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Abstract. Finger forces are known to change involun-
tarily during multi-finger force-production tasks, even
when a finger’s involvement in a task is not consciously
changed (the enslaving effect). Furthermore, during
maximal force-production (MVC) tests, the force pro-
duced by a given finger in a multi-finger task is smaller
than the force generated by this finger in its single-finger
MVC test (the force-deficit effect). A set of hypothetical
control variables — modes — is introduced. Modes can be
estimated based on individual finger forces during
single-finger MVC tests. We show that a simple formal
model based on modes with only one free parameter
accounts for finger forces during a variety of multi-finger
MVC tests. The free parameter accounts for the force-
deficit effect, and its value depends only on the number
of explicitly involved fingers. This approach offers a
simple framework for the analysis of finger interaction
during multi-finger actions.

1 Theoretical framework

Studies of human voluntary movements commonly use
performance variables — in particular kinematic, kinetic,
and electromyographic ones — to formulate and test
hypotheses on the control and coordination of move-
ments (Hogan 1984; Atkeson 1989; Gottlieb et al. 1989;
Uno et al. 1989; Rosenbaum et al. 1995). Indeed, it is
very tempting to formulate control hypotheses using
readily measurable variables rather than poorly acces-
sible or even metaphorical ones (cf. the equilibrium-
point hypothesis: Feldman 1986; Latash 1993; Feldman
and Levin 1996). However, the theoretical impossibility
of the central nervous system (CNS) issuing control
signals expressed in performance variables has been
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emphasized in a number of now-classical works (Bern-
stein 1935; Gelfand and Tsetlin 1966). Within the
current study, we propose an approach that allows
switching the analysis of motor control problems from a
set of performance variables to a set of hypothetical
central control variables during tasks involving multi-
finger force production.

When a person produces isometric force with a subset
of fingers within a hand, the other fingers of the hand
also produce certain forces (Zatsiorsky et al. 1998, 2000;
for similar findings see also Kilbreath and Gandevia
1994). Such involuntary force production by nonin-
tended fingers has been termed ‘“enslaving.” The ex-
plicitly involved fingers are termed master-fingers, and
the other force-producing fingers are called slave-fingers.
Due to the enslaving, there is no direct correspondence
between neural commands to individual fingers and
finger forces. It is unclear whether there exists a set of
independent variables controlled by the CNS during
multi-finger force production tasks. The purpose of this
work is to introduce such a hypothetical set of central
variables, that we call “modes.”

We hypothesize that, for each single-finger task, the
CNS controls a unique variable (a mode) leading to
force production by the master-finger as well as by the
enslaved fingers. For instance, when a subject produces
force voluntarily with the index finger (I), mode I is
recruited by the CNS. Due to the enslaving phenome-
non, mode I also leads to force production by the
middle (M), ring (R), and little (L) fingers. Similarly,
voluntary force production by either of these latter
fingers is assumed to involve corresponding modes
(mode M, mode R, and mode L, respectively). There-
fore, a mode can be viewed as a collective variable,
which leads to activation of many hand muscles
bringing about a specific relationship among finger
forces. A following question emerges: can a superpo-
sition of modes account for finger interaction during
two-, three-, and four-finger tasks? The objective of the
present study is to show that the mode approach is able
to account for force patterns during maximal voluntary
contraction (MVC) tasks by several fingers, based on
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force patterns recorded during single-finger MVC tasks.
We develop a formal model and test its ability to ac-
count for data published earlier by our group, for a
broad variety of studies including those of the effects of
fatigue, aging, and handedness on multi-finger force
production.

2 Model
2.1 Notion of the mode

The outline of the model is presented in Fig. 1. The
model assumes the existence of four modes that the CNS
manipulates according to the task. During MVC tasks,
each mode is assumed to be either maximally recruited
(state = 1) or not recruited at all (state = 0), depending
on the explicitly involved finger combination. Each
mode contributes to force production by each finger. In
Fig. 1, this is illustrated with symbols with two sub-
scripts: the first refers to a finger while the second refers
to a mode contributing to force production by this
finger. For example, in a task IR (i.e., MVC by the index
and ring fingers), the force of the index finger will reflect
a superposition of Fij and Fir. In the same task, the
middle and little fingers will also produce force reflecting
superpositions of (Fy; and Fur), and (FL; and FLRr),
respectively.

Let us consider the simplest possibility when super-
position of different modes results in a simple summa-
tion of forces. During MVC production by I and R
fingers, one can expect:

F=> F,
J

FI,R FM,R FR,R FL,R

where i refers to a finger (i = I, M, R, L), and j refers to
a mode (j = LLR). For instance, F; = Fij + Fir.

The results obtained for each finger force are presented
in Table 1. Actual forces measured during I, R, and IR
tasks are presented in the upper part of Table 1. The
model predicts much higher forces than those observed
experimentally, which is due to the model failing to
account for the phenomenon of force deficit. Indeed,
many studies have reported that during MVC tasks, the
force produced by a given finger in a multi-finger task is
smaller than the force generated by this finger in its single-
finger task (Li et al. 1998b; for similar findings see also
Ohtsuki 1981; Kinoshita et al. 1996); typically, force
deficit increases when the number of fingers explicitly
involved in a task increases. In order to account for the
force-deficit effect, we have introduced in the model a free
parameter G that attenuates the result of force summa-
tion. Figure 2 illustrates this modification of the model
where, after summation of the effects of individual modes,
the result is attenuated by a factor G < 1. The magni-
tude of G is defined using published experimental data.

2.2 Identification of the G factor

To obtain the best estimate of G, we used the most com-
plete data set (averages across subjects) on single-hand,
multi-finger MVC production published by Zatsiorsky
et al. (1998). For each finger combination, a value of the
G factor was defined as the ratio of the actual total force
to the predicted force computed as the sum of forces
expected from individual mode effects. For instance, in
the previous example of the IR task (Table 1), G equals
82.3/134.2, that is 0.61 (see row b).

SOPOJN

Fig. 1. The mode approach. This diagram
illustrates the notion of modes during a
maximal force-production (MVC) task by the
index (/) and ring (R) finger (IR) task. During
this two-finger task, two modes are activated
(M; and Mp), while the two other ones (M,
and My, involving the middle and little fingers,
respectively) remains silent. Given that each
mode influences the force produced by each
finger, one needs to combine the effect of M
and My to predict forces of individual finger
during the IM task. See text for further details
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Table 1. Computation of the gain factor G. This table shows how
finger forces produced during MVC production by the index or the
ring finger (/ and R tasks) can be possibly used to predict individual
finger forces during MVC production by the index and ring finger
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Table 2. Values of the gain factor G as a function of the task
performed by different finger(s) to generate an MVC. The value of
G was computed using the method described in Table 1

(IR task). In this task G equals 0.61 (see row b), so that the pre- Task G
dicted and experimental values of total force are identical (circled
numbers). Other experimental values are provided for comparison. I 1
See text for further details II\{/I i
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Fig. 2. The mode approach and force deficit. Modes do not sum up
linearly. In order to account for the force-deficit effect, we propose
that when several modes are simultaneously activated, their combined
effect is altered by a gain factor G < 1

Table 2 shows that the G values obtained for each
task. When the number of fingers explicitly involved in
a task increased, the value of G decreased. By contrast,
G values were similar across tasks with the same
numbers of explicitly involved fingers. For two-finger
tasks G ranged from 0.61 to 0.64, for three-finger tasks
it ranged from 0.43 to 0.45, and for the four-finger
task it was 0.38. Obviously, for one-finger tasks G was
equal to 1.

Figure 3 shows the relation between the value of G
(averaged across tasks with the same number of explic-
itly involved fingers, N) and N. To capture the depen-
dence of G on N, we fitted the data with a function
G = 1/N” using the least-squares algorithm in MAT-
LAB (MathWorks, MathWorks, Natick, Mass.). The
best fit was obtained with the exponent y = 0.712, ac-
counting for 99.9% of the variance. Based on this result
we have decided to introduce a function G = 1/N” in
the model, where y is defined for each experimental

Number of Modes (N)

Fig. 3. Value of the gain factor (G) as a function of the number of
modes simultaneously activated (V). For two- and three-finger tasks
(N = 2 or 3), errors bars indicate the standard deviation of G across
the tasks; note the small size of the error bars. Curve-fitting techniques
show that the equation G = 1/N°7'? can account rather well for the
drop in G as N increases

condition and subject group to provide an optimal fit to
the data.

It is fair to admit that other functions could account
similarly well for the basic relation between G and N.
For instance, the following function could be used:

1
G=——a
VN

where N is the number of explicitly involved fingers. The
square root of N can be interpreted as the length of a
mode vector, M = (M1, My, My, M), where My, My, MR,
and My are either 1 or 0. The length of this vector is 1.41,
1.73, and 2 for N =2,3, and 4, respectively. Then,
normalizing the length of the mode vector leads to G
factors of 0.71, 0.58, and 0.5. These values are higher



94

than the experimental ones (0.61, 0.44, and 0.38) by a
nearly constant value (a = 0.12). This formalization,
similarly to 1/N”, also has one free parameter (a), which
can be subject and task dependent.

3 Comparison to the published data

The model is tested with five data sets, all of them
originating from our group. There are also studies by
other groups reporting individual finger forces during
multi-finger task (e.g., Ohtsuki 1981; Kinoshita et al.
1996, Santello and Soechting 2000). However, given that
data relative to single-finger tasks are missing or
incomplete, modes cannot be assessed. Note also that,
in most of those studies, subjects performed a grasping
task, and the mechanical constraints necessary to stabi-
lize the handheld object are not taken into account by the
present model. Among our own studies, data sets were
selected bearing two intentions in mind: (i) we wanted to
test the model in a wide spectrum of experimental
conditions, and (ii) we gave priority to data sets that were
explicitly reported in the original papers.

3.1 Zatsiorsky et al. (1998)

In this study, young healthy subjects (n = 10) pressed
with the fingertips of the dominant hand on sensors
placed on a horizontal surface. All subjects were right-
handed. All 15 finger combinations were tested (i.e., I,
M, R, L, IM, IR, IL, MR, ML, RL, IMR, IML, IRL,
MRL, and IMRL). Modes were defined based on data
averaged across subjects in single-finger tasks. The
function G = 1/N” was used to account for the force-
deficit effect when several modes were simultaneously
activated. As demonstrated earlier, y =0.712 is the
optimal value for this dataset.

Forty-four points are plotted in Fig. 4, with each
point corresponding to the force of a particular finger in
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Fig. 4. Linear regression between the predicted and experimental
forces. The individual finger forces predicted by the mode approach
are plotted as a function of the experimentally recorded finger forces
reported by Zatsiorsky et al. (1998). See text for further details

one of the eleven multifinger tasks. There is a significant
strong correlation (R = 0.978, p < 0.001) between the
predicted and actual data. The model is able to account
for 95.3% of the variance. On average, individual finger
forces are predicted with an absolute error of 2.2N.

A similar analysis was performed to quantify the
performance of the model at the level of the force-
sharing pattern. During each task, each finger produced
a certain percentage of the total force produced by all
involved fingers. The comparison between the predicted
and experimental shares proved to be highly significant
(R=0.978, p<0.001). On average, individual finger
shares are predicted with an absolute error of 2.7%.
Note that, because the gain factor G affects all finger
forces in a similar way, the force-sharing pattern (ex-
pressed as percentages of total force) predicted by the
model is independent of G.

3.2 Danion et al. (2000a)

This study investigated the effects of fatigue on multi-
finger force production. Young healthy subjects (n = 14)
generated force against loops positioned either at the
middle of the distal phalanges (distal site), or at the
middle of the proximal phalanges (proximal site). All
subjects were right-handed and performed the tests with
the dominant hand. Only single- and four-finger tasks
were tested (i.e., I, M, R, L, and IMLR). These tasks
were performed before and after a fatiguing exercise
consisting of 60 s at 100% of MVC with all four fingers
acting together. Modes were defined based on data
averaged across subjects in the single-finger tasks. The
quality of the fit was assessed by comparing the
predicted finger forces during the four-finger tasks with
the actual data. Optimal G values were obtained
separately for the two sites of force application, and
also before and after the fatiguing exercise.

During force production at the distal site, the corre-
lation between the predicted and experimental forces
was significant both before (R = 0.995, p < 0.01), and
after (R = 0.999, p < 0.001) the exercise. On average, the
absolute errors were 1.5N and 0.7N, respectively. The
value of G dropped during fatigue (0.60 vs 0.47).

During force production at the proximal site, the
correlation between the predicted and experimental
forces was just under the level of significance before the
exercise (R = 0.933, p = 0.07), and not significant after
the exercise (R = 0.747, p > 0.1). On average, the abso-
lute errors were 3.3N and 2.7N, respectively. The value
of G dropped during fatigue (0.51 vs 0.41).

3.3 Danion et al. (2000b)

The goal of this study was to compare multi-finger force
production in young (r = 7) and elderly (n = 7) subjects
during MVC tasks at the distal and proximal sites. All
subjects were right-handed and performed the tests with
the dominant hand. Only single- and four-finger tasks
were used. The setup was the same as that used in



Danion et al. (2000a), and the quality of the fit and the
optimal G values were assessed in the same way as for
the earlier study.

During force production at the distal site, the cor-
relation between the actual and predicted forces was
significant for both young (R = 0.987, p < 0.05) and
older adults (R =0.998, p < 0.01). On average, the
absolute errors were 1.4N and 0.6N, respectively. The
value of G was very similar for both subject groups
(0.592 vs 0.591).

During force production at the proximal site, the
correlation between the predicted and actual forces was
borderline significant for the young adults (R = 0.938,
p = 0.06). However, this correlation was significant for
the older adults (R = 0.995, p < 0.01). On average, the
absolute errors were respectively 2.7N and 0.9N, re-
spectively. The value of G was again very similar for
both young and elderly subjects (0.518 vs 0.522).

34 Liet al (2000a)

This study compared multi-finger force production by
the right and left hands in a group of right-handed
subjects (n = 13). Forces were produced by the finger-
tips. Small wooden blocks shaped to fit comfortably
under the subject’s palms were placed underneath each
palm. In this experiment, all single-, two- and four-
finger tasks were tested. Data averaged across subjects
were used to test the model. For each hand, the quality
of the fit and the optimal G values were defined using
the same method as for the data of Zatsiorsky et al.
(1998).

The value of G was rather stable across the two-finger
tasks. The average value of G was 0.62 + 0.04 (standard
deviation across all six two-finger tasks) for the right
hand, and 0.59 £ 0.05 for the left hand. For the four-
finger tasks, the value of G was 0.47 and 0.42 for the
right and left hands, respectively. Based on the G values,
we have computed the 28 individual finger forces related
to the seven multi-finger tasks. The correlation between
the predicted and experimental forces was highly sig-
nificant for both hands (R > 0.986, p < 0.001). On av-
erage, the absolute errors for the right and left hands
were 1.0N and 1.2N, respectively.

3.5 Liet al. (2000b)

In this study, an objective was to investigate possible
differences between the dominant and nondominant
hands in a group composed of five right-handers and
five left-handers. Force production was generated at
the fingertips using the same setup as in Li et al
(2000a). In this experiment, subjects performed all
single-finger tasks, two two-finger tasks (IM and RL),
and the four-finger task. The method used to fit the
data was the same as for Li et al. (2000a). The model
was adjusted separately for the dominant and non-
dominant hands.
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The value of G was stable across the two-finger tasks,
with small differences between the hands. For the
dominant hand, the value of G was 0.66 for the IM task
and 0.65 for the RL task. For the nondominant hand,
these values were 0.65 and 0.64, respectively. For the
four-finger tasks, the value of G was 0.44 and 0.43 for
the dominant and nondominant hands, respectively.
Based on the G values, we computed the 12 individual
finger forces related to the three multi-finger tasks. The
correlation between the predicted and experimental
forces was highly significant for both hands (R > 0.985,
p <0.001). The average absolute errors for the
dominant and nondominant hands were 1.5N and 1.4N,
respectively.

4 Comparison with the neural network
by Zatsiorsky et al. (1998)

A neural network (Zatsiorsky et al. 1998) has been
proposed to account for finger interaction during
maximal force production by one or several fingers. As
illustrated in Fig. 5, the network consists of three layers:
(1) the input layer that models a central neural drive, (ii)
the hidden layer modeling the transformation of the
central drive into signals to the muscles serving several
fingers (multi-digit muscles), and (iii) the output layer
representing force production by individual fingers. The
output of the hidden layer is set inversely propor-
tional to the number of fingers involved. In addition,
direct connections between the input and output layers
represent signals to the hand muscles serving individual
fingers (unidigit muscles).

Zatsiorsky et al. (1998) used a complete data set for
MVC tasks with all 15 finger combinations. They used
the backpropagation-error algorithm to define an opti-
mal set of weights within the three-layer network
(Fig. 1). More formally, the model can be presented by
the following equation:

Input layer

Hidden layer

Output layer

Fig. 5. The artificial neural network proposed by Zatsiorsky et al.
(1998). The network consists of three layers: (i) the input layer that
models a central neural drive, (ii) the hidden layer modeling the
transformation of the central drive into signals to the muscles serving
several fingers (multi-digit muscles), and (iii) the output layer
representing force production by individual fingers. Figure adapted
with permission from Zatsiorsky et al. (1998)
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where N is the number of fingers involved in the task, F;
is the force of the ith finger (i = I, M, R, L), x; are the
inputs into the network, w;; and v; are connection
weights. The inputs to the network were set at x; = 1 if
the ith finger was explicitly recruited by the task, or
x; = 0 otherwise. The first term in the right-hand side of
the equation represents the contribution to finger forces
mediated by the hidden layer, while the second term
represents the action of direct projections from the input
layer.

Our mode approach can be formalized by the
following equation:

Fr wWII  WIM  WILR WL My
Fm WMI WMM WMR WML My
Fr | =G| wrr WRM WRR WRL |®| Mr
Fy WLl WLM WLR WLL My,

(2)

with the same abbreviations as for (1), plus G as the
scaling factor (G = 1/N?) and M; as the input for each
mode, with each mode being represented by a vector
column of the 4 x 4 matrix. The inputs were set at
M; =1 if the ith finger was explicitly recruited by the
task, and M; = 0 otherwise.

Coefficients in (1) were defined based on the data in
all 15 finger tasks. In contrast, coeflicients in (2) were
defined based only on single-finger tasks. The optimal
values for the data set of Zatsiorsky et al. (1998) are
presented in (3) and (4):
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The performance of the neural network was tested by
comparing the 60 individual forces predicted by this
model to the actual forces. On average, the neural
network provided a slightly better fit to the data than the
mode approach, as indicated by the coefficient of
correlation (R = 0.989 vs 0.976) and the average error
(1.2N vs 2.2N). There are, however, advantages to the
mode approach. First, this approach uses only a few
data sets (single-finger trials) to generate predictions for
multi-finger tasks with only one free parameter (y), while
the network uses data from both single- and multi-finger
tasks to optimize connection weights. Second, even
without this free parameter, the mode approach can
still generate predictions for the force-sharing pattern
(expressed as percentages of the total force).

5 Discussion

The mode approach has been tested in a wide variety of
experimental conditions. The results show that in most
of these conditions, the approach has been rather
accurate. One notable exception is force production at
the proximal phalanges. We would like to offer two
mutually nonexclusive reasons for the relatively poor
performance of the model in this task. First, subjects
may feel clumsy during such tests, since everyday tasks
rarely involve force production at proximal phalanges.
Second, we could never completely secure the positions
of the loops along the phalanges. Therefore the points of
force application could differ across fingers and across
trials. During force production at the distal site, such
displacements have relatively small effects on the lever
arms with respect to proximal phalanges. In contrast,
during force production at the proximal site the relative
change in the lever arms can become more significant,
leading to more noise in the data.

5.1 A single framework for different phenomena

The mode approach provides an attractive framework
for the study of multi-finger interaction since it
integrates in a simple way the phenomena of sharing,
deficit, and enslaving. First, the mode approach
suggests that the sharing pattern of the total force in
multi-finger tasks results simply from a linear super-
position of central variables (i.e., modes). The different
shares of fingers during multi-finger MVC tasks (cf. Li
et al. 1998a) result from the different enslaving pat-
terns during single-finger tasks. Second, this approach
proposes a simple relationship accounting for the force
deficit observed during multi-finger tasks. Indeed, the



gain factor G depends only on the number of modes N
simultaneously activated (this N dependence being
captured by a decreasing function). More specifically,
we found that, for a given value of N, the value of G
does not depend on the exact set of fingers involved in
a task.

Third, the enslaving effect is captured in the settings
of the modes themselves. The numbers accounting ex-
plicitly for the enslaving are the 12 off-diagonal terms in
the 4 x 4 matrix in (4).

More specifically, the mode approach emphasizes
that the enslaving and force-sharing phenomena are in-
timately related. For instance, a change in a single co-
efficient in the 4 x 4 matrix in (4) is accompanied by
changes in both sharing and enslaving. In contrast, the
model suggests that force deficit and enslaving are phe-
nomena of different origins. Indeed, changing the value
of the exponent y has no effect on force sharing and
enslaving, if both are expressed as percentages of the
total force. This result is supported by published data.
For instance, it has been shown that during fatigue,
force deficit increases (leading to smaller values of G)
while enslaving tends to decrease (see Danion et al.
2000a). Similarly, in elderly people there are relatively
small changes in the force deficit (and in G), and rela-
tively large and significant changes in the enslaving
(Danion et al. 2000Db).

5.2 Occlusion of enslaving

Studies by Zatsiorsky et al. (1998, 2000) have shown
that enslaving effects are nonadditive. Moreover, in
certain cases, the enslaving effects induced by several
explicitly activated fingers could be smaller than the
enslaving when only one finger was explicitly recruited
(this effect has been termed occlusion of enslaving). One
can find such examples in Table 1 of Zatsiorsky et al.
(1998), where data averaged across subjects are report-
ed. For example, during a single-finger MVC task by the
R finger, the enslaved force produced by the L finger is
10.6N, whereas during a three-finger MVC task (IMR)
the L finger force is only 5.1N. Equation (4) also
predicts a smaller enslaving force (8N) for the L finger
during the IMR task based on the mode approach.
Thus, this approach can account for relatively subtle
effects such as the occlusion of enslaving, although
quantitatively the prediction differs somewhat from the
experimental results.

5.3 Force deficit in enslaved fingers

In previous studies, the phenomenon of force deficit
has been always emphasized for the master fingers
(i.e., fingers explicitly required to produce force). The
current approach views force deficit as being equally
applicable to both master and slave fingers. The
matrix in (4) implies that forces produced by slave
fingers remain proportional to master-finger forces.
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This idea was partly introduced in Fig. 2 of Zatsior-
sky et al. (2000), showing parallel changes in the
slave- and master-finger forces during a force ramp.
The gain factor in (4) applies to all components of the
matrix and, as such, leads to proportional force-deficit
effects in the forces produced by master- and slave-
fingers.

5.4 Implications for the minimization of secondary
moments

It has previously been proposed that force sharing
patterns emerge because the CNS tries to minimize
the total moment produced by all fingers about the
longitudinal functional axis of the hand (principle of
minimization of secondary moments; Li et al. 1998a,b).
It has also been shown that during one-, two-, or three-
finger tasks, enslaving helps reduce the secondary
moment (Zatsiorsky et al. 2000).

The mode approach suggests that minimization of
secondary moments can follow from the force-sharing
patterns during single-finger tasks. Are modes the cause
or the consequence of secondary-moment minimiza-
tion? We suggest that modes are developed based on
everyday motor tasks involving the hand. Many ev-
eryday tasks involve stabilizing a gripped object, which
requires balancing finger moments with respect to the
thumb. If a person is asked to select a comfortable
thumb position for a grip task, this position commonly
coincides with the functional axis of the hand/forearm
(Li et al. 1998Db). Extensive practice of such tasks may
be expected to lead ultimately to sharing patterns that
comply with the principle of minimization of secondary
moments.

5.5 Implications for the uncontrolled manifold hypothesis

The notion of modes has been recently introduced in a
series of studies investigating the structure of force
variability during multi-finger tasks (Latash et al. 2001,
2002; Scholz et al. 2002). The analysis in these studies
was based upon a hypothesis that the CNS controls the
fingers using a set of central variables, or modes. The
introduction of modes in those studies was done mostly
for computational purposes. The present study suggests
that the notion of modes is applicable across multi-finger
force-production tasks and can be successfully applied
to studies of different subject subpopulations and the
effects of fatigue.

5.6 Generality of the mode approach

In the present study we have shown that finger
interaction can be captured by a matrix (representing
the modes), a vector (defining which modes are recruit-
ed), and a gain factor (accounting for force deficit). A



98

question emerges: how general are the matrix and the
gain factor? First, there are obviously fluctuations in
both across subjects. Besides differences in muscle
strength, some subjects have a larger force deficit and/
or enslaving. Second, the matrix and the gain factor
depend on the experimental conditions. For instance, in
young healthy subjects, the magnitude of force deficit
depends on the setup used for force production, and on
the site of force production (i.e., distal or proximal
phalanges). Therefore, the main contribution of this
work is not to propose a set of magic numbers that could
account for finger interaction in all subjects and all
tasks, but rather to introduce a specific framework that
facilitates analysis of finger forces during both single-
and multi-finger force-production tasks.

At a more general level, the main contribution of the
force mode approach is to provide an example of how
analysis of motor control problems can be performed
using a set of hypothetical independent central control
variables computed based on a set of performance vari-
ables (forces) measured in a few simple motor tasks. We
hope that motor control studies that use kinematic and
kinetic variables recorded during various motor tasks
will follow this example and perform analyses of control
processes using adequate sets of central control variables
that are different from the performance ones. Such a
generalization of the force mode approach is far from
trivial and will probably require major effort.
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