
Abstract. The whole question of consciousness, aware-
ness and depth of anaesthesia is both timely, little
understood and deeply challenging. Models of the
underlying neural pathway mechanisms/dynamics are
necessary for understanding the interactions involved
and their structure and function. A neuronal network of
the somatosensory pathways is proposed in this paper
based on experimental information and physiological
investigation into anaesthesia. Existing mathematical
neuronal models from the literature have been modified
and then employed to describe the dynamics of the
proposed pathway network. Effects of anaesthetic agents
on the cortex were simulated in the model which
describes the evoked cortical responses. By comparison
with responses from anaesthetised rats, the model’s
responses are able to describe the dynamics of typical
responses. Thus, the proposed model promises to be
valuable for investigating the mechanisms of anaesthesia
on the cortex and the effects of brain lesions.

1 Introduction

The aim of anaesthesia is to temporarily and reversibly
disrupt the function of the central nervous system in
order to render the patient unconscious, to block all
sensory appreciation during surgery and produce a
temporary amnesia (Angel 1991). All of the approaches
to monitoring the state of anaesthesia attempt to ‘‘open
a window’’ on the anaesthetised brain using electro-
physiological signals such as electroencephalograms
(EEG), heart-rate variability and evoked potentials
(Angel 1991; Pomfrett 1999; Bischoff et al. 2000). If
anaesthesia is inadequate and the patient actually
experiences the pain of surgery, this is followed by
nightmare symptoms leading to psychological trauma

(Hanning and Aitkenhead 1994). The somatosensory
cortex, from which somatosensory evoked potentials
(SEPs) can be elicited, performs the role of interpreting
external somatic stimuli and is actively involved in pain
processing in the humans (Angel 1993b; Kanda et al.
2000).
The literature discusses extensively the structure and

functioning of the somatosensory cortex and its role in
anaesthesia processing (Angel 1977, 1993a; Knight et al.
1999; Treede et al. 1999; Kaas and Collins 2001).
However, mathematical modelling of the somatosensory
pathway from an engineering aspect and hence for
technological applications has been explored less. This
unbalanced development means that the study of mon-
itoring and control of anaesthesia relies mainly on trials
on human patients. Hence, from the point of view of
engineering, it is worth developing mathematical models
for the somatosensory pathway to unveil the mecha-
nisms of anaesthesia in the brain.
The concept of neural network modelling for

describing nerve cells and the nervous system was
proposed by McCulloch and Pitts (1943). Application of
this concept did not expand until the 1990s, when it
began to be widely employed in many aspects of engi-
neering. Though it was originally proposed for consid-
eration of biological neurons, it is much more common
in engineering applications than in biological studies. A
few applications of artificial neural networks (ANNs)
can be found in biological modelling for systems such as
the visual cortex (Jansen and Rit 1995; Dow and
Anastasio 1998), the olfactory system (Freeman 1987)
and holistic networks (Ermentrout 1998).
Motivated by the success of ANN in engineering, the

objective of this study was to develop a model of the
somatosensory pathway based on anaesthesia experi-
mental exploration, with the concept of ANN being
employed to construct a neuronal network model. The
model uses both a spatial distributed modelling ap-
proach (Lopes da Silva et al. 1974) and lumped-
parameter modelling (van Rotterdam et al. 1982)
together with existing physiological information from
studies relating to the somatosensory nervous system,
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especially in anaesthesia. The model forms an integral
part of the nervous structures being studied to elucidate
the effect of anaesthetic agents on patient awareness
(Angel 1993b, 2002).

2 Somatosensory neuronal pathway

The EEG alpha-rhythm activity can be modelled by
combining the thalamus and cortex as a single thalamo-
cortical relay cell with an inhibitory interneuron feed-
back (Lopes da Silva et al. 1974). This is a spatially
distributed model, since the distribution of neurons in a
specific area is considered. Lumped parameters which
treat physiological properties as several single parame-
ters have been adopted in the model developed in this
paper. This technique has also been applied to model the
visual nervous system (Jansen and Rit 1995). This
methodology is suitable because of the lack of suffi-
ciently detailed physiological knowledge and a high
degree of redundancy in the cortex.
The microstructures of the cortical connections can

be determined by analysing the post-stimulus cellular
activity (Gerstein and Perkel 1972) and evoked cortical
cellular responses recorded from the cortex with micro-
electrodes (Angel 1977). Figure 1 illustrates the pro-
posed network model of the somatosensory pathway in
the brain based on physiological investigation and ex-
perimental information (Angel 1993a,b). In this model
each cell at its respective cortical layer is treated as an
independent module but networked via interneurons or
collateral direct connections. The number of either ex-
citatory or inhibitory synapses per neuron is represented
using a connectivity coefficient (Wilson and Cowan
1972) which can be partially derived from histological
literature (White 1989; Jansen and Rit 1995). The source
of the evoked response is not a single neuron but is the
nearby synchronous response of a large population of
cortical cells to a specific afferent input (Angel 1977).
For simplicity, in this paper each neuronal module
represents a population of cells in a specific region,
identified in the figure legend.
Pyramidal cells represent the most abundant and

characteristic neuronal type in the cerebral cortex
(Thomson and Deuchars 1994). Thus, the cortical cells
and interneurons represented in Fig. 1 are considered as
pyramidal cells. All cortical cells are assumed to have

identical physiological properties because of the lack of
sufficiently detailed physiological knowledge (Lopes da
Silva et al. 1974; Tsodyks et al. 1998). Interneurons
connecting different cortical cells are believed to have
physiological properties different from those of the
cortical cells (Jansen and Rit 1995), and are represented
in the proposed model. Many sensory cells show spon-
taneous activity in the absence of external inputs (Angel
1993a). Thus, it is reasonable to assume that every cor-
tical cell in the network receives spontaneous activity
from its surrounding cells.
Somatic stimuli from a sensory receptor are trans-

mitted along the axonal pathway ascending through the
cuneate nuclei to the thalamus. The sensory inputs fur-
ther ascend to layer IV and then layer V of the cortex
(primary somatosensory area). The real contribution of
one of the neurons of cortex layer V is not well under-
stood. The presence of inhibitory inputs as well as ex-
citatory inputs affects the network properties
considerably. An inhibitory connection works as a
negative feedback to a cortical cell and introduces sta-
bility into the network. Physiologically, the signals em-
anating from each neuron project to the scalp and can be
picked up on the human scalp with suitable electrodes
(Dawson 1947). In simulation, we are able to monitor
membrane potentials of a specific cortical cell.

3 Modelling the neuron cells

3.1 Background

In physiology, the nervous system is a network of single
neurons interconnected by interneurons and collateral
direct connections. The neurons by themselves are not
very powerful in terms of information processing or
representation, but their interconnection enables a
neuronal network to process complex tasks (Freeman
1987). A neuron can be seen as the construction of
synapses, cell body and axon hillock based on the
concept of lumped modelling (van Rotterdam et al.
1982). The synapses convert incoming signals into
membrane potentials. Fluctuations in membrane poten-
tials, either temporally or spatially distributed, are
integrated by the cell body. The integration is then
transcribed to nerve impulses at the axon hillock if the
integrated membrane potential reaches a threshold
potential. Finally, the nerve impulses are transmitted
through the axons. Figure 2 illustrates the physiological
and mathematical models of a neuron describing its
structure and manipulations.

3.2 Neuronal components

3.2.1 Synaptic transmission. The selection of synaptic
dynamics is an important factor in generating different
states of cortical activity as reflected by EEG recordings
(Tsodyks et al. 1998). Physiological experiments show
that the excitatory and inhibitory post-synaptic poten-
tials (EPSPs and IPSPs) have impulse responses asFig. 1. Proposed network model of the somatosensory pathways
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shown in Fig. 3 and can be mathematically described as
follows (van Rotterdam et al. 1982):

heðtÞ ¼ Aate�at; t � 0
0; t < 0

�
ð1Þ

hiðtÞ ¼ Bbte�bt; t � 0
0; t < 0

�
ð2Þ

where A ¼ 3:25mV;B ¼ 22mV; a ¼ 100 s�1 and
b ¼ 50 s�1, which are the parameters values used by

van Rotterdam et al. (1982) in their work on EEG
alpha-rhythm modelling. A and B represent the ampli-
tude gains of the post-synaptic-potential functions, and
a and b are interpreted as being the lumped transmission
lags and all other spatially distributed delays, including
temporal dispersion in the afferent tract, synaptic
diffusion and resistive–capacitive delay in the dendritic
network.

3.2.2 Interneuron. The interneuron has its own transfer
function:

hdðtÞ ¼ Aadte�ad t; t � 0
0; t < 0

�
ð3Þ

where ad � a=3 as used by Jansen and Rit (1995) in
visual cortex modelling means that the interneuron has a
transmission lag that is 3 times longer than that of the
cortical cells.

3.2.3 Axon hillock. The axon hillock model has the
transfer function introduced by Freeman (1987) in
olfactory system modelling:

rðvÞ ¼ 2e0
1þ ecðv0�vÞ ð4Þ

where c ¼ 0:56mV�1; e0 ¼ 2:5Hz and v0 ¼ 6mV, which
are the parameter values used by Jansen and Rit (1995).
Because of the lack of sufficient physiological informa-
tion, both cortical cells and interneurons are assumed to
have the same hillock model. This approach is used by
Jansen and Rit (1995) in modelling the visual nervous
pathway. Figure 4 shows the conversion curve of the
hillock transfer function with parameter values as above.

4 Mathematical model of the somatosensory pathway

4.1 State-space representation

A mathematical representation of the physiological
pathway of Fig. 1 is obtained by applying the linear
synaptic transfer functions and the nonlinear hillock
activation function to each cell in the pathway. Figure 5
shows the resultant block diagram of the mathematic
model. Since the pathways with cells of cortical layer V
are not well understood, both of these cells are modelled

Fig. 2a,b. Physiological (a) and mathematical (b) models of a neuron.
EPSP, excitatory post-synaptic potential; IPSP, inhibitory post-
synaptic potential

Fig. 3a,b. EPSP (a) and IPSP (b) impulse responses

Fig. 4. Conversion curve of the hillock transfer function
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with the same structure but with different connectivity
coefficients accounting for their individual contributions
to the model. Constants Cx represent the connectivity
coefficients which account for the average number of
synaptic contacts between the correlating cells (Wilson
and Cowan 1972). The synaptic transmission can be
described with signal convolution as

yðtÞ ¼ heðtÞ ? uðtÞ ð5Þ

This is a linear system and can be decomposed into
first-order ordinary differential equations (ODEs) ready
for numerical integration. After some manipulations of
forward and inverse Laplace transforms, we obtain the
state-space representation for the synaptic transmission:

_yyðtÞ ¼ zðtÞ ð6Þ

_zzðtÞ ¼ AauðtÞ � 2azðtÞ � a2yðtÞ ð7Þ

where yðtÞ is the output, zðtÞ is an internal state variable
and uðtÞ is xxx the incoming signal. Similarly, we can
derive ODEs in this form for the IPSP and interneural
transfer functions.
Applying the reduced-order ODEs to the block dia-

gram we obtain the following state-space representation
to describe the proposed pathway model:

For the thalamus

_yy1 ¼ y2 ð8Þ
_yy2 ¼ A1a1 x5 þ C16rðy21Þ þ C12rðy17Þ þ C7rðy9Þf

þC8rðy11Þ þ C11rðy15Þg � 2a1y2 � a21y1
_yy3 ¼ y4 ð9Þ
_yy4 ¼ B1b1 C13rðy17Þ þ C10rðy15Þf g � 2b1y4 � b21y3

For cortical layer IV

_yy5 ¼ y6 ð10Þ
_yy6 ¼ A2a2 x2 þ C1rðy1 � y3Þf g � 2a2y6 � a22y5
_yy7 ¼ y8 ð11Þ
_yy8 ¼ B2b2 C3rðy13Þf g � 2b2y8 � b22y7

For cortical layer V, cell I

_yy9 ¼ y10
_yy10 ¼ A3a3 x3 þ C4rðy5 � y7Þf g � 2a3y10 � a23y9

ð12Þ

For cortical layer V, cell II

_yy11 ¼y12
_yy12 ¼A4a4 x4 þ C5rðy5 � y7Þf g � 2a4y12 � a24y11

ð13Þ

For interneuron I

_yy13 ¼ y14
_yy14 ¼ A6a6 C2rðy5 � y7Þf g � 2a6y14 � a26y13

ð14Þ

For interneuron II

_yy15 ¼ y16
_yy16 ¼ A5a5 C9rðy11Þ þ C15rðy1 � y3Þf g

� 2a5y16 � a25y15

ð15Þ

For interneuron III

_yy17 ¼ y18
_yy18 ¼ A7a7 C6rðy9Þ þ C14rðy1 � y3Þf g

� 2a7y18 � a27y17

ð16Þ

Fig. 5. Detailed block diagram of the proposed model for the somatosensory pathways of Fig. 1
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For the cuneate nuclei

_yy21 ¼ y22

_yy22 ¼ A9a9x1 � 2a9y22 � a29y21
ð17Þ

The model equations can be solved using numerical
techniques. Responses recorded on the scalp correspond
to the integrated current generated by the membrane
potential fluctuations of the cortical cells. Hence, the
model validation signals are obtained by collecting
results y5 � y7 (SEPs) for the output of the primary
somatosensory cortex cells in layer IV.

4.2 Selection of connectivity coefficients

The main difficulty encountered in dealing with the
model parameters is the selection of the connectivity
coefficients – sixteen coefficients are used in the model. It
is hard to accurately identify such a large number of
parameters because of either the nonexistence or the
variability of physiological data. Therefore, parameters
used here are mainly obtained from previous work and
modifications from simulations.
The connectivity coefficient is defined as the average

number of synaptic contacts of a neuron, so determi-
nation of the coefficients is based on counting the
number of the synaptic contacts on a neuron. White
(1989) reported a series of histological experiments on
the synaptic organisation of the cerebral cortex. How-
ever, experimental results presented by White (1989) and
other researchers are still far from the goal of identifying
accurately the number of synaptic contacts. Hence,
Lopes da Silva et al. (1974) treated the coefficients as
ratios of synaptic connections between neurons. Jansen
and Rit (1995) derived a set of ratios of the connectivity
coefficients between thalamocortical neurons and inter-
neurons based on histology-literature surveys for mim-
icking visual evoked potentials. They derived a set of
realistic values based on existing histological data. Two
sets of parameter values resulted from these studies.
Thus, a compromise of ratios was chosen and the final
numerical values were mostly dependent on simulation
results. The aim of their parameter choice was to make
the system oscillate stably and retain alpha-rhythm-like
characteristics. The histological information adopted for
their derivation relied more on studies of the somato-
motor cortex than of the visual cortex; therefore, their
derived coefficients are adopted with slight modifications
in this paper. The selection of the connectivity coeffi-
cients significantly affects the system stability and re-
sponses (Zetterberg et al. 1978).
Based on the research by Jansen and Rit (1995) and

our current simulation studies, we adopted the following
connectivity coefficients: C1 ¼ C;C2 ¼ 0:25C;C3 ¼
0:1C;C4 ¼ C;C5 ¼ C, C6¼C;C7¼C;C8¼ 0:25C;C9¼
C;C10¼ 0:1C;C11¼ 0:8C;C12¼ 0:1C;C13¼ 0:1C;C14¼C;
C16¼C and C16¼C, where C is the base constant to be
decided by trial and error. C¼ 135, which gave the best
simulation results in the study of Jansen and Rit (1995),
is also used in this work. Since large changes of the

connectivity coefficients can make the system unstable,
the above selection was maintained constant throughout
all simulations. This is physiologically reasonable since
the number of synaptic contacts should be a constant
under normal conditions (Thomson and Deuchers
1994).

5 Simulation method and results

5.1 Basic activity

The system was implemented in GNU C++ on Linux
workstations. The ODE equations were solved using the
fourth-order Runge–Kutta–Fehlberg (RKF4) method
with a fixed step length. A sweep is envisaged to consist
of 500 samples at a sampling rate of 500Hz. The
sampling period in the RKF4 integration is divided into
50 steps for a better resolution. Fifty raw responses are
averaged to give an evoked-potential response, this
being the so-called ensemble averaging (Dawson 1947;
Aunon et al. 1981). The responses representing the post-
synaptic membrane potentials occur at the respective
neuron.
Cellular discharge (spontaneous activity) in the cen-

tral nervous system is never stable (Angel 1977), since
firing behaves in a stochastic manner. Thus, interpreting
the number of nerve impulses per second is influenced by
the measurement technique. Rating the average of the
instantaneous frequencies arrives at a higher value than
rating the average frequency (Angel 1991). The sponta-
neous activities of each pyramidal cell are random
numbers with a uniform distribution between 120 and
320 pulses/s, as suggested by Jansen and Rit (1995) and
from an aggregate of their simulation results. This is
reasonable as a basis for the average of instantaneous-
frequency measurements. Based on the nominal model
parameters, five typical runs of stimulus-free responses
are illustrated in Fig. 6. The effect of many anaesthetic
agents is to change the evoked cortical responses which
corresponds to a change in the responses of cells at the
cortical level (Angel 1993a). Hence, SEP responses are
obtained from the signal of y5 � y7 which models the
post-synaptic membrane potential of cortical layer IV
(see Fig. 5).

Fig. 6. Stimulus-free responses from cortical layer IV
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A monotonic function (Fig. 7) was used to mimic the
somatic stimulus (Jansen and Rit 1995):

uðtÞ ¼ q 
 t
w

� �n

e�t=w ð18Þ

where n ¼ 7;w ¼ 0:005 and q ¼ 0:5. Stimuli generated
using the above function were applied to the cortical
model at the 50th sample time of each sweep.
The selection of the frequency of the spontaneous

activities for each pyramidal cell affects the oscillatory
characteristics of the model network significantly. Fig-
ure 8 shows the results of varying the range of the
spontaneous activities from (180, 480) to (4, 10). Other
model parameters used in the simulation had their
nominal values unchanged. The spontaneous frequency
range of (120, 320) gives the most realistic oscillatory
response. Responses with spontaneous frequency ranges
below (7, 20) have almost the same waveform and show
no rhythmic characteristics.
In analogy to SEPs recorded from living subjects,

we are able to define the usual terms relating to SEP
analysis, as shown in Fig. 9. Figure 9a is a response
recorded from a urethane-anaesthetised rat. In Fig. 9b,
obtained from the model, the onset, initial positive
peak and initial negative trough are also well defined.
Hence we can easily estimate the onset latency and the
relative amplitudes and use them as an index of anaes-
thesia.

5.2 Application to general anaesthesia

5.2.1 Mechanisms of anaesthetic agents in the nervous
system. Anaesthetic agents acting on the somatosensory
nervous system either attenuate or block signal trans-
mission from the peripheral sensory receptors to the
somatic sensory cortex (Angel 1993b). Laboratory
research has revealed that the thalamic relay cell is a
major site of anaesthetic action, and that the centripetal
transmission of sensory information is decreased at this
site by anaesthetic agents (Angel and LeBeau 1992). In
propofol anaesthesia, for example, this behaviour may
be due to an increase in the release of c-aminobutyric
acid (GABA) acting at GABAA receptors as proposed
by Fiset et al. (1999) to explain the marked decrease in
thalamic regional blood flow which occurs with propofol
administration in human patients. For anaesthetic
agents to affect axonal conduction requires considerably
higher concentrations than the effect of synaptic trans-
mission, and only occurs at lethal doses (Seeman 1972;
Rang and Dale 1987). Hence, only the factors altering
synaptic transmission are studied. These factors include
reduction of neurotransmitter release, inhibition of the
post-synaptic action of the transmitter or reduction of
the electrical excitability of the post-synaptic cell. The
first two are widely recognised to be the main factors
(Langmoen et al. 1995), and based on them the effect of
an anaesthetic agent is simulated in the model by

Fig. 7. Time response of the stimulus function (18)

Fig. 8. Spontaneous activity and oscillatory characteristics of the
network. Each pair of numbers represents the range of uniformly
distributed random numbers used for the stimulus

Fig. 9a,b. Definitions of terms used in somatosensory-evoked-poten-
tial analysis. a Response recorded from an anaesthetised rat. b
Simulation result from the proposed model for the somatosensory
pathways
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varying the amplitude gains and delay constants of
suitable pyramidal cells of the model. The last factor can
be modelled as an increase of the threshold value of the
hillock.

5.2.2 Attenuation of synaptic transmission. The excit-
abilities of the thalamic and cortical neurons are
significantly sensitive to a variety of substances (Mc-
Cormick et al. 1991). At the cellular level, anaesthetic
agents inhibit the conduction of action potentials, and
also inhibit transmission at synapses. In simulation
studies, the nervous network was now considered to be
anaesthetised with different doses. The dose is repre-
sented by a percentage change in the nominal param-
eter values. This was mimicked by attenuating the
amplitude gain (A) and the time constant (a) of the
EPSP function (1) of all cortical cells by the same
percentage. The lower the percentage, the bigger is the
dose, i.e. 10% of the nominal values is more intense
than 20% of the nominal values in terms of attenuating
synaptic transmission.
The doses were decreased from 100% to 5% of the

nominal values in steps of 5%, and the results are shown
in Fig. 10. From this figure we see that the onset latency
increased and the relative amplitude decreased. This
result coincides with experimental results on humans
and animals (Sebel et al. 1985; Angel 1993a). For model
parameters less than 25% of the nominal values, there
are almost no oscillations within the sweep duration.
This can be interpreted as the subject being over-an-
aesthetised, and might correspond to a lethal dosage.

5.2.3 Increase of the hillock threshold. The above
simulations show that mimicking anaesthesia with the
parameters of synaptic transmission is reasonable. An
alternative is to use different threshold potentials to
simulate different anaesthetic levels; this simulation is
shown in Fig. 11. The different levels were simulated by
increasing the threshold value of the sigmoid function
(4) from v0 to 2v0 in 5% steps. However, the changes of
the threshold potential do not behave as well as those
using synaptic transmission modulation. Hence, the
synaptic transmission is adopted as the key parameter
in the nervous system simulation.

5.2.4 Effects of individual cortical cells on the net-
work. Several simulations on individual neurons were
conducted to show how varying the parameters of an
individual neuron affects the evoked potential responses
(output of cortical layer IV). The synaptic parameters
(amplitude gain and time constant) of a single cortical
cell of the nervous pathway were halved from the
nominal values, while the other cells were kept at their
nominal values. Comparative results are shown in
Fig. 12. Responses of the anaesthetised cortical layer V
almost overlap with the nominal curve. The thalamus
decreases the amplitude and onset latency significantly.
Anaesthetising the cuneate only delays signal transmis-
sion. These effects are reasonable since the thalamus
works as a relay to the whole system (Angel and LeBeau
1992; Fiset et al. 1999).

5.2.5 Pharmacodynamics. The scheme presented in
Sect. 5.2.2 can be envisaged as anaesthesia control
using the target controlled infusion technique (Glen
1998). A system based on this technique aims to keep
the drug concentration in the blood at predefined target
levels. The effect (E) of the drug is usually described in
terms of the drug concentration (C) using the Hill
equation:

EðCÞ ¼ Emax 
 Cc

ECc
50 þ Cc

ð19ÞFig. 10. Effects of varying the amplitude gain and delay constant to
represent different depths of anaesthesia

Fig. 11. Effects of varying the hillock threshold level and delay
constant to represent different depths of anaesthesia

Fig. 12. How the evoked potentials recorded at cortical layer IV is
affected by a single anaesthetised cell
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where Emax is the maximum possible effect, EC50 is the
concentration at half-maximum effect and c is a measure
of the steepness of the curve. When monitoring the
responses of anaesthesia using SEPs, the effect variable
E can be the latency change, the relative amplitude or a
combination of both (Sebel 1989; Angel et al. 2000).
Here we define the anaesthetic effect as the multipli-

cation of the latency (h) and the amplitude (DP ) of the
initial positive wave, i.e.

E ¼ hðDP0 � DP Þ=DP0 ð20Þ

where DP0 is the amplitude at the control period, i.e.
responses to the nominal model parameters.
Figure 10 shows that there is no distinctive initial

negative wave if the concentration exceeds 75% (i.e.
parameter at 25% of nominal value). Hence only re-
sponses to concentrations below 75% are utilised. The
normalised contour of (20) together with its fitted Hill
equation is depicted in Fig. 13. The simulation results
show that the dose-versus-latency-change curve repli-
cates the Hill equation as well as results from animal
experiments. The simulation results are interesting not
only because SEPs respond realistically to changes in the
model parameters, but also because the mechanisms of
the individual neurons respond characteristically to pa-
rameter variations.

6 Conclusions

The model proposed here does not consider synchrony
properties of the EEG signals which were taken into
account by Lopes da Silva et al. (1974) and Jansen and
Rit (1995). Also, analytical studies were not undertaken
due to the lack of physiological information and the
complexity of the model. Instead, this paper concen-
trates on utilising existing neuronal models and physi-
ological parameters in the proposed dynamics of the
somatosensory nervous pathways.
The connectivity coefficients of the model were kept

fixed during all simulations. This is justified by the fact
that the number of synaptic contacts of a neuron should
be constant in spite of changes of the nervous state,
except when there are physical brain lesions. However,

one of the major drawbacks of this cortical model is the
unavailability of more realistic connectivity coefficients.
Obviating this problem would require different ap-
proaches or more-specific histological examinations.
Anaesthetic drugs may influence the neurons at var-

ious sites, including the synapses, cell body, axon hillock
and axon. Hence, we assumed that the parameters of
synaptic transmission and the axon hillock changed due
to administration of anaesthetic drugs. Evoked re-
sponses representing the post-synaptic membrane po-
tentials recorded at cortical layer IV show that the model
is able to reproduce these influences via parameter
variation, although such a reproduction does not indi-
cate uniqueness in physiological mathematical model-
ling.
The simulation results are interesting not only be-

cause of how the evoked potential responses are influ-
enced by changes in the model parameters, but also by
providing insight into the mechanisms of how the indi-
vidual neurons respond to the parameter variation.
McCormick et al. (1991) pointed out that the excitability
of a neuron is quite sensitive to a variety of substances
such as anaesthetic drugs, so simulation studies based on
neuronal networks could be a potent approach for an-
swering how electrophysiology behaves.
More realistic models, such as single-neuron models

(Stein et al. 1974) which consider adaptation, refractory
period and warm-up period, would be necessary for
more-profound analysis. However, a major drawback in
the development of those models is the lack of realistic
model parameters. To use these neuronal network
models in practice, we need more knowledge and ex-
perimental data from physiological studies. For exam-
ple, the changes of excitability in the cortex are due not
only to administration of drugs but also to changes in
information processing within the cortex (Blom 1980;
Angel 2002).
The proposed somatosensory neural model shown in

Fig. 5 provides a framework for a wide range of hy-
pothesis testing. The structure is realistic and parsimo-
nious, and gives a paradigm on which a series of
phenomena can be explored in a focused scientific
manner. For example, the parameter set within the
model gives a ‘‘best guess’’ nominal scenario which can
be perturbed in simulation studies to provide a sensi-
tivity analysis of second-order effects within the model.
In turn, this can determine the high-sensitivity regions of
the model, particularly relating to connectivity values,
which could be explored via histological studies. If such
studies were to show that these parameter sets invalidate
the known SEP pattern behaviour, then changes via a
principled approach could be made to the current
model.
In addition to the validation of the model under

quiescent conditions, the effects of drugs could be ex-
plored by testing different hypotheses on changes to
parameters/dynamics. Further faults in the neural pat-
terns can be explored via simulation, either by breaks in
pathway connections or perturbations in parameter
values. In these ways, the structure provides the basis
for hypotheses testing which could guide and focus

Fig. 13. Proposed pharmacodynamics for augmentation of the
network

106



physiological investigations in a systematic manner. This
would then fulfil one of the major objectives in all
modelling studies, while employing a simulation plat-
form which for the proposed model requires only
moderate computing recourses.
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