
Abstract. A kinematical model for excitable wave
propagation is analyzed to describe the dynamics of
a typical neurological symptom of migraine. The
kinematical model equation is solved analytically for
a linear dependency between front curvature and
velocity. The resulting wave starts from an initial
excitation and moves in the medium that represents
the primary visual cortex. Due to very weak excit-
ability the wave propagates only across a confined
area and eventually disappears. This cortical excitation
pattern is projected onto a visual hemifield by reverse
retinotopic mapping. Weak excitability explains the
confined appearance of aura symptoms in time and
sensory space. The affected area in the visual field
matches in growth and form the one reported by
migraine sufferers. The results can be extended from
visual to tactile and to other sensory symptoms. If
the spatiotemporal pattern from our model can be
matched in future investigations with those from
introspectives, it would allow one to draw conclusions
on topographic mapping of sensory input in human
cortex.

1 Introduction

Migraine is characterized by repeatedly occurring one-
sided or pulsating headache pain, each with intense
attacks with moderate to severe pain, that can inhibit
daily activity or deteriorate routine physical perfor-
mance. The overall lifetime prevalence of migraine is in
the western population as high as 33% in women and
13% in men (Launer et al. 1999). Migraine with aura

meets the criteria above plus sensory hallucinations
called aura. The aura precedes the migraine headache
and usually lasts for less than half an hour. Besides its
clinical relevance, the aura provides an interesting
phenomenon in itself because the hallucinatory impres-
sions reveal information about human cortical organi-
zation (Richards 1971; Grusser 1995; Dahlem et al.
2000).

Patients with migraine aura experience predomi-
nantly specific visual or tactile hallucinations (Russell
and Olesen 1996). The full range of possible symptoms,
however, includes a multiplicity of neurological altera-
tions, e.g., that of sensory threshold and excitability, or
of muscular tone. The focus of this article is a typical
visual aura, the so-called fortification. The overall form
of a fortification in the visual field is sickle-shaped; it
consists of a scotoma that has on the margin of its
convex side a zig-zag pattern reminiscent of a baroque
city rampart (Fig. 1).

Although the fortification patterns are not the most
frequent disturbances, almost 50% of all illustrations
of visual phenomena show a typical fortification pat-
tern (Wilkinson and Robinson 1985). This may reflect
the fact that, of all migraine auras, the fortification
can be described most accurately, and it therefore is
the most promising symptom to actually reveal orga-
nization in human cortex. It was shown, for example,
that the human cortical magnification factor is in good
agreement with the observed exponential acceleration
of the fortification toward the periphery of the visual
field (Grusser 1995). Furthermore, it was suggested
that the zig-zag pattern reflects the topography of
the orientation map in the primary visual cortex (V1).
According to this view, features of the fortification,
like counter-rotating zig-zag regions, reveal quantities
of cortical sensor maps (e.g., pinwheel distances in V1)
(Dahlem et al. 2000), if simulations can be matched
with introspectives from migraine sufferers. However,
besides the preexisting cortical sensor maps, addi-
tional pattern-formation principles are necessary to
explain the full range of aura symptoms, as we will
show here.
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2 The underlying neuronal disturbance

Many aura symptoms propagate in sensory space; for
example, the fortification propagates through the visual
field. Lashley (1941) was the first to argue that since the
symptoms propagate, a neuronal disturbance that causes
them must propagate as well (Fig. 1). He calculated an
average velocity of 3 mm/min for a hypothetical wave
process in the primary visual cortex. Such a process can
roughly account for the spatiotemporal development of
typical fortification patterns in the visual hemifield.
Therefore, the propagation of the visual symptoms
reflects one of the fundamental organizing principles of
the cortex, that is, its topographic mapping of sensory
input.

Lashley’s precise description of the visual symptoms
of migraine aura and his speculation about their possible
cause was followed by the discovery of the predicted
phenomenon: epileptiform activity can induce a slowly
propagating wave in the cortex (Leão 1944). The phe-
nomenon was named cortical spreading depression
(CSD) after the spread of prolonged depression of
electrical activity in the cerebral cortex as measured with
the electroencephalogram. It was shown later that a
short phase of intense neuronal excitation precedes the
depression phase (Bureš et al. 1974). This is in good
agreement with the temporal order of aura symptoms:
the short first phase of intense neuronal excitation causes
a positive neurological symptom (zig-zag pattern), while
the following depression is associated with a negative
neurological symptom (scotoma). The spatiotemporal
development of such waves is described in the frame-
work of excitable media (Kapral and Showalter 1995).

3 Waves in weakly excitable media

Propagating waves of excitation can emerge in systems
far from thermodynamical equilibrium. In such systems,
propagation arises from local spatial coupling of
nonlinear processes. The underlying nonlinearity is
usually caused by autocatalysis that spreads through

an extended system via diffusion of the corresponding
autocatalytic species. Two striking characteristics are:
the resulting excitation waves (1) have constant ampli-
tude and (2) show no interference.

The dynamics of excitation waves in the medium can
be modeled – if all reactions of the involved species are
known – by a reaction-diffusion equation. In 2D media
(e.g., in a shallow reaction layer), the shape of these
waves can be circular or of spiral shape. Spirals evolve
after a wave front is broken, which normally results in a
curling of the newly created open ends. If the reactions
of the reaction-diffusion system are not completely
known, considerable profit comes from studying a
kinematical model. Originally proposed by Wiener and
Rosenbluth (1946), such a model describes the propa-
gation of the wave front by considering the motion of
curves with free ends. The attractive feature of a kine-
matical model is that even on a considerably smaller
computational expense it perfectly mimics reaction-dif-
fusion equations in a certain condition. This condition is
called weakly excitable (Mikhailov et al. 1994).

The excitability of a medium is classified by the differ-
ent shapes of the wavefront and by the front propagation.
The existence of spiral-shaped waves for certain condi-
tions in the medium defines a boundary oR in parameter
space of excitability (Winfree 1991; Nagy-Ungvarai et al.
1994). In other words, one can observe spiral-shaped
waves on one side of oRbut not, or only temporally, on the
other. In the vicinity of oR, the excitability is said to be
weak. The spiral tip rotates in weak medium rigidly on a
circular path. If excitability is increased, the rotation
changes to a meandering pattern. Going toward weaker
excitability in parameter space (i.e., below oR), the excit-
ability eventually reaches too low a value to allow further
wave propagation in the media. The boundary at which
wave propagation fails is called oP .

Wave propagation in weakly excitable media can be
modeled assuming that the normal velocity V depends at
any point of the wavefront solely on the front curvature
(V ¼ VðkÞ) (Zykov 1980). For wavefronts with free open
ends one must consider an additional tangential velocity
G (Brazhnik et al. 1988) (see Fig. 2). G can be inter-
preted as the growth rate of an open end. Let us now
consider a curve representing the wave front at a certain
time (t) and derive the fundamental kinematical equa-
tion (Mikhailov et al. 1994).

Fig. 1. Successive sketches of a scintillating scotoma, the so-called
fortification. The crosses indicate the center of gaze, and the numbers
state the time in minutes that passed for each fortification pattern
since its first appearance close to the center of gaze. Copyright (1941)
American Medical Association

Fig. 2. A wavefront (gray curve) propagates according to its normal
velocity V (solid arrows) and its tangential velocity G (dashed arrows).
While the normal velocity is defined at any point of the curve, the
tangential velocity describes the growth or contraction rate at the
open ends. Both velocities decrease with increasing curvature of
the curve
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Suppose that the curvature at a point a is equal to ka
(Fig. 2). When the curve has moved in a short time
interval dt, a neighborhood of point a is transferred into
the neighborhood of another point b. To calculate cur-
vature, we introduce a local polar coordinate system
(r; a) with the origin in the center of the circle of cur-
vature from point a. In a neighborhood of point a, let
the curve be given by a function r ¼ rða; tÞ, of which the
first and second derivative (r0, r00) with respect to the
angle a must vanish at a. In the same coordinate system,
the form of the curve near point b at a time t þ dt is
given by

rða; t þ dtÞ ¼ rða; tÞ þ V ðaÞdt ð1Þ

When the form of a curve is known in polar coordinates,
its local curvature can be determined by

k ¼ ðr2 � r02 � rr00Þðr2 þ r0Þ�3=2 ð2Þ

Substituting Eq. 1 into Eq. 2 we obtain, to within terms
of order dt,

kb ¼ ka �
�
k2
aV þ k2

a
o2V
oa2

�
dt ð3Þ

Transforming this to differentiation with respect to the
arc length s leads to

dk � kb � ka ¼ �
�
k2
aV þ o2V

os2

�
dt ð4Þ

Points a and b were chosen such that they correspond to
the same local polar angle a, but they have different
values for their intrinsic coordinate, that is, the arc
length s. That is because a circular wave propagating
outwards increases its arc length, and, furthermore, since
the arc length s is measured from the end point of a
curve, the growth of the curve results in an additional
shift. Due to these two effects, the arc length s of point b
at a time t þ dt has an increment

ds ¼
�Z s

0

kV dn

�
dt þ Gdt ð5Þ

Therefore, we get

dk ¼
�
ok
os

�
dsþ

�
ok
ot

�
dt ð6Þ

Substituting this into Eq. 4 and using Eq. 6 results in the
final equation for the motion of a curve representing the
wavefront:

ok
ot

þ
�Z s

0

Vkdn þ G
�
ok
os

¼ �Vk2 � o2V
os2

ð7Þ

where k is the curvature of the front parameterized by
the arc length s.

The normal velocity VðkÞ is approximately a linear
function in curvature. This was shown for a two-variable
reaction-diffusion system (Zykov 1980) and also exper-
imentally verified for a wide curvature range in a

chemical reaction-diffusion system, the Belousov-Zhab-
otinsky reaction (Foerster et al. 1988). The linear
equation takes the form

V ðkÞ ¼ V0 � Dk ; ð8Þ

where V0 ¼ Vðk¼0Þ and D is a positive parameter usually
associated with a diffusion coefficient. The form of GðkÞ
is in general not known. The theory of weakly excitable
media can be found in a detailed review by Mikhailov
et al. (1994) and the references therein.

4 Results

To describe the spatiotemporal development of an
excitation wave by Eq. 7, one must specify V and G as
functions of k. With the functions VðkÞ and GðkÞ the
evolution of an arbitrary initial excitation pattern can
then be calculated, at least numerically. An analytical
solution is preferred but in general only possible for
linear functions VðkÞ and GðkÞ and a symmetrical initial
form of the wavefront.

It is not known in general how the tangential velocity
G depends on the curvature k, but it is reasonable to
expect that GðkÞ is monotonously decreasing with k just
like VðkÞ (see Eq. 8). If we consider a limited curvature
range Dk, we can assume a linear dependency for G on k
in this range:

G ¼ G0

�
1 � k

kc

�
ð9Þ

Fig. 3. Linearized functions of the normal velocity VðkÞ and of the
tangential velocity of the free tip GðkÞ depending on curvature k. V0 is
the velocity of an uncurved wave front in the normal direction, and �VV
is the average normal velocity in the curvature range Dk. The critical
curvature kc marks the lower bound of Dk beyond which free tips of a
wave start to shrink. The analytical description of a weak excitable
wave propagating in the cortex is valid within the gray highlighted
curvature range Dk
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with G0 ¼ Gðk¼0Þ and the parameter kc as a critical
curvature value. Before we look closer at this critical
curvature, let us further assume that the function VðkÞ
can be treated in the curvature range Dk as a constant �VV
(Fig. 3). This is a reasonable assumption as long as the
slope of the function GðkÞ is steeper than that of VðkÞ
(G0=kc 	 D).

If the curvature at the free end of the wave equals the
critical curvature (k ¼ kc), the tangential velocity G
changes its sign and the growth rate of the end becomes
negative, i.e., a contraction rate. This eventually leads to
shrinkage of the length of the whole wave front, which
can only be balanced by the stretching of a propagating
convex wave front (Eq. 6).

After setting the functions VðkÞ and GðkÞ we still have
to choose an initial excitation as the starting position of
the wave before we can integrate Eq. 7. Since the med-
ium is assumed to be homogeneous and isotropic, an
initial excitation pattern must be introduced by an
external stimulation S, as discussed later. We confine S
to a single, circular region (Fig. 4) from whose edge a
wave propagates outwards. Since the initial curvature of
the front is highest, it may likely reach the value of the
upper bound of Dk (Fig. 3). Beyond this curvature value
wave propagation in the normal direction is not possible
and the front becomes unstable. This can explain
propagation failure at one or more positions, whereas in
the following we choose, without loss of generality, a
single place of propagation failure. At this position two
open ends of the wave front occur, which overall results
in a circle arc as the initial wave front location with an
apex angle x (Fig. 4).

Equation 7 can now be simplified and analytically
integrated. Only the term leading to a change in arc
length needs to be considered because the wave front will
maintain the initially circular shape. Any indent caused
by a fluctuation will be flattend because of the locally
increased or decreased normal velocity for a wave

fragment falling back or leading, respectively (Eq. 8). As
described above, there are two counteracting effects
acting on the total arc length. On the one hand, any
increase in radius leads to a stretching of the curve and
thus to an increase in arc length, and on the other hand,
the negative growth rate at the open ends reduces the arc
length. The second term on the left side of Eq. 7 con-
siders both effects. Let us write this term in a slightly
different but equivalent form. First, Eqs. 8 and 9 were
inserted in Eq. 7. Second, the tangential velocity G is
measured in units of �VV , in other words, we set �VV ¼ 1.
Finally, we introduce the radius r as the reciprocal of
curvature k. Then we obtain

ds
dr

¼ kc
s
r
þ G0

�
1 � 1

r

�
: ð10Þ

After integrating Eq. 10 and substituting the apex angle
x for the value s=r we get the formula

x ¼ G0

�
log

�
r
�
þ 1

r
� 1

�
þ xc : ð11Þ

The variable x is used since its derivative with respect to
r is directly proportional to the tangential velocity GðkÞ.
In Fig. 4 the wave is shown at seven subsequent
locations, shrinking each time before it finally vanishes.

The evolution pattern of the weak excitation wave is
fitted into the primary visual cortex and mapped onto a
visual hemifield in the following way. Describing retinal
and cortical coordinates with complex numbers, z and w,
respectively, the retinocortical projection is given by the
complex logarithmic function w ¼ logðzþ aÞ (Schwartz
1977). Usually an offset parameter a > 0 is introduced if
the foveal region is considered. Since we are dealing with
a hallucinatory vision, the map projection is used in
reverse order, i.e., from cortex to retina (Ermentrout and
Cowan 1979) and then map retinal coordinates to the
visual field by perspective projection (Fig. 5).

Fig. 4. The progression of a wave fragment within the primary visual
cortex starting from an initial external stimulation S (gray region). The
representation of the visual hemifield is shown by reverse logarithmic
conformal mapping of a half disk. The focal point is offset by a spatial
scale constant of 0.5

Fig. 5. a The progression of transient visual-field disturbances
corresponding to the affected area in the primary visual cortex as
shown in Fig. 4. The black area essentially marks the scotoma,
whereas at the convex side a scintillating zig-zag pattern emerges (not
shown). b The scotoma may take 20–25 min to expand from a sickle-
shaped form near the center to the periphery of the visual hemifield,
where the scotoma eventually disappears
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The growth and form of the simulated scotoma up to
an eccentricity of 30
 matches those reported by mi-
graine sufferers (Fig. 5). The form of a scotoma in the
periphery of the visual field is hard to describe or even to
draw for migraine sufferers and therefore has not yet
been documented to our knowledge. Our model predicts
that, while the scotoma is at the beginning sickle-shaped
and roughly parallel to an azimuth, it eventually elon-
gates in the radial direction before it finally disappears
close to but not necessarily at the border of the visual
field.

5 Discussion

The principle of pattern formation opens up to us a new
view of the complexity of migraine aura symptoms. A
pattern-formation process is, for example, the ability of
the brain to form spatial representations of sensory
information, which are commonly called cortical maps
(Obermayer 2000). There is strong evidence that parts of
an orientation map are literally seen by the migraineur
as a zig-zag pattern when intense neurometabolic brain
activity – as in the CSD condition – appears in cortex
(Dahlem et al., 2000). The retinotopic map determines
the growth of the visual migraine aura (Lashley 1941;
Grusser 1995). However, the precise growth and form of
the fortification figure is reflected not solely by reverse
logarithmic mapping of apparent visual information.
The underlying transient excitation pattern is governed
by an independent pattern-formation process, which is
the ability of the intense neurometabolic brain activity to
propagate as a wave in a complex spatiotemporal
fashion (Dahlem and Müller 1997).

One can model the zig-zag pattern of the fortification
figure by a wave process, that is, without explicitly
including cortical sensor maps (Reggia and Montgom-
ery 1996). In this case the zig-zag pattern arises due to a
front instability of the propagating wave. Apart from
this, separate dynamics of the abnormal excitation in the
cortex are in general ignored. To explain detailed fea-
tures of the aura, e.g., the fading away of the symptoms
in the periphery, cytoarchitectonic features are made
responsible, e.g., the border between V 1 and V 2 was
suppossed to stop wave propagation (Grusser 1995).
However, including cytoarchitectonic structures intro-
duces inconsistencies. Why should a wave propagate in
many different sensoric areas but not in V 2?

We use two complementary pattern-formation pro-
cesses to obtain a complete model of the fortification.
On the one hand, there are the principles of cortical
organization that govern the following aspects of the
fortification: (1) the zig-zag pattern by the layout of
orientation preference cells (Dahlem et al. 2000) and (2)
the actual growth and form of the fortification figure in
the visual field by complex logarithmic mapping. State-
ment 2 does not and cannot say anything about growth
and form before the mapping from the visual cortex to
the visual hemifield. For this we introduce, on the other
hand, a process of active wave propagation in an excit-
able medium. Such a process governs many other fea-

tures of the aura: (3) the excitation phase causes a
positive neurological symptom (e.g., a zig-zag pattern),
(4) the refractory phase causes a negative symptom (e.g.,
a scotoma), (5) negative symptoms must always appear
after positive symptoms in sensory space, and (6) nega-
tive symptoms are usually much longer lasting and cover
a larger sensory region at a time; finally, (7) curvature
effects explain confined appearance of the symptoms in
sensory space.

Within the framework of weakly excitable media is an
alternative explanation to the curvature-induced propa-
gation failure. Just like wave-front curvature, the con-
voluted surface of the cortex affects wave velocity. One
must differentiate between positive and negative Gauss-
ian curvature of the cortex surface. A surface that bulges
out in all directions, such as the surface of a sphere, is
positively curved; a saddle-shaped surface has negative
Gaussian curvature. A wave that propagates into a re-
gion of increasing Gaussian curvature accelerates as if
the wave front were positively curved (Davydov and
Zykov 1991). If the wave propagates into decreasing
Gaussian curvature, its velocity decreases. The latter ef-
fect can contribute to the propagation failure of the
wave. Thus an extended model for wave propagation on
curved surfaces can explain – in a way similar to how we
have shown here for curved wave fronts – why CSD
waves are limited in spread by the complexly gyrate
nature of human brain (James et al. 1999) and why they
may not cross prominent sulci (Hadjikhani et al. 2000).

There remain at least two unanswered questions:
How is a single sensory aura stimulated in the first place?
And why is there sometimes a sequence of disturbances,
e.g., from visual to tactile to language? No direct an-
swers to these questions can be formed from our model
equation since those questions concern its initial condi-
tion. However, there is in the framework of excitable
media a consistent picture. Recent studies have generally
led to the conclusion that migraine with aura is associ-
ated with a state of functional cortical hyperexcitability
(Aurora and Welch 1998; Palmer et al. 2000). Although
functional cortical excitability is not defined in the same
way as excitability in the theory of excitable media, it is
reasonable to assume that they correlate. In the case of
increased functional excitability, the excitability ap-
proaches the boundary of wave propagation oP . A fur-
ther shift of excitability into the regime of wave
propagation would then cause a migraine aura attack
that would develop in the way we have shown here. This
shift may be caused by the well-known migraine triggers,
but interestingly the visual aura is also evoked by scin-
tillating visual stimuli (Hadjikhani et al. 2000).

Why is there sometimes a sequence of disturbances,
e.g., from visual to tactile to language? Cortical areas
have a different susceptibility to CSD waves – and
therefore to sensory aura, too. If an attack is triggerd
globally via blood vessels, as generally assumed, the aura
should then occur in the order of decreasing suscepti-
bility. Some sensory areas may not be involved at all,
depending on the strength of the attack.

It was long challenged that CSD underlies migraine
aura, but recent studies have further established CSD
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as a migraine model (Bolay et al. 2002), and the
clinical relevance of CSD can no longer be doubted
(Gorji 2001). Our mathematical model also provides
strong support for an excitable wave hypothesis of
migraine aura and reveals the relation between cortical
sensor maps and traveling waves in migraine. A
fruitful endeavor will be an investigation of functional
cortical excitability compared to excitability as intro-
duced here.
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