and in spatial perception as well as auditory masking,
attentional processing, object recognition, and naviga-
tion (Salinas and Thier 2000). Experimental studies have
established gain modulation as one of the important
unifying computational principles in the brain, pervad-
ing multiple functions and brain areas (Salinas and
Sejnowski 2001).

Although experimental studies have shown that gain
modulation plays an important role in neural process-
ing, our understanding of the underlying biophysical
mechanisms by which neural systems implement gain
modulation is lacking. The central question is, how do

neurons achieve the nonlinear, multiplicative behavior
characteristic of gain modulation when their input-out-
put relationship is basically integrative? A number of
possible different mechanisms have been proposed
(Salinas and Thier 2000): nonlinear interactions in the
dendritic processing of neurons (Mel 1993), nonlinear
interactions arising from recurrent connections between
neurons (Salinas and Abbott 1996; Hahnloser et al.
1999), correlations in the synaptic input (Salinas and
Sejnowski 2000), and nonlinear responses modulated by
the balanced component of the synaptic input (Chance
et al. 2002).

This paper examines the mechanisms by which bal-
anced synaptic input modulates neuronal gain. Balanced
excitatory and inhibitory synaptic inputs have received
particular attention recently (Shadlen and Newsome
1994; Tsodyks and Sejnowski 1995; van Vreeswijk and
Sompolinsky 1996; Troyer and Miller 1997; Hohn and
Burkitt 2001) since the variability in the spike times of
such models agrees well with that observed in cortical
neurons (Softky and Koch 1993; Shadlen and Newsome
1994, 1998). The possible role of balanced input in
neuronal gain modulation was highlighted by a recent in
vitro study in which a variable current (with zero mean)
was injected into a rat cortical pyramidal neuron and the
gain associated with the injection of an additional con-
stant current was measured (Chance et al. 2002). The
results indicated that the variability of the injected cur-
rent affected the neuronal gain multiplicatively. In this
paper, an analytic expression is derived for the output
spiking rate of a conductance-based integrate-and-fire
neuron. This enables us to identify the conditions under
which the output spiking rate is modulated by the bal-
anced input.

2 The conductance-based leaky integrate-and-fire
neuron model

A one-compartment conductance-based leaky integrate-
and-fire neuron is used in which the membrane potential
V ðtÞ is the integrated activity of its excitatory and
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inhibitory synaptic inputs, and it decays in time with a
characteristic time constant (Tuckwell 1979, 1989;
Troyer and Miller 1997; Salinas and Sejnowski 2000;
Tiesinga et al. 2000; Destexhe et al. 2001):

dV ¼ �ðV � v0Þ
s

dt þ gIðVI � V ÞdPI

þ gEðVE � V ÞðdPE þ dPDÞ ð1Þ

The first term models the passive leak of the membrane,
with resting potential v0 and membrane time constant s.
The second and third terms represent the synaptic
contribution due to cortical background activity from
excitatory (dPE) and inhibitory (dPI ) neurons, respec-
tively. In the balanced neuron considered here, the net
contribution of the background activity is approximately
zero because the average values of these excitatory and
inhibitory terms are chosen to approximately cancel each
other out. In addition to the background activity, there is
a synaptic driving current modeled as an excitatory
fourth term (dPD). The inputs dPE, dPI , dPD are indepen-
dent temporally homogeneous Poisson processes with
constant intensities cE ¼ NEkE, cI ¼ NIkI , and cD ¼ NDkD
respectively, i.e., each of the NE excitatory input fibers
(resp. NI inhibitory, ND driving input fibers) has a spiking
rate kE (resp. kI , kD). VE and VI are the (constant) reversal
potentials (VI � v0 � V ðtÞ � Vth < VE). The parameters gE
and gI represent the integrated conductances over the time
course of the synaptic event divided by the neural
capacitance (and are thus dimensionless): they are non-
negative and are taken here to be identical for all
excitatory and inhibitory inputs, respectively. When the
membrane potential reaches a threshold Vth, an output
spike is generated and the membrane potential is reset to
its resting value v0.

In the absence of spike generation, the membrane
potential approaches an equilibrium value, l, about
which it fluctuates with variance r2. The membrane
potential approaches l with a time constant that is dif-
ferent from the passive membrane time constant due to
the effect of the synaptic conductances, which is called
the effective membrane time constant sQ. The values of
l, r, sQ are (Hanson and Tuckwell 1983, Burkitt 2001)

l ¼ v0=sþ r11
1=sQ

r2 ¼ l2r20 � 2lr21 þ r22
2=sQ � r20

ð2Þ

1

sQ
¼ 1

s
þ r10

rmn ¼ ðcE þ cDÞgm
E V n

E þ cI g
m
I V n

I

The analysis is carried out in the Gaussian approxima-
tion (Burkitt and Clark 2000), in which the probability
density of the membrane potential pðv; tjv0; 0Þ is param-
eterized as

pðv; tjv0; 0Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pCðt; v0Þ
p exp �ðv� !ðt; v0ÞÞ2

2Cðt; v0Þ

( )

ð3Þ

where !ðt; vÞ and Cðt; vÞ are the (time-dependent) mean
and variance of the membrane potential. The Gaussian
approximation is accurate in the limit of a large number
(N ) of small-amplitude synaptic inputs, which allows the
probability density of the membrane potential to be
evaluated using a self-consistent analysis (Burkitt 2001).
The output spike distribution fhðtÞ obeys the renewal
equation (Plesser and Tanaka 1997; Burkitt and Clark
1999)

pðVth; tjv0; 0Þ ¼
Z

t

0

dt0fhðt0ÞpðVth; tjVth; t0Þ ð4Þ

where pðv; tjv0; t0Þ is the conditional probability density of
the membrane potential having the value v at time t,
given that it had the value v0 at an earlier time t0 (this
equation is exact when the synaptic current is modeled as
a series of delta functions; otherwise it is approximate).

The output spiking rate is determined from the
average interspike interval

kout ¼ sa þ
Z

1

0

t fhðtÞdt

2

4

3

5

�1

ð5Þ

where sa is the absolute refractory period (taken to be
zero here). The above integral is evaluated using Laplace
transforms, where the Laplace transform for fhðtÞ is
obtained from Eq. 4 using the time-translation invari-
ance pðv; tjv0; t0Þ ¼ pðv; t � t0jv0; 0Þ. The time-dependent
mean and variance are given by (see Sect. 2.3 of Burkitt
2001)

!ðt; v0Þ ¼ l 1� e�t=sQ
� �

Cðt; v0Þ ¼ r2 1� e�2t=sQ
� � ð6Þ

where r20 is neglected in comparison with r10 in the
exponent of Cðt; v0Þ. Careful consideration of the finite
and divergent parts of the resultant integrals gives the
output spiking rate, as shown in the appendix:

k�1out ¼
sQ
r

ffiffiffi

p
2

r

Z Vth

v0

du exp
ðu� lÞ2

2r2

 !

1þ erf
u� l

r
ffiffiffi

2
p

� �� �

ð7Þ

This is the so-called Siegert formula (Siegert 1951;
Ricciardi 1977; Tuckwell 1988; Amit and Tsodyks 1991),
but with the membrane time constant s replaced by the
effective time constant sQ. Note that once the parame-
ters Vth and v0 have been chosen, this formula gives the
mean spiking rate as a function of the three variables
l; r, and sQ, which are experimentally accessible (Inoue
et al. 1995; Destexhe and Paré 1999).

3 Results

Background spiking activity in the cortex is reported
to occur in the range of 5–20 Hz (Abeles 1991). To
investigate the effect of the level of background activity
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on the modulation of neuronal gain, 1:5� and 2�
conditions were defined, corresponding to an increase by
factors of 1.5 and 2, respectively, in the background
activity (termed the 1� condition). The 1� condition
was defined by choosing parameters l; r, and sQ in Eq. 7
so that a spiking rate of 5 Hz results from balanced
background activity without a driving input. The effect
upon neuronal gain was investigated by introducing
driving input with spiking rate cD.

An essential part of the analysis was defining the
‘‘normal operating regime’’ of a neuron to ensure that the
chosen parameter values correspond to biologically rele-
vant neural behavior. The values of potentials were cho-
sen to be VE ¼ 0 mV, VI ¼ �80 mV, v0 ¼ �70 mV,
Vth ¼ �55 mV, and the passive membrane time constant
was s ¼ 20 ms. These values accord with well-established
measurements for cortical pyramidal neurons, and our
results are not sensitive to variation of these potentials
within the biologically plausible range. The experimen-
tally accessible quantities l; r, and sQ (Destexhe and Paré
1999) to be investigated were defined by first establishing
appropriate ranges in the 1� condition without driving
input. Thesewere: ðl� v0Þ=h 2 ½0:0; 1:0�,r=h 2 ½0:01; 1:0�,
and sQ=s 2 ½0:001; 1:0�, where h ¼ Vth � v0. A set of trip-
lets ðl; r; sQÞ were chosen that covered this region, with
the constraint that their resultant output firing rate was
kout ¼ 5Hz. For each triplet fðl; r; sQÞjkout ¼ 5Hzg the
set of values of gE, gI , cE, and cI that could give rise to the
triplet were inferred from Eq. 2. An upper bound on gE
was set by the requirement that at least 20 synaptic inputs
were required for the neuron to reach threshold from
the reset potential v0 (and gE, gI > 0). Cortical neurons
receive at least 1000 synaptic inputs, and the spontaneous
(input) spiking rates kE, kI have a lower bound of 1 Hz
(Abeles 1991). This procedure provided a finite space
of parameters gE, gI , cE, and cI capable of accounting for
the range of plausible values l, r, and sQ in the 1� con-
dition with no driving input. The 1:5� and 2� conditions
were obtained by increasing the values of cE and cI
appropriately.

To investigate how the level of balanced background
activity affects neuronal gain, the output spiking rate
was plotted as a function of driving current in the 1�,
1:5�, and 2� conditions for the full range of biologically
plausible parameters identified. The results revealed two
qualitatively different behaviors (Fig. 1). The first type
(Fig. 1a) was characterized by a linear response to
driving input for all three conditions over most of the
range of biologically relevant output spiking rates (taken
here to be 5–120 Hz). The figure shows some deviation
from linearity in the 1� condition for low output spiking
rates (5–30 Hz). The effect of increased balanced back-
ground activity was simply to increase the spiking rate
by a fixed amount, independent of the driving spiking
rate cD. There was little effect on the gain, which re-
mained approximately constant for all three conditions
and most values of the driving spiking rate (Fig. 1b).
This type of behavior was expected when the equilibrium
potential was above threshold. Remarkably, however,
this behavior could occur even if the equilibrium
potential was below threshold (see inset to Fig. 1a,

showing l and r relative to h). The second type of
behavior (Fig. 1e) also exhibited an additive effect on the
output spiking rate but was further characterized by a
nonlinear response to driving input and a modulation
in gain due to varying levels of background activity.
Figure 1e shows that in the absence of driving input,
increases in the level of balanced background activity
caused increased spiking rates, as in the first type of
behavior. However, there was a modulation of gain such
that it decreased as the background activity increased
(Fig. 1f). There was also intermediate behavior between
these two types (Fig. 1c) in which the response to driving
input was initially nonlinear but became linear as cD
increased. In this case, there was a difference in the gain
between the 1� and 2� conditions provided that the
driving spiking rate was not so high as to put the 2�
condition into the linear regime. To a first approxima-
tion, the types of behavior may be well characterized
according to the value of sQ. Given a biologically rele-
vant range of output spiking rates from 5 Hz (sponta-
neous activity) to 120 Hz (maximally driven output),
linear behavior occurred across this entire range for
sQ � 20 ms (the upper bound of sQ, since sQ < s ¼ 20
ms for the parameters chosen here), while nonlinear
behavior with gain modulation occurred across the
range if sQ � 1 ms. For 1ms � sQ � 20 ms, intermediate
behavior occurred: the crossover point from linear to
nonlinear behavior (e.g., in Fig. 1a the linear regime was

Fig. 1. Plots of the neuronal gain: plots on left show output spiking
rate, kout (5) vs. spiking rate of driving inputs cD for three typical sets
of neural parameters, and plots on right show the corresponding gain
vs. cD. Results are shown for the 1� (solid line), 1:5� (dashed line),
and 2� (dot-dashed line) conditions. The results of numerical
simulations in the 1� condition with 10,000 output spikes are plotted
as triangles. The insets in the left column show the corresponding
values of l (upper solid line) and r (lower solid line), as well as the
spiking threshold (dotted line), vs. cD for the 1� condition (same range
as corresponding larger plot in each case). Parameter values for the
1� condition are: a,b gE ¼ 0:0027, gI ¼ 0:0092, cE ¼ 21:6 kHz,
cI ¼ 15:4 kHz (i.e., s Q ¼ 4 ms), c,d gE ¼ 0:0026, gI ¼ 0:0080,
cE ¼ 62:9 kHz, cI ¼ 56:4 kHz (i.e., s Q ¼ 1:5 ms), and e,f gE ¼
0:0026, gI ¼ 0:0079, cE ¼ 143 kHz, cI ¼ 137 kHz (i.e., s Q ¼ 0:67
ms). Remaining neural parameter values are given in the text
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for kout > 30 Hz) occurred at a value of kout that was
inversely related to sQ. The gain modulation for values
of sQ less than � 1 ms, as illustrated in Fig. 1e,f, became
more multiplicative-like when the spontaneous output
spiking rate (with cD ¼ 0) was much lower than 5 Hz, as
reported in Chance et al. (2002), but such low levels of
spontaneous activity are outside the normal operating
regime of cortical neurons. The change between linear
and nonlinear behavior also depended somewhat on the
value of r, which is discussed below.

Figure 1 also shows the results of numerical simula-
tions of the output spiking rate (shown by triangles on
the plots for the 1� condition). The numerical simula-
tions were implemented by generating arrival times of
the excitatory and inhibitory synaptic inputs according
to Poisson distributions. The delta-function synaptic
currents allow an exact update rule in which the mem-
brane potential need only be evaluated at the synaptic
input times. The results of numerical simulations show
excellent agreement with those of the analytical expres-
sion for the parameters chosen here. The analytic
expression for the output spiking rate (Eq. 7) was de-
rived by considering only terms up to second order in gE
and gI . Consequently this expression is most accurate
for small values of these parameters (i.e., a large number
of small-amplitude synaptic inputs, where the amplitude
is measured in relation to the difference between the
reset and threshold potentials), which is the case for
most of the biologically relevant parameter range.

All the results given above are essentially the same if
the synaptic driving input, which is stochastic, is
replaced by a steady injected current with the same value
as the mean synaptic driving current: ID ¼

CmcDgEðVE � lÞ, where Cm is the capacitance per-unit
area of the membrane (taken to be 1lF/cm2). This is
illustrated in Fig. 2, which shows data corresponding to
Fig. 1e and f in the case of injected current. The results
are nearly identical to those with synaptic driving input,
indicating that the stochastic nature of the driving input
cD (but not the background input, cE, cI ) was unim-
portant in the behavior described here. This is unsur-
prising since cD � cE, cI . Consequently, the driving
input contributes comparatively little to the fluctuations
in the membrane potential.

To further understand the conditions that character-
ize the linear and nonlinear behavior, Eq. 5 was repa-
rameterized as

kout ¼
1

sQ
F

l� Vth
ffiffiffi

2
p

r
;
r
h

� �

¼ 1

sQ

Z �ðl�VthÞ
ffiffi

2
p

r

�ðl�VthÞ
ffiffi

2
p

r
� h
ffiffi

2
p

r

du
ffiffiffi

p
p

eu2 1þ erfuð Þ
" #�1

ð8Þ

Figure 3 shows that the function F is approximately
linear in the first argument provided that the argument is
greater than �c and nonlinear otherwise. The value of c
is in the range ½0:5; 1:5� depending on the strictness of the
criteria for linearity and the ratio r=h (the smaller this
ratio, the larger the value of c). This result has two
important implications. First, a linear input-output
curve does not require that the mean membrane
potential l exceed threshold, but rather that
lþ

ffiffiffi

2
p

cr > Vth. This provides a first criterion to deter-
mine whether gain modulation is present since it
specifies when the nonlinear behavior occurs. Second,
the transition from linear to nonlinear behavior occurs
when the output spiking rate becomes larger than
k�out ¼ F ð�c; r=hÞ=sQ, where 0:07 � F ð�c; r=hÞ � 0:3,
as illustrated in Fig. 3b. This provides a second criterion
for the presence of gain modulation behavior that relates
directly to the output spiking rate. For example, a
value of c in the middle of this range (F ð�c; r=hÞ � 0:12)
produces linear behavior over the range kout = 5–
120 Hz for sQ 	 20 ms and nonlinear behavior for
sQ � 1 ms, which is consistent with the above observa-
tion. These limiting values of sQ, for which purely linear
or purely nonlinear behavior occurs, increase as r=h
increases because this gives a smaller value of c that in
turn produces a larger value of F ð�c; r=hÞ (see Fig. 3a).

Fig. 2. Plots of neuronal gain for steady injected current
ID ¼ CmcDgEðVE � l1X Þ with parameters as for Fig. 1e and f. Cm =
1lF/cm2 is the capacitance of the neural membrane, and l1X= –
60.175 mV is the mean membrane potential in the 1� condition
without any driving input. a The output spiking rate, kout (Eq. 5), vs.
ID for three typical sets of neural parameters. b The corresponding
gain vs. ID. Results are shown for the 1� (solid line), 1:5� (dashed
line), and 2� (dot-dashed line) conditions

Fig. 3. a The function F , Eq. 8, and b its
derivative with respect to its first argument
x ¼ ðl� VthÞ=

ffiffiffi

2
p

r for several values of its
second argument r=h = 0.05 (solid), 0.1
(dashed), and 0.2 (dot-dashed). The vertical
dotted lines in b illustrate the region
�1:5 � � � �0:5 in which a transition from
nonlinearity to linearity occurs, depending on
the values of r=h and the strictness of the
criteria for linearity. The dotted lines in a give
the corresponding region and values of the
function F
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4 Discussion and conclusions

The effect upon gain modulation of increasing the
balanced background activity can be understood in
terms of two competing processes embodied in Eq. 8,
both influenced by the effective membrane time constant,
sQ. First, the contribution of a driving input to the mean
membrane potential, lD, is approximately linear in cD,
namely, lD ¼ cDgEsQVE from Eq. 2. As the level of
background activity increases, the effective time con-
stant, sQ, decreases, resulting in a lower value of l for a
given driving spiking rate, cD. This decrease in sQ is due
to the neuron becoming more leaky as more synaptic
channels open (Tiesinga et al. 2000). The value of r
remains approximately constant for all conditions and
driving spiking rates, also as a result of the increased
leakiness. Although lower values of l are expected to
decrease the output spiking rate, this is offset by a second
effect: the neuron operates on a faster time scale as sQ
decreases, and so the time course and fluctuations in the
membrane potential are more rapid. From Eq. 8, when
the neuron is in the linear regime, these two competing
effects approximately cancel and there is no gain
modulation. When the neuron is in the nonlinear regime,
the effect of the extra leakiness dominates over the effect
of the faster time scale, resulting in diminished gain as the
level of background activity increases.

The relative strength of these two opposing effects in
different parameter regions explains many of the the
differing results on gain modulation reported by a
number of authors (Nelson 1994; Carandini and Heeger
1994; Holt and Koch 1997; Tiesinga et al. 2000; Capa-
day 2002; Longtin et al. 2002; Chance et al. 2002). The
lack of gain modulation in the linear regime was first
noted by Holt and Koch (1997), and a recent study of
motoneurons (Capaday 2002) showed no gain modula-
tion since they operate in the linear regime. The expla-
nation of the linear behavior in these papers is based
upon approximating the spiking rate by the inverse of
the mean time taken for the membrane potential to
reach threshold when only the mean input is considered
(i.e., the stochastic nature of the changes to the mem-
brane potential is ignored). When the membrane fluc-
tuations are incorporated, this approximation remains
valid only if the equilibrium membrane potential, l
(Eq. 2), is close to or above the spiking threshold. As the
discussion following Eq. 8 indicates, such models cor-
respond to the linear regime of the function F where no
gain modulation is observed. The analysis presented
here provides a quantitative prediction of the parameter
regime in which the balanced component of the synaptic
input gives rise to nonlinear gain modulation of the
spiking rate and indicates that such conditions are
within the biologically plausible region of cortical neu-
rons.

The distinction between the signal input and the
background (modulatory) input is based not on any
anatomical difference but rather on the particular
function that the synaptic input plays. For neurons in
the nonlinear regime, the results here indicate that

higher levels of balanced excitation and inhibition will
produce a lower response gain in the output spiking rate
of the neuron. Important questions that remain include
whether a balance of excitatory and inhibitory synaptic
input exists in vivo, whether the level of balanced input
can be modulated in a behaviorally functional way, and
whether such balanced synaptic input arises from feed-
forward, recurrent, or feedback networks. Indirect evi-
dence for balanced synaptic input in vivo is provided by
the irregular spiking of cortical neurons (Shadlen and
Newsome 1994). The large observed values of the coef-
ficient of variation of the interspike interval distribution
is inconsistent with the integration of a large number of
small-amplitude postsynaptic potentials (Softky and
Koch 1993) unless the neurons receive roughly balanced
amounts of excitatory and inhibitory synaptic input
(Shadlen and Newsome 1998). The question of whether
such balanced input can be modulated in a functionally
significant way in cortical neurons is much less clear.
Indirect experimental support for a feedback source of
balanced synaptic input is provided by studies on the
primary visual cortex of monkeys in response to drifting
grating stimuli in which the contrast, orientation, and
spatiotemporal frequencies were varied (Carandini and
Heeger 1994). The analysis presented here provides a
neural mechanism for the nonlinear response observed
in these studies without the need for the proposed
‘‘normalization’’ synaptic conductances that were pos-
tulated in their normalization model of gain modulation
(in which a nonlinear neural response is generated by the
interaction of a neuron with the pooled activity of a
large number of nearby neurons) (Carandini and Heeger
1994). More recent models of gain modulation have also
used recurrent and feedback interactions (Salinas and
Abbott 1996; Hahnloser et al. 1999).

In conclusion, the results presented here give a
quantitative picture of the extent to which neuronal
gain can be modulated by the balanced component of
the synaptic input for neurons with biologically real-
istic parameters. This analysis highlights the role
played by the effective time constant, sQ, which results
from the increased leakiness of the membrane as the
balanced synaptic input increases (Tiesinga et al.
2000). Consequently, increases in the variance of the
synaptic input do not necessarily cause corresponding
increases in the variance of the membrane potential.
The effect of gain modulation becomes most pro-
nounced for sQ at less than approximately 1 ms, where
increased levels of background activity produce a
lower neural gain over most of the output spiking-rate
range. Therefore, it is in this region that the gain
modulation produced by the balanced synaptic input
will potentially have the greatest functional signifi-
cance, although the boundary of the region will
depend on the ratio r=h.
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Appendix: Derivation of the Siegert formula

In this appendix, the Siegert formula is derived for the
leaky integrate-and-fire neuron with reversal potentials
in the Gaussian approximation. The renewal equation
(Eq. 4) may be solved for the first-passage time density,
fhðtÞ, using Laplace transforms:

fLðsÞ ¼
pLðsÞ
q LðsÞ

ð9Þ

where the subscript L denotes the Laplace transform and
pLðsÞ and qLðsÞ are the Laplace transforms of the
probability density of the membrane potential,
pðv; tjv0; 0Þ:

pLðsÞ ¼
Z

1

0

dt e�stpðVth; tjv0; 0Þ ð10Þ

qLðsÞ ¼
Z

1

0

dt e�stpðVth; tjVth; 0Þ ð11Þ

Using Eq. 5 the mean firing rate can be calculated from
the mean ISI, tf , given by

tf ¼
Z

1

0

t fhðtÞdt ¼ pLð0Þq0Lð0Þ � p0Lð0ÞqLð0Þ
qLð0ÞpLð0Þ

ð12Þ

The integrals in Eqs. 10 and 11 and their derivatives can
be rewritten using the Gaussian approximation for
pðv; tjv0; 0Þ (Eqs. 3 and 7) with the change of variable
x ¼ expð�t=sQÞ

dn

dsn
pLðsÞ ¼

Z

1

0

dxðsQ ln xÞn sQxsQs�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pr2ð1� x2Þ
p

� exp �ðyth � yrxÞ2

1� x2

( )

ð13Þ

dn

dsn
qLðsÞ ¼

Z

1

0

dxðsQ ln xÞn sQxsQs�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pr2ð1� x2Þ
p

� exp � y2thð1� xÞ2

1� x2

( )

ð14Þ

where yth ¼ ðVth�lÞ
ffiffiffi

2
p

r, yr ¼ ðv0 � lÞ
ffiffiffi

2
p

r. In the limit
as s! 0 these integrals are divergent (the integrand is

singular at x ¼ 0) and can be written in terms of finite
and singular parts

dn

dsn
pLðsÞ ¼

sQ
ffiffiffiffiffiffiffiffiffiffi

2pr2
p pFðs; nÞ þ ð�1Þ

nn! expð�y2thÞ
sQsnþ1

� �

ð15Þ

dn

dsn
qLðsÞ ¼

sQ
ffiffiffiffiffiffiffiffiffiffi

2pr2
p qFðs; nÞ þ ð�1Þ

nn! expð�y2thÞ
sQsnþ1

� �

ð16Þ

where pF ðs; nÞ and qF ðs; nÞ are the finite parts of pLðsÞ
and qLðsÞ, respectively,

pFðs; nÞ ¼
Z

1

0

dxðsQ ln xÞn xsQs�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� x2Þ
p

� exp �ðyth � yrxÞ2

1� x2

( )

� expð�y2thÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� x2Þ
q

" #

ð17Þ

qFðs; nÞ ¼
Z

1

0

dxðsQ ln xÞn xsQs�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� x2Þ
p

� exp � y2thð1� xÞ2

1� x2

( )

� expð�y2thÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� x2Þ
q

" #

ð18Þ

In Eq. 12 for the mean ISI, the singular parts cancel so
that in the limit as s! 0

tf ¼ expðy2thÞ
Z

1

0

dx
sQx�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� x2Þ
p exp � y2thð1� xÞ2

1� x2

( )

0

@

�
Z

1

0

dx
sQx�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� x2Þ
p exp �ðyth � yrxÞ2

1� x2

( )

1

A ð19Þ

Consider these two integrals separately and notice that
the following related identities hold:

d

du
expðu2Þ

Z

1

0

dx
x�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� x2Þ
p exp � u2ð1� xÞ2

1� x2

( ) !

2

4

3

5

¼ 4 expðu2Þ
Z

u

0

dz expð�z2Þ ð20Þ

d

du
expðu2Þ

Z

1

0

dx
x�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� x2Þ
p exp �ðu� yrxÞ2

1� x2

( ) !

2

4

3

5

¼ �2 expðu2Þ
Z

1

u

dz expð�z2Þ ð21Þ

Consequently,

tf ¼ sQ

Z

yth

yr

du expðu2Þ

� 4

Z

u

0

dz expð�z2Þ þ 2

Z

1

u
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0

@
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� 2

Z

1

0

dz expð�z2Þ þ
Z

u

0

dz expð�z2Þ

2

4

3

5

0

@

1

A

¼
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p
p

sQ

Z
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2
p

r
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2
p

r
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p
2

r

Z
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