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Abstract. Mirror neurons within a monkey’s premotor
area F5 fire not only when the monkey performs a
certain class of actions but also when the monkey
observes another monkey (or the experimenter) perform
a similar action. It has thus been argued that these
neurons are crucial for understanding of actions by
others. We offer the hand-state hypothesis as a new
explanation of the evolution of this capability: the basic
functionality of the F5 mirror system is to elaborate the
appropriate feedback — what we call the hand state — for
opposition-space based control of manual grasping of
an object. Given this functionality, the social role of the
F5 mirror system in understanding the actions of others
may be seen as an exaptation gained by generalizing
from one’s own hand to an other’s hand. In other words,
mirror neurons first evolved to augment the “canonical”
F5 neurons (active during self-movement based on
observation of an object) by providing visual feedback
on “hand state,” relating the shape of the hand to the
shape of the object. We then introduce the MNSI
(mirror neuron system 1) model of F5 and related brain
regions. The existing Fagg—Arbib—Rizzolatti-Sakata
model represents circuitry for visually guided grasping
of objects, linking the anterior intraparietal area (AIP)
with F5 canonical neurons. The MNS1 model extends
the AIP visual pathway by also modeling pathways,
directed toward F5 mirror neurons, which match arm—
hand trajectories to the affordances and location of a
potential target object. We present the basic schemas for
the MNS1 model, then aggregate them into three “grand
schemas” — visual analysis of hand state, reach and
grasp, and the core mirror circuit — for each of which we
present a useful implementation (a non-neural visual
processing system, a multijoint 3-D kinematics simula-
tor, and a learning neural network, respectively). With
this implementation we show how the mirror system
may learn to recognize actions already in the repertoire
of the F5 canonical neurons. We show that the connec-
tivity pattern of mirror neuron circuitry can be estab-
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lished through training, and that the resultant network
can exhibit a range of novel, physiologically interesting
behaviors during the process of action recognition. We
train the system on the basis of final grasp but then
observe the whole time course of mirror neuron activity,
yielding predictions for neurophysiological experiments
under conditions of spatial perturbation, altered kine-
matics, and ambiguous grasp execution which highlight
the importance of the timing of mirror neuron activity.

1 Introduction
1.1 The mirror neuron system for grasping

The macaque inferior premotor cortex has been identi-
fied as being involved in reaching and grasping move-
ments (Rizzolatti et al. 1988). This region has been
further partitioned into two subregions: F5, the rostral
region, located along the arcuate part; and F4, the
caudal part (see Fig. 1). The neurons in F4 appear to be
primarily involved in the control of proximal move-
ments (Gentilucci et al. 1988), whereas the neurons of F5
are involved in distal control (Rizzolatti et al. 1988).

Rizzolatti et al. (1996a) and Gallese et al. (1996)
discovered a subset of F5 hand cells, which they called
mirror neurons. Like other F5 neurons, mirror neurons
are active when the monkey performs a particular class
of actions, such as grasping, manipulating, and placing.
However, in addition the mirror neurons become active
when the monkey observes the experimenter or another
monkey performing an action. The term F5 canonical
neurons is used to distinguish the F5 hand cells which do
not posses the mirror property but are instead responsive
to visual input concerning a suitably graspable object.
The canonical neurons are indistinguishable from the
mirror neurons with respect to their firing during self-
action. However they are different in their visual prop-
erties — they respond to object presentation and not
action observation per se (Murata et al. 1997).



Most mirror neurons exhibit a clear relation between

the observed and executed actions for which they are
active. The congruence between the observed and exe-
cuted action varies. For some of the mirror neurons,
the congruence is quite loose; for others, not only must
the general action (e.g., grasping) match, but also the
way the action is executed (e.g., power grasp) must
match as well. To be triggered, the mirror neurons
require an interaction between the hand motion and
the object. The vision of the hand motion or the object
alone does not trigger mirror activity (Gallese et al.
1996).

It has thus been argued that the importance of mirror
neurons is that they provide a neural representation that
is common to execution and observation of grasping
actions and thus that these neurons are crucial to the
social interactions of monkeys, providing the basis for
understanding of actions by others through their linkage
of action and perception (Rizzolatti and Fadiga 1998).
Below we offer the hand-state hypothesis, suggesting
that this important role is an exaptation of a more
primitive role, namely that of providing feedback for
visually guided grasping movements. By exaptation we
mean the exploitation of an adaptation of a system to
serve a different purpose (in this case for social under-
standing) than it initially developed for (in this case,
visual control of grasping). We will then develop the
MNSI1 (mirror neuron system 1) model and show that
the system can exploit its ability to relate self-hand
movements to objects to recognize the manual actions
being performed by others, thus yielding the mirror
property. We also conduct a number of simulation ex-
periments with the model and show that these yield
novel predictions, suggesting new neurophysiological
experiments to further probe the monkey mirror system.
However, before introducing the hand-state hypothesis
and the MNS1 model, we first outline the FARS (Fagg—
Arbib—Rizzolatti-Sakata) model of the circuitry that
includes the F5 canonical neurons and provides the
conceptual basis for the MNS1 model.
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Fig. 1. Lateral view of the monkey cerebral
cortex (intraparietal sulcus, /PS; superior
temporal sulcus, ST'S; and lunate sulcus
opened). The visuomotor stream for hand
action is indicated by arrows (adapted from
Sakata et al. 1997)

1.2 The FARS model of parietal-premotor
interactions in grasping

Studies of the anterior intraparietal sulcus (AIP; Fig. 1)
revealed cells that were activated by the sight of objects
for manipulation (Taira et al. 1990; Sakata et al. 1995).
In addition, this region has very significant recurrent
corticocortical projections with area F5 (Matelli et al.
1994; Sakata et al. 1997). In their computational model
for primate control of grasping (the FARS model),
Fagg and Arbib (1998) analyzed these findings of
Sakata and Rizzolatti to show how F5 and AIP may
act as part of a visuomotor transformation circuit,
which carries the brain from sight of an object to the
execution of a particular grasp. In developing the FARS
model, Fagg and Arbib (1998) interpreted the findings
of Sakata (on AIP) and Rizzolatti (on F5) as showing
that AIP represents the grasps afforded by the object
while F5 selects and drives the execution of the grasp.
The term affordance (adapted from Gibson 1966) refers
to parameters for motor interaction that are signaled
by sensory cues without invocation of high-level object
recognition processes. The model also suggests how F5
may use task information and other constraints
encoded in prefrontal cortex (PFC) to resolve the
action opportunities provided by multiple affordances.
Here we emphasize the essential components of the
model (Fig. 2) that will ground the version of the
MNSI model presented below. We focus on the linkage
between viewing an affordance of an object and the
generation of a single grasp:

1. The dorsal visual stream (parictal cortex) extracts
parametric information about the object being at-
tended. It does not “know’ what the object is; it can
only see the object as a set of possible affordances.
The ventral stream (from primary visual cortex to
inferotemporal cortex, IT), by contrast, recognize
what the object is and passes this information to PFC
which can then, on the basis of the current goals of
the organism and the recognition of the nature of the
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Fig. 2. The anterior intraparietal area, (4/P) extracts the affordances
and F5 selects the appropriate grasp from the AIP “menu.” Various
biases are sent to F5 by the prefrontal cortex (PFC) which relies on
the recognition of the object by the inferotemporal cortex (/7). The
dorsal stream through AIP to FS5 is replicated in the current version of
the mirror neuron system 1 (MNSI1) model; the influence of IT and
PFC on FS5 is not analyzed further in the present paper

object, bias F5 to choose the affordance appropriate
to the task at hand.

2. AIP is hypothesized as playing a dual role in the
seeing/reaching/grasping process, not only comput-
ing affordances exhibited by the object but also, as
one of these affordances is selected and execution of
the grasp begins, serving as an active memory of the
one selected affordance and updating this memory to
correspond to the grasp that is actually executed.

3. F5 is hypothesized as first being responsible for inte-
grating task constraints with the set of grasps that are
afforded by the attended object in order to select a
single grasp. After selection of a single grasp, F5
unfolds this represented grasp in time to govern the
role of primary motor cortex (F1) in its execution.

4. In addition, the FARS model represents the way in
which F5 may accept signals from areas F6 (pre-SMA
supplementary motor area), 46 (dorsolateral pre-
frontal cortex), and F2 (dorsal premotor cortex) to
respond to task constraints, working memory, and
instruction stimuli, respectively, and how these in
turn may be influenced by object recognition pro-
cesses in IT (see Fagg and Arbib 1988 for more de-
tails), but these aspects of the FARS model are not
involved in the current version of the MNSI1 model.

2 The hand-state hypothesis

The key notion of the MNSI1 model is that the brain
augments the mechanisms modeled by the FARS
model — for recognizing the grasping-affordances of an
object (AIP) and transforming these into a program of
action — by mechanisms that can recognize an action in
terms of the hand state which makes explicit the relation
between the unfolding trajectory of a hand and the
affordances of an object. Our radical departure from all
prior studies of the mirror system is to hypothesize that

this system evolved in the first place to provide feedback
for visually directed grasping, with the social role of the
mirror system being an exaptation as the hand-state
mechanisms become applied to the hands of others as
well as to the hand of the animal itself.

2.1 Virtual fingers

As background for the hand-state hypothesis, we first
present a conceptual analysis of grasping. Iberall and
Arbib (1990) introduced the theory of virtual fingers and
opposition space. The term virtual finger is used to
describe the physical entity (e.g., one or more fingers,
and the palm of the hand) that is used in applying force,
and thus includes specification of the region to be
brought in contact with the object (what we might call
the ““virtual fingertip”). Figure 3 shows three types of
opposition: those for the precision grip, power grasp,
and side opposition. Each of the grasp types is defined
by specifying two virtual fingers, VF1 and VF2, and the
regions on VF1 and VF2 which are to be brought into
contact with the object to grasp it. Note that the ‘““virtual
fingertip” for VF1 in palm opposition is the surface of
the palm, while that for VF2 in side opposition is the
side of the index finger. The grasp defines two “oppo-
sition axes’: the opposition axis in the hand joining the
virtual finger regions to be opposed to each other, and
the opposition axis in the object joining the regions where
the virtual fingers contact the object. Visual perception
provides affordances (different ways to grasp the object);
once an affordance is selected, an appropriate opposi-
tion axis in the object can be determined. The task of
motor control is to preshape the hand to form an
opposition axis appropriate to the chosen affordance,
and to move the arm so as to transport the hand to bring
the hand and object axes into alignment. During the last
stage of transport, the virtual fingers move down the
opposition axis (the “enclose’ phase) to grasp the object
just as the hand reaches the appropriate position.

2.2 The hand-state hypothesis

We assert as a general principle of motor control that if
a motor plant is used for a task, then a feedback system
will evolve to better control its performance in the face
of perturbations. We thus ask, as a sequel to the work of
Iberall and Arbib (1990), what information would be
needed by a feedback controller to control grasping in
the manner described in Sect. 2.1. Modeling of this
feedback control is beyond the scope of this paper.
Rather, our aim is to show how the availability of such
feedback signals in the primate cortex for self-action for
manual grasping can provide the action recognition
capabilities which characterize the mirror system. Spe-
cifically, we offer the following hypothesis.

The hand-state hypothesis. The basic functionality of the
F5 mirror system is to elaborate the appropriate
feedback — what we call the hand state — for opposition-
space-based control of manual grasping of an object.
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Fig. 3a—c. Each of the three grasp types here is defined by specifying
two “virtual fingers”, VFI and VF2, which are groups of fingers or a
part of the hand such as the palm which are brought to bear on either
side of an object to grasp it: a pad oppostion; b palm opposition; ¢ side
opposition. The specification of the virtual fingers includes specifica-
tion of the region on each virtual finger to be brought in contact with

Given this functionality, the social role of the F5 mirror
system in understanding the actions of others may be
seen as an exaptation gained by generalizing from one’s
own hand to another’s hand.

The key to the MNS1 model, then, is the notion of
hand state as encompassing data required to determine
whether the motion and preshape of a moving hand may
be extrapolated to culminate in a grasp appropriate to
one of the affordances of the observed object. Basically a
mirror neuron must fire if the preshaping of the hand
conforms to the grasp type with which the neuron is
associated; and the extrapolation of hand state yields a
time at which the hand is grasping the object along an
axis for which that affordance is appropriate.

Our current representation of hand state defines a
seven-dimensional trajectory

F(t) = [d(t)a U(t)v a(t)v 01 (1)7 02(t)7 03 (t)’ 04(1‘)}

with the following components (see Fig. 4): three
components are hand configuration parameters—a(z),
index finger-tip and thumb-tip aperture; 03(f), 04(¢), the
two angles defining how close the thumb is to the hand
as measured relative to the side of the hand and to the
inner surface of the palm—and the remaining four
parameters relate the hand to the object. o; and o,
components represent the orientation of different com-
ponents of the hand relative to the opposition axis for
the chosen affordance in the object, whereas d and v
represents the kinematics properties of the hand with
reference to the target location—o,(t), the cosine of the
angle between the object axis and the (index finger tip—
thumb tip) vector; 0,(1), the cosine of the angle between
the object axis and the (index finger knuckle—thumb tip)
vector; d(t), distance to target at time ¢; v(), tangential
velocity of the wrist.

In considering the last four variables, note that only
one or two of them will be relevant in generating a

the object. A successful grasp involves the alignment of two
“opposition axes’: the opposition axis in the hand joining the virtual
finger regions to be opposed to each other, and the opposition axis in
the object joining the regions where the virtual fingers contact the
object (Iberall and Arbib 1990)

specific type of grasp, but they all must be available to
monitor a wide range of possible grasps. We have chosen
a set of variables of clear utility in monitoring the suc-
cessful progress of grasping an object, but do not claim
that these and only these variables are represented in the
brain. Indeed, the brain’s actual representation will be a
distributed neural code, which we predict will correlate
with such variables, but will not be decomposable into a
coordinate-by-coordinate encoding. However, we be-
lieve that the explicit definition of hand state offered here
will provide a firm foundation for the design of new
experiments in kinesiology and neurophysiology.

The crucial point is that the availability of the hand
state to provide feedback for visually directed grasping
makes action recognition possible. Notice that we have
carefully defined the hand state in terms of relationships
between hand and object (though the form of the defi-
nition must be subject to future research). This has the
benefit that it will work just as well for measuring how
the monkey’s own hand is moving to grasp an object as
for observing how well another monkey’s hand is mov-
ing to grasp the object. This, we claim, is what allows
self-observation by the monkey to train a system that
can be used for observing the actions of others and
recognizing just what those actions are.

3 The MNS1 model

We now present a high-level view of the MNS1 model in
terms of the set of interacting schemas (functional units:
Arbib 1981; Arbib et al. 1998, Chap. 3) shown in Fig. 5,
which define the MNSI model of area F5 and related
brain regions. As we now demonstrate, the connectivity
shown in Fig. 5 is constrained by the existing neuro-
physiology and neuroanatomy of the monkey brain. We
have already introduced areas AIP and area F5, dividing
the F5 grasp-related neurons into (i) F5 mirror neurons
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Fig. 5. The MNSI1 model. Top diagonal: a portion of the FARS
model. Object features are processed by the caudal intraparietal
sulcus, (cIPS) and AIP to extract grasp affordances, and these are sent
on to the canonical neurons of F5 that choose a particular grasp.
Bottom right: recognizing the location of the object provides
parameters to the motor programming area F4 which computes the
reach. The information about the reach and the grasp is taken by the
motor cortex M1 to control the hand and the arm. New elements of
the MNSI1 model: hottom left are two schemas, one to recognize the
shape of the hand, and the other to recognize how that hand is
moving. Just to the right of these is the schema for hand—object spatial
relation analysis. It takes information about object features, the

which are, when fully developed, active during certain
self-movements of grasping by the monkey and during
the observation of a similar grasp executed by others,

motion of the hand and the location of the object to infer the relation
between hand and object. The center two regions marked by the gray
rectangle form the core mirror circuit. This complex associates the
visually derived input (hand state) with the motor program input from
F5 canonical neurons during the learning process for the mirror
neurons. The grand schemas introduced in section 3.2 are illustrated
as the following. The “core mirror circuit” schema is marked by the
center grey box; the “visual analysis of hand state” schema is outlined
by solid lines just below it, and the “reach and grasp” schema is
outlined by dashed lines (Solid arrows: established connections; Dashed
arrows: postulated connections. Details of the ascription of specific
schemas to specific brain regions were deferred to a later paper.)

and (i1) F5 canonical neurons, namely those active during
self-movement and object vision but not for recognition
of the action of others. Other brain regions also play an



important role in mirror-neuron-system functioning in
the macaque’s brain. Posterior parietal cortex and the
cortex of caudal superior temporal sulcus (STS) have
been subdivided into numerous areas mainly involved in
spatial analysis of the visual environment and in the
control of spatially oriented behaviour (Maioli et al.
1998).

Based on cytoarchitectonic and connectional criteria
Brodmann’s area 7 (inferior parietal lobule) has been
found to contain distinct regions including areas 7a and
7b and area 7ip. Area 7 reaches its highest development
in primates (Cavada and Goldman-Rakic 1989). Dam-
age to this area can cause impairments in visually guided
reaching in addition to other spatial perceptual and
motor deficits (Ratcliff 1991; Stein 1991). The posterior
half of 7ip corresponds to the ventral intraparietal area
(Maunsell and Van Essen 1983) and the lateral intra-
parietal area (Andersen et al. 1985), and contains area
AIP. Areas 7a, 7ip, and 7b (to a lesser extent) are
reciprocally connected with the cortex of the STS.
Although the density of 7b connections with the visual
motion cortex of STS is weak compared the extensive
connections of 7b with somatosensory areas, the inter-
connections of 7b with the visual regions are established
through anterior 7ip and the transitional cortex 7ab
between 7a and 7b (Cavada and Goldman-Rakic 1989).
Findings from the same study also confirm that AIP is
connected with area 7b.

Area F5 has no direct input from visual occipital
areas. Its main cortical input comes from inferior pari-
etal lobe, and in particular area AIP and area 7b (Ma-
telli et al. 1985; Gallese et al. 1996). The detailed
connections and organization of areas F4 and FS5 are
reviewed by Rizzolatti et al. (1998) and Geyer et al.
(2000). The caudal intraparietal sulcus, with projections
to AIP (Sakata et al. 1997) and area 7a (Cavada and
Goldman-Rakic 1989, Fig. 7), has been shown to encode
object properties such as the orientation of object sur-
faces and object axes (Sakata et al. 1997).

We conclude our brief discussion of anatomical
connections by turning back to area 7ip. Area 7a re-
ceives input from the lateral intrparietal area (Andersen
et al. 1990; Lewis and Van Essen 2000), the medial int-
raparietal area (Boussaoud et al. 1990; Lewis and Van
Essen 2000; Bota 2001), and the ventral intraparietal
area (Lewis and Van Essen 2000; reviewed in Maunsell
1995). Interested readers can find more details about
these connections at the NeuroHomology Database
Website (http://brancusi.usc.edu/scripts/webmerger.exe?
/database/homologies-main.html; Bota 2001). The pre-
motor projections of these areas include the regions F2
(not shown) and F4 (Luppino et al. 1999), as reviewed in
Geyer et al. (2000).

The subsystem of the MNSI1 model responsible for
the visuomotor transformation of objects into affor-
dances and grasp configurations, linking AIP and F35
canonical neurons, corresponds to a key subsystem of
the FARS model reviewed above. Our task is to com-
plement the visual pathway via AIP by pathways di-
rected toward F5 mirror neurons which allow the
monkey to observe arm—hand trajectories and match
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them to the affordances and location of a potential
target object. We will then show how the mirror system
may learn to recognize actions already in the repertoire
of the F5 canonical neurons. In short, we will provide a
mechanism whereby the actions of others are “‘recog-
nized”” based on the circuitry involved in performing
such actions. (A topic of future research is to delineate
the circuitry — more apparent in chimpanzee than
monkey but still rudimentary compared to human — for
the reverse process of imitation, going from the recog-
nition of a novel action performed by others to the ad-
dition of that action to one’s own repertoire.) Sect. 4
provides the details of the implemented schemas, and
Sect. 5 confronts the overall model with virtual experi-
ments and produces testable predictions.

3.1 Overall function

In general, the visual input to the monkey represents a
complex scene. However, we here sidestep much of this
complexity (including attentional mechanisms) by as-
suming that the brain extracts two salient subscenes; a
stationary object and in some cases a (possibly) moving
hand. The overall system operates in two modes:

1. Prehension. In this mode, the view of the stationary
object is analyzed to extract affordances; then under
prefrontal influence F5 may choose one of these to act
upon, commanding the motor apparatus to perform
the appropriate reach and grasp based on parameters
supplied by the parietal cortex. The FARS model
captures the linkage of F5 and AIP with PFC (Fig. 2).
In the MNS1 model, we incorporate the F5 and AIP
components from FARS (top diagonal of schemas in
Fig. 5), but omit IT and PFC from the present
analysis.

2. Action recognition. In this mode, the view of the sta-
tionary object is again analyzed to extract affor-
dances, but now the initial trajectory and preshape of
an observed moving hand must be extrapolated to
determine whether the current motion of the hand can
be expected to culminate in a grasp of the object
appropriate to one of its affordances.

We do not prespecify all the details of the MNSI
schemas. Instead, we offer a learning model which, given
a grasp that is already in the motor repertoire of the F5
canonical neurons, can yield a set of F5 mirror neurons
trained to be active during such grasps as a result of self-
observation of the monkey’s own hand grasping the
target object. (How such grasps may be acquired in the
first place is a topic of current research.) Consistent with
the hand-state hypothesis, the result will be a system
whose mirror neurons can respond to similar actions
observed being performed by others. The current imple-
mentation of the MNSI1 model exploits learning in
artificial neural nets.

The heart of the learning model is provided by the
object affordance—hand state association schema and the
action recognition (mirror neurons) schema. These form
the core mirror (learning) circuit, marked by the gray
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slanted rectangle in Fig. 5, which mediates the devel-
opment of mirror neurons via learning. The simulation
results of this article will focus on this part of the model.
Section 4 presents in detail the neural network structure
of the core circuit. As we note further in Sect. 5, this
leaves open many problems for further research, in-
cluding the development of a basic action repertoire by
F5 canonical neurons through trial and error in infancy,
and the expansion and refinement of this repertoire
throughout life.

3.2 Schemas explained

As shown in the caption of Fig. 5, we encapsulate the
schemas shown there into the three “grand schemas’ of
Fig. 6a. These guide our implementation of MNSI.
Nonetheless, it seems worth providing specifications of
the more detailed schemas both to ground the definition
of the grand schemas and to set the stage for more
detailed neurobiological modeling in later papers. Our
earlier review of the neuroscience literature justifies our
initial hypotheses, made explicit in Fig. 5, as to where
these finer-grain schemas are realized in the monkey
brain. However, after we explain these finer-grain
schemas, we will then turn to our present simulation
of the three grand schemas which is based on overall
functionality rather than neural regionalization, yet
nonetheless yields interesting predictions for further
neurophysiological experimentation.

3.2.1 Grand schema 1: reach and grasp

Object features schema. The output of this schema
provides a coarse coding of geometrical features of the
observed object. It thus provides suitable input to AIP
and other regions/schemas.

Object affordance extraction schema. This schema trans-
forms its input, the coarse coding of geometrical features
of the observed object provided by the object features
schema, into a coarse coding for each affordance of the
observed object.

Grasp Command a
= Reach and Grasp Schema
a4
=]
: Object Affordance
s v > Core
|| Visual Analysis M”“’_l Action Code
of Hand State Hand State Circuit

Object Affordance

Hand State |

Fig. 6a,b. a For purposes of simulation, we aggregate the schemas of
the MNSI model of Fig. 5 into three “grand schemas” for visual
analysis of hand state, reach and grasp, and core mirror circuit. b For
detailed analysis of the core mirror circuit, we dispense with
simulation of the other two grand schemas and use other computa-
tional means to provide the three key inputs to this grand schema

J Grasp Command
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Action Code

Motor program (grasp) schema. We identify this schema
with the canonical F5 neurons, as in the FARS model.
Input is provided by AIP’s coarse coding of affordances
for the observed object. We assume that the output of
the schema encodes a generic motor program for the
AIP-coded affordances. This output serves as the
learning signal to the action recognition (Mirror neurons)
schema and drives the hand control functions of the
motor execution schema.

Object location schema. The output of this schema
provides, in some body-centered coordinate frame,
the location of the center of the opposition axis for the
chosen affordance of the observed object.

Motor program (reach) schema. The input is the
position coded by the object location schema, while
the output is the motor command required to transport
the arm to bring the hand to the indicated location. This
drives the arm control functions of the motor execution
schema.

The motor execution schema determines the course of
movements via activity in primary motor cortex M1 and
“lower” regions.

We next review the schemas which (in addition to the
previously presented object features and object affor-
dance extraction schemas) implement the visual system
of the model.

3.2.2 Grand schema 2: visual analysis of hand state. The
hand-shape recognition schema takes as input a view of a
hand, and its output is a specification of the hand shape,
which thus forms some of the components of the hand
state. In the current implementation these are a(), o5(7),
and o4(f). Note also that we implicitly assume that the
schema includes a validity check to verify that the scene
does contain a hand.

The Hand-motion detection schema takes as input a
sequence of views of a hand and returns as output the
wrist velocity, supplying the v(¢) component of the hand
state.

The Hand-object spatial relation analysis schema
receives object-related signals from the object features
schema, as well as input from the object location, hand-
shape recognition, and Hand-motion detection schemas.
Its output is a set of vectors relating the current hand
preshape to a selected affordance of the object. The
schema computes such parameters as the distance of the
object to the hand, and the disparity between the op-
position axes of the object and the hand. Thus the hand-
state components 01(f), 0,(f), and d(¢) are supplied by
this schema. The hand-object spatial relation analysis
schema is needed because, for almost all mirror neurons
in the monkey, a hand mimicking a matching grasp
would fail to elicit the mirror neuron’s activity unless the
hand’s trajectory were taking it toward an object with a
grasp that matches one of the affordances of the object.
The output of this visual analysis is relayed to the object
affordance—hand state association schema which drives
the F5 mirror neurons whose output is a signal
expressing confidence that the observed trajectory will
extrapolate to match the observed target object using the
grasp encoded by that mirror neuron.



3.2.3 Grand schema 3: core mirror circuit. The action
recognition schema — which is meant to correspond to the
mirror neurons of area F5 — receives two inputs in our
model. One is the motor program selected by the motor
program schema; the other comes from the object
affordance—hand state association schema. This schema
works in two modes: learning and recognition. When a
self-executed grasp is taking place the schema is in
learning mode and the association between the observed
hand state (object affordance—hand state association
schema) and the motor program (motor program
schema) is learned. While in recognition mode, the
motor program input is not active and the schema acts
as a recognition circuit. If satisfactory learning (in terms
of generalization and the range of actions learned) has
taken place via self-observation, then the schema will
respond correctly while observing another’s grasp ac-
tions.

The object affordance—hand state association schema
combines all the hand-related information as well as the
object information available. Thus the inputs to the
schema are from hand-shape recognition [components
a(t), 03(1), 04(t)], hand motion detection [component v(¢)],
hand—object spatial relation analysis [01(1), 0,(1), d()] and
from object affordance extraction schemas. As will be
explained below, the schema needs a learning signal
(mirror feedback). This signal is relayed by the action
recognition schema, and is basically a copy of the motor
program passed to the action recognition schema itself.
The output of this schema is a distributed representation
of the object and hand-state match (in our implemen-
tation the representation is not prespecified but shaped
by the learning process). The idea is to match the object
and the hand state as the action progresses during a
specific observed reach and grasp. In the current im-
plementation, time is unfolded into a spatial represen-
tation of “‘the trajectory until now’ at the input of the
object affordance—hand state association schema, and the
action recognition schema decodes the distributed rep-
resentation to form the mirror response (again, the de-
coding is not prespecified but is the result of the
backpropagation learning). In any case, the schema has
two operating modes. The first is the learning mode
where the schema tries to adjust its efferent and afferent
weights to ensure the right activity in the action recog-
nition schema. The second mode is the forward mode
where it maps the hand state and the object affordance
into a distributed representation to be used by the action
recognition schema.

The key question for our present modeling will be to
account for how learning mechanisms may shape the
connections to mirror neurons in such a way that an
action in the motor program repertoire of the F5 ca-
nonical neurons may become recognized by the mirror
neurons when performed by others.

To conclude this section, we note that our modeling is
subject to two quite different tests: (i) its overall efficacy
in explaining behavior and its development, which can
be tested at the level of the schemas (functional units)
presented in this article; and (ii) its further efficacy in
explaining and predicting neurophysiological data. As
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we shall see below, certain neurophysiological predic-
tions are possible given the current work, even though
the present implementation relies on relatively abstract
artificial neural networks.

4 Methods
4.1 Schema implementation

Having indicated the functionality and possible neural
basis for each of the schemas that will make up each
grand schema, we now turn to the implementation of
these three grand schemas. As noted earlier, the detailed
neurobiological modeling of the finer-grain schemas is a
topic for further research. Here we implement the three
grand schemas so that each functions correctly in terms
of its input—output relations, and so that the core mirror
circuit contains model neurons whose behavior can be
tested against neurophysiological data and yield predic-
tions for novel neurophysiological experiments. The core
mirror circuit is thus the principal object of study
(Fig. 6b), but in order to study it there must be an
appropriate context, necessitating the construction of
the kinematically realistic reach and grasp simulator and
the visual analyzer for hand state. The latter will first be
implemented as an analyzer of views of human hands,
and then will have its output replaced by simulated
hand-state trajectories to reduce computational expense
in our detailed analysis of the core mirror circuit.

4.2 Grand schema 1: reach and grasp

We first discuss the reach and grasp simulator that
corresponds to the whole reach and grasp command
system shown at the right of the MNSI diagram (Fig. 5).
The simulator lets us move from the representation of
the shape and position of a (virtual) 3-D object and the
initial position of the (virtual) arm and hand to a
trajectory that successfully results in simulated grasping
of the object. In other words the simulator plans a grasp
and reach trajectory and executes it in a simulated 3-D
world. Trajectory planning (e.g., Kawato et al. 1987;
Jordan and Rumelhart 1992; Kawato and Gomi 1992;
Karniel and Inbar 1997; Breteler et al. 2001) and control
of prehension (Hoff and Arbib 1993; Wolpert and
Ghahramani 2000, for a review), and their adaptation,
have been widely studied. However, our simulator is not
adaptive — its sole purpose is to create kinematically
realistic actions. A similar reach and grasp system was
proposed (Rosenbaum et al. 1999) where a movement is
planned based on the constraint hierarchy, relying on
obstacle avoidance and candidate posture evaluation
processes (Meulenbroek et al. 2001). However, the arm
and hand model was much simpler than ours as the arm
was modeled as a 2-D kinematics chain. Our reach/grasp
simulator is a nonneural extension of FARS model
functionality to include the reach component. It controls
a virtual arm/hand with 19 degrees of freedom (DOFs)
(three at the shoulder, one for elbow flexion/extension,
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three for wrist rotation, two for each finger joints with
additional two DOFs for thumb one to allow the thumb
to move sideways, and the other for the last joint in the
thumb) and provides routines to perform realistic
grasps. This kinematic realism is based on the literature
of primate reach and grasp experiments [for human see
Jeannerod et al. (1995), Hoff and Arbib (1993) and
citations therein; for monkey see Roy et al. (2000)].
During a typical reach to grasp movement, the hand will
follow a bell-shaped velocity profile (a single peaked
velocity curve). The kinematics of the aperture between
fingers used for grasping also exhibits typical character-
istics. The aperture will first reach a maximum value that
is larger than the aperture required for grasping the
object, and then as the hand approaches to the target the
hand encloses to match the actual required aperture for
the object. It is also important to note that in grasping
tasks the temporal pattern of reaching and grasping is
similar in monkey and human (Roy et al. 2000). Of
course, there are intersubject and intertrial variability in
both velocity and aperture profiles (Marteniuk and
MacKenzie 1990). Therefore in our simulator we
captured the qualitative aspects of the typical reach
and grasp actions, namely that the velocity profiles have
single peaks and that the hand aperture has a maximum
value which is larger than the object size (see Fig. 7,
curves a(f) and v(¢), for sample aperture and velocity
profiles generated by our simulator) . A grasp is planned
by first setting the operational space constraints (e.g.,
points of contact of fingers on the object) and then
finding the arm—hand configuration to fulfill the con-
straints. The latter is the inverse kinematics problem.
The simulator solves the inverse kinematics problem by
simulated gradient descent with noise added to the
gradient (see Appendix A.2 for a grasp-planning exam-
ple). Once the hand—arm configuration is determined for
a grasp action, then the trajectory is generated by
warping time using a cubic spline. The parameters of the
spline are fixed and determined empirically to satisfy

Hand state values

(normalized to 0.0 — 1.0 range)

aperture and velocity profile requirements. Within the
simulator, it is possible to adjust the target identity,
position and size manually using a graphical user
interface or automatically by the simulator as, for
example, in training set generation.

Figure 7 (left) shows the end state of a power grasp,
while Fig. 7 (right) shows the time series for the hand
state associated with this simulated power grasp trajec-
tory. For example, the curve labeled d(¢) shows the
distance from the hand to the object decreasing until the
grasp is completed, while the curve labeled a(7) shows
how the aperture of the hand first increases to yield a
safety margin larger than the size of the object and then
decreases until the hand contacts the object.

Figure 8a shows the virtual hand/arm holding a small
cube in a precision grip in which the index finger (or a
larger ““virtual finger”) opposes the thumb. The power
grasp (Fig. 8b) is usually applied to big objects and is
characterized by the hands covering the object, with the
fingers as one virtual finger opposing the palm as
the other. In a side grasp (Fig. 8c), the thumb opposes
the side of another finger. To clarify the type of heu-
ristics we use to generate the grasp, Appendix A.2 out-
lines the grasp planning and execution for a precision
pinch.

4.3 Grand schema 2: visual analysis of hand state

The visual analysis of hand state schema is a nonneu-
rophysiological implementation of a visual analysis
system to validate the extraction of hand parameters
from a view of a hand, by recovering the configuration
of a model of the hand being seen. The hand model is a
3-D 14 DOF kinematic model, with a 3-DOF joint for
the wrist, two 1-DOF joints (metacarpophalangeal and
distalinterphalangeal) for each of the four fingers, and
finally a 1-DOF joint for the metacarpophalangeal joint
and a 2-DOF joint for the carpometacarpal joint of the

Fig. 7. Left: The final state of
arm and hand achieved by the
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reach/grasp simulator in execut-
ing a power grasp on the object
shown. Right: The hand-state
trajectory read off from the
simulated arm and hand during
the movement whose end state is
shown at left. The hand state
components are: d(t), distance to
target at time ¢; v(¢), tangential
velocity of the wrist; «a(z), index
and thumb finger tip aperture;
01(1), cosine of the angle between
the object axis and the (index
finger tip—thumb tip) vector;
05(1), cosine of the angle between
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the object axis and the (index
finger knuckle—thumb tip) vec-
tor; 03(¢), angle between the
thumb and the palm plane; 04(7),

0.0

Normalized time

Tn  angle between the thumb and the
index finger



thumb. Note the distinction between “hand configura-
tion,” which gives the joint angles of the hand consid-
ered in isolation, and the “hand state” which comprises
seven parameters relevant to assessing the motion and
preshaping of the hand relative to an object. Thus the
hand configuration provides some-but not all-of the
data needed to compute the hand state.

To lighten the load of building a visual system to
recognize hand features, we mark the wrist and the ar-
ticulation points of the hand with distinctive colors. We
then use this color coding to help recognize key portions
of the hand and use this result to initiate a process of
model matching. Thus the first step of the vision prob-
lem is color segmentation, after which the 3-D hand
shape is recovered.

4.3.1 Color segmentation and feature extraction. One
needs color segmentation to locate the colored regions on
the image. Gray-level segmentation techniques cannot
be used in a straightforward way because of the vectorial
nature of color images (Lambert and Carron 1999).
Split-and-merge is a well-known image segmentation
technique in image processing (Sonka et al. 1993), which
involves recursively splitting the image into smaller
pieces until some homogeneity criterion is satisfied as a
basis for reaggregation into regions. In our case, the
criterion is having similar color throughout a region.
However, RGB (red—green—blue) space is not well suited
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for this purpose; HSV (hue-saturation—value) space is
better suited since in the segmentation processes hue
usually corresponds to human perception and it ignores
shading effects (Russ 1998, Chaps. 1, 6). However, the
segmentation system we implemented with HSV space,
although better than the RGB version, was not satis-
factory for our purposes. Therefore, we designed a
system that can learn the best color space.

Figure 9a shows the training phase of the color expert
system, which is a (one-hidden-layer) feed-forward net-
work with a sigmoidal activation function. The learning
algorithm is backpropagation with momentum and an
adaptive learning rate. The given image is put through a
smoothing filter to reduce noise in the image before
training. Then the network is given around 100 training
samples each of which is a vector of [(R, G, B), perceived
color code] values. The output color code is a vector
consisting of all zeros except for one component corre-
sponding to the perceived color of the patch. Basically,
the training builds an internal nonlinear color space from
which it can unambiguously tell the perceived color. This
training is done only at the beginning of a session to learn
the colors used on the particular hand. Then the network
is fixed as the hand is viewed in a variety of poses.

Figure 9b illustrates the actual segmentation process
using the color expert to find each region of a single
(perceived) color (see Appendix A.l1 for details). The
output of the algorithm is then converted into a feature

Cc

Fig. 8a—c. Grasps generated by the simulator: a a precision grasp; b a power grasp; ¢ a side grasp
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vector with a corresponding confidence vector giving a
confidence level for each component in the feature vec-
tor. Each finger is marked with two patches of the same
color. Sometimes it may not be possible to determine
which patch corresponds to the fingertip and which to
the knuckle. In those cases the confidence value is set to
0.5. If a color is not found (e.g., the patch may be ob-
scured), a zero value is given for the confidence. If a
unique color is found without any ambiguity then the
confidence value is set to 1. The segmented centers of
regions (color markers) are taken as the approximate
articulation point positions. To convert the absolute
color centers into a feature vector we simply subtract the
wrist position from all the centers found and put the
resulting relative (x,y) coordinate into the feature vector
(but the wrist is excluded from the feature vector as the
positions are specified with respect to the wrist position).

4.3.2 3-D hand model matching. Our model-matching
algorithm uses the feature vector generated by the
segmentation system to attain a hand configuration and
pose that would result in a feature vector as close as
possible to the input feature vector (Fig. 10). The
scheme we use is a simplified version of Lowe’s (1991);
see Holden (1997) for a review of other hand recognition
studies.

The matching algorithm is based on minimization of
the distance between the input feature and model feature
vector, where the distance is a function of the two vec-
tors and the confidence vector generated by segmenta-
tion system. Distance minimization is realized by hill
climbing in feature space. The method can handle oc-
clusions by starting with “don’t cares” for any joints
whose markers cannot be clearly distinguished in the
current view of the hand.

The distance between two feature vectors F and G is
computed as follows:

D(F,G) =/ (F; - G)*C[c!

where subscripting denotes components, and ¢, and C*
denote the confidence vectors associated with F and G.
Given this result of the visual processing — our hand-
shape recognition schema — we can clearly read off the
following components of the hand state: a(r); aperture of
the virtual fingers involved in grasping; and 03(1), 04(1),
the two angles defining how close the thumb is to the
hand as measured relative to the side of the hand and to
the inner surface of the palm (see Fig. 4).

- et

it — Initial Configuration

Result of feature extraction of Hand Model

The remaining components can easily be computed
once the object affordance and location is known. The
computation of the components d(z), v(f), o;(t), and
0,(1), defined in Sect. 2.2, constitute the tasks of the
hand—-object spatial relation analysis schema and the
hand-motion detection schema. These require visual in-
spection of the relation between hand and target, and
visual detection of wrist motion, respectively. It is clear
that they pose only minor challenges for visual pro-
cessing compared with those we have solved in extract-
ing the hand configuration. We thus have completed our
exposition of the (nonbiological) implementation of
visual analysis of hand state. Section 5.3 presents a
justification of the visual analysis of hand state schema
by showing MNSI1 performance when the hand state
was extracted by the described visual recognition system
based on a real video sequence. However, when we turn
to modeling the core mirror circuit (grand schema 3) in
Sect. 4.4 we will not use this implementation of visual
analysis of hand state but instead, to simplify compu-
tation, we will use synthetic output generated by the
reach/grasp simulator to emulate the values that could
be extracted with this visual system. Specifically, we use
the hand/grasp simulator to produce both (i) the visual
appearance of such a movement for our inspection
(Fig. 7 left), and (i) the hand-state trajectory associated
with the movement (Fig. 7, right). Especially for training
we need to generate and process too many grasp actions,
which makes it impractical to use the visual processing
system without special hardware as the computational
time requirement is too high. Nevertheless, we need to
show the similarity of the data from the visual system
and the simulator: we have already shown that the grasp
simulator generates aperture and velocity profiles that
are similar to those in real grasps. Of course, there is still
the question of how well the our visual system can ex-
tract these features and, more importantly, how similar
are the other components of the hand state that we did
not specifically craft to match the real data. Preliminary
positive evidence will be presented in Sect. 5.3.

4.4 Grand schema 3: core mirror circuit

As illustrated in Fig. 6b, our detailed analysis of the core
mirror circuit does not require simulation of visual
analysis of hand state and of reach and grasp so long as
we ensure that it receives the appropriate inputs. Thus,
we supply the object affordance and grasp command

Fig. 10. Illustration of the mod-
el-matching system. Left: mark-
ers located by feature extraction
schema. Middle and right: initial
and final stages of model
matching. After matching is
performed a number of param-
eters for the hand configuration
are extracted from the matched
3-D model

Final Configuration
of Hand Model



directly to the network at each trial. (Actually, we
conduct experiments to compare performance with and
without an explicit input which codes object affordance.)
The hand-state input is more interesting. Rather than
provide visual input to the visual analysis of hand state
schema and have it compute the hand-state input to the
core mirror circuit, we use our reach and grasp simulator
to simulate the performance of the observed primate —
and from this simulation we extract (as in Fig. 7) both a
graphical display of the arm and hand movement that
would be seen by the observing monkey, as well as the
hand-state trajectory that would be generated in his
brain. We thus use the time-varying hand-state trajec-
tory generated in this way to provide the input to the
model of the core mirror circuit of the observing monkey
without having to simultaneously model his visual
analysis of hand state. Thus, we have implemented the
core mirror circuit in terms of neural networks using as
input the synthetic data on hand state that we gather
from our reach and grasp simulator (however, see Sect.
5.3 for a simulation with real data extracted by our
visual system). (Figure 13 shows an example of the
recognition process together with the type of informa-
tion supplied by the simulator.)

4.4.1 Neural network details. In our implementation, we
used a feedforward neural network with one hidden layer.
In contrast to the previous sections, we can here identify
the parts of the neural network as Fig. 5 schemas in a
one-to-one fashion. The hidden layer of the model neural
network corresponds to the object affordance—hand state
association schema, while the output layer of the network
corresponds to the action recognition schema (i.e., we
identify the output neurons with the F5 mirror neurons).
In the following formulation MR (mirror response)
represents the output of the action recognition schema
and MP (motor program) denotes the target of the
network [copy of the output of motor program (grasp)
schema). X denotes the input vector applied to the
network, which is the transformed hand state (and the
object affordance). The transformation applied is de-
scribed in Sect. 4.4.2. The learning algorithm used is back
propagation (Rumelhart et al. 1986) with a momentum
term. The formulation is adapted from Hertz et al. (1991).
Activity propagation (the forward pass) is given by

MR; = g(Z Wijg (Z wjkxk>>
J k
Learning weights from the input layer to the hidden

layer are given by

W,’j = W,‘j + n(t)éW,»j + HW;}ld7

where

oW, =4 <Z Wiig (Z ijXk>> (MP; — MR;)
7 %

Woa =W
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Learning weights from the hidden layer to the output
layer are given by

Wik = Wi +1(t)dwj + H“’_j‘)lld
where
5ij = g/ (Z ijXk> Xk
k
Wil = Wi

The  squashing function ¢ we used was
g(x) =1/(1 + e )y and p are the learning rate and the
momentum coefficient, respectively. In our simulations,
we adapted n during training such that if the output
error was consistently decreasing then we increased #;
otherwise we decreased 1. We kept u as a constant set to
0.9. W is the 3x (6+1) matrix of real numbers
representing the hidden-to-output weights. w is the
6 x (210 +1) [6 x (2204 1) in the explicit affordance
coding case] matrix of real numbers representing the
input to hidden weights, and X is the 210+ 1 (220+1 in
the explicit affordance coding case)- component input
vector representing the hand state (trajectory) informa-
tion. (The extra “1” comes from the fact that the
formulation we used hides the bias term required for
computing the output of a unit in the incoming signals
as a fixed input clamped to 1.)

4.4.2 Temporal-to-spatial transformation. The input to
the network was formed in a way to allow encoding of
temporal information without the use of a dynamic
neural network, and solved the scaling problem. The
input at any time represented the entire input from the
start of the action until the present time 7. To form the
input vector, each of the seven components of the hand-
state trajectory to time 7 is fitted by a cubic spline (see
Kincaid and Cheney 1991 for a formulation), and the
splines are then sampled at 30 uniformly spaced
intervals. The hand-state input is then a vector with
210 components: 30 samples from the time-scaled spline
fitted to the seven components of the hand-state time
series. Note then that no matter what fraction ¢ is of the
total time T of the entire trajectory, the input to the
network at time ¢ comprises 30 samples of the hand state
uniformly distributed over the interval [0, 7]. Thus the
sampling is less densely distributed across the trajectory
to date as ¢ increases from 0 to 7.

An alternative approach would be to use a simple-
recurrent-neural-network style architecture to recognize
hand-state trajectories. However, this raises an extra
quantization or segmentation step to convert the con-
tinuous hand-state trajectories to discrete states. With
our approach, we avoid this extra step because the
quantization is implicitly handled by the learning
process.

For MNSI, we chose to use the spline-based time-to-
space transformation, deferring the investigation of
models based on recurrent networks (but not necessarily
simple recurrent networks) to our later development of
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neurally realistic models of the finer-grain schemas of
Fig. 5.

Figure 11 demonstrates the preprocessing we use to
transform time varying hand-state components into
spatial code. In the figure only a single component (the
aperture) is shown as an example. The solid curve
indicates the available information when the 66% of the
grasp action is completed. In reality a digital computer
(and thus the simulator) runs in discrete time steps, so
we construct the continuous curve by fitting a cubic
spline to the collected samples for the value represented
(the aperture value in this case). Then we resample 30
points from the (solid) curve to form a vector of size 30.
In effect, this presents the network with the stretched
spline shown by the dotted curve in Fig. 11. This
method has the desirable property of avoiding the time
scaling problem to establish the equivalence of actions
that last longer than shorter ones, as it is the case for a
grasp for an object far from to the hand compared to a
grasp to a closer object. By comparing the dotted curve
(what the network sees at 1 = 0.66) with the “solid plus
dashed” curve (the overall trajectory of the aperture), we
can see how much the network’s input is distorted. As
the action gets closer to its end the discrepancy between
the curves tends to zero. Thus, our preprocessing gives
rise to an approximation to the final representation
when a certain portion or more of the input is seen.
Figure 12 samples the temporal evolution of the spatial
input the network receives.

4.4.3 Neural network training. The training set was
constructed by making the simulator perform various
grasps in the following way.

1. The objects used were a cube of changing size (a
generic size cube scaled by a random scale factor
between 0.5 and 1.5), a disk (approximated as a thin

1.0

Normalized aperture

Action seen so far

0.0

0.0 0.6 1.
Normalized time

Fig. 11. The scaling of an incomplete input to form the full spatial
representation of the hand state As an example, only one component
of the hand state—the aperture—is shown. When the 66% of the
action is completed, the preprocessing we apply effectively causes the
network to receive the stretched hand state (the dotted curve) as input
as a rerepresentation of the hand state information accessible to that
time (represented by the solid curve; the dashed curve shows the
remaining, unobserved part of the hand state)

prism), and a ball (approximated as a dodecahedron),
again scaled randomly by a number between 0.75 and
1.5. In this particular trial, we did not change the disk
size. In the training set formation, a certain object
always received a certain grasp (unlike the testing
case).

2. The target locations were chosen from the surface
patches of a sphere centered on the shoulder joint.
The patch is defined by bounding meridian (longi-
tude) and parallel (latitude) lines. The extent of the
meridian and parallel lines was from —45° to 45°. The
step chosen was 15°. Thus the simulator made
7 x 7 =49 grasps per object. The unsuccessful grasp
attempts were discarded from the training set.

3. For each successful grasp, two negative examples were
added to the training set in the following way. The
inputs (a group of 30) for each parameter are ran-
domly shuffled. In this way, the network was forced to
learn the order of activity within a group rather than
learning the averages of the inputs (note that the
shuffling does not change mean and variance).
The second negative pattern was used to stress that
the distance to target was important. The target
location was perturbed and the grasp was repeated (to
the original target position).

4. Finally, our last modification in the backpropagation
training algorithm was to introduce a random input
pattern (totally random; no shuffling) on the fly dur-
ing training and ask the network to produce zero
output for those patterns. In this way we not only
biased the network to be as silent as possible during
ambiguous input presentation but also gave the net-
work a greater chance of reaching global minima.

It should be emphasized that the network was trained
using the complete trajectory of the hand state (analo-
gous to adjusting synapses after the self-grasp is com-
pleted). During testing, in contrast, the prefixes of a
trajectory were used (analogous to the predictive
response of mirror neurons while observing a grasp
action). The network thus yielded a time-course of
activation for the mirror neurons. As we shall see in
Sect. 5, initial prefixes yield little or no mirror neuron
activity, and ambiguous prefixes may yield transient
activity of the “wrong” mirror neurons.

We thus need to make two points to highlight the
contribution of this study:

1. It is, of course, trivial to train a network to pair
complete trajectories with the final grasp type. What
is interesting here is that we can train the system on
the basis of final grasp but then observe the whole
time course of mirror neuron activity, yielding pre-
dictions for neurophysiological experiments by high-
lighting the importance of the timing of mirror neuron
activity.

2. Again, it is commonly understood that the training
method used here, namely backpropagation, is not
intended to be a model of the cellular learning
mechanisms employed in cerebral cortex. This might
be a matter of concern were we intending to model the



129

40% completed 50% completed 66% completed
= L @
& = (3
2 z. 2
Normalized time Normalized time Normalized time
80% completed 90% completed 100% completed
4 & 13
= & E
— = -
= 3 =
z z Z

Fig. 12. The solid curve shows
the effective input that the net-
work receives as the action pro-
gresses. At each simulation cycle
the scaled curves are sampled (30
samples each) to form the spatial
input for the network. Towards
the end of the action the net-
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time course of learning, or analyze the effect of spe-
cific patterns of neural activity or neuromodulation
on the learning process. However, our aim here is
quite different: we want to show that the connectivity
of mirror neuron circuitry can be established through
training, and that the resultant network can exhibit a
range of novel, physiologically interesting behaviors
during the process of action recognition. Thus, the
actual choice of training procedure is purely a matter
of computational convenience, and the fact that the
method chosen is nonphysiological does not weaken
the importance of our predictions concerning the
timing of mirror neuron activity.

5 Results

In this study we experimented with two types of
network. The first has only the hand state as the
network input. We call this version the nonexplicit
affordance coding network since the hand state will often
imply the object affordance in our simple grasp world.
The second network we experimented with — the explicit
affordance coding network — has affordance coding as
one set of its inputs. The number of hidden layer units in
each case was chosen to be six, and there were three
output units, each one corresponding to a recognized

grasp.

5.1 Nomexplicit affordance coding experiments

We first present results with the MNS1 model imple-
mented without an explicit object affordance input to the
core mirror circuit. We then study the effects of
supplying an explicit object affordance input.

5.1.1 Grasp resolution. In Fig. 13, we let the (trained)
model observe a grasp action. Figure 13a demonstrates
the executed grasp by giving the views from three
different angles to show the reader the 3-D trajectory

works input gets closer to the

Normalized time final hand state

traversed. Figure 13b shows the extracted hand state
(left) and the response of the (trained) core mirror
network (right). In this example, the network was able to
infer the correct grasp without any ambiguity, since a
single curve corresponding to the observed grasp reaches
a peak and the other two units’ outputs are close to zero
during the whole action. The horizontal axis for both
figures is such that the onset of the action and the
completion of the grasp are scaled to 0 and 1,
respectively. The vertical axis in the hand-state plot
represents a normalized (min = 0, max = 1) value for
the components of the hand state, whereas the output
plot represents the average firing rate of the neurons (no
firing = 0, maximum firing = 1). The plotting scheme
that is used in Fig. 13 will be used in later simulation
results as well.

It is often impossible (even for humans) to classify a
grasp at a very early phase of the action. For example,
the initial phases of a power grasp and precision grasp
can be very similar. Figure 14 demonstrates this situa-
tion where the model changes its decision during the
action and finally reaches the correct result towards
the end of the action. To create this result we used the
“outer limit” of the precision grasp by having the model
perform a precision grasp for a wide object (using the
wide opposition axis). Moreover, the network had not
been trained using this object for precision grasp. In
Fig. 14b, the curves for power and precision grips cross
towards the end of the action, which shows the change
of decision of the network.

5.1.2 Spatial perturbation. We next analyze how the
model performs if the observed grasp action does not
meet the object. Since we constructed the training set to
stress the importance of distance from hand to object,
we expected that network response would decrease with
increased perturbation of target location.

Figure 15 shows an example of such a case. How-
ever, the network’s performance was not homogeneous
over the workspace: for some parts of the space the
network would yield a strong mirror response even
with comparatively large perturbation. This could be
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- Fig. 13a,b. a A single grasp
trajectory viewed from three
different angles to clearly show

its 3-D pattern. The wrist tra-
jectory during the grasp is
marked by spatial markers, with
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Fig. 14a,b. Power and precision
grasp resolution. The conven-
tions used are as in Fig. 13. a
The curves for power and preci-
sion cross towards the end of the
action showing the change of
decision of the network. b The
left panel shows the initial con-
figuration, and the right panel
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due to the small size of the training set. However, in-
terestingly the network’s response had some specificity
in terms of the direction of the perturbation. If the
object’s perturbation direction were similar to the di-
rection of hand motion then the network would be
more likely to disregard the perturbation (since the
trajectory prefix would then approximate a prefix of a
valid trajectory) and signal a good grasp. Note that the
network reduces its output rate as the perturbation
increases, however the decrease is not linear and after a
critical point it sharply drops to zero. The critical
perturbation level also depends on the position in
space.

5.1.3 Altered kinematics. Normally, the simulator pro-
duces bell-shaped velocity profiles along the trajectory
of the wrist. In our next experiment, we tested action
recognition by the network for an aberrant trajectory
generated with constant arm-joint velocities. The
change in the kinematics does not change the path
generated by the wrist. However the trajectory (i.e., time
course along the path) is changed and the network is
capable of detecting this change (Fig. 16). The notable
point is that the network acquired this property without
our explicit intervention (i.e., the training set did not
include any negative samples for altered velocity

shows the final configuration of
the hand

profiles). This is because the input to the network at
any time comprises 30 evenly spaced samples of the
trajectory up to that time. Thus, changes in velocity can
change the pattern of change exhibited across those 30
samples. The extent of this property is again dependent
on spatial location.

It must be stressed that all the virtual experiments
presented in this section used a single trained network;
no new training samples were added to the training set
for any virtual experiment.

5.1.4 Grasp and object axes mismatch. The last virtual
experiment we present with nonexplicit affordance
coding explores the model’s behavior when the object
opposition axis does not match the hand opposition
axis. This example emphasizes that the response of the
network is affected by the opposition axis of the object
being grasped. Figure 17 shows the axis orientation
change for the object and the effect of this perturbation
on the output of the network. The arm simulator first
performed a precision grasp to a thin cylinder. The
response of the mirror neuron model to this action
observation is shown in Fig. 17, leftmost panel. As can
be seen from the plot, the network confidently activat-
ed the mirror neuron coding precision grip. The middle
panel shows the output of the network when the object
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is changed to a flat plate but the kinematics of the
hand is kept the same. The response of the network
declined to almost zero in this case. This is an extreme
example — the objects in Fig. 17 (rightmost panel) have
opposition axes 90° apart, enabling the network to
detect the mismatch between the hand (action) and the
object. With less change in the new axis the network
would give a higher response and, if the opposition axis
of the objects were coincident, the network would
respond to both actions (with different levels of
confidence depending on other parameters).

5.2 Explicit affordance coding experiments

Now we switch our attention to the explicit affordance
coding network. Here we want to see the effect of object
affordance on the model’s behavior. The new model is
similar to that given before except that it not only has
inputs encoding the current prefix of the hand state
trajectory (which includes hand—object relations), but
also has a constant input encoding the relevant affor-
dance of the object under current scrutiny. Thus, both
the training of the network and the performance of the
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Fig. 17. Grasp and object axes mismatch experiment. Right: the
change of the object from cylinder to a plate (an object axis change of
90°). Left: the output of the network before the change (the network

trained network will exhibit effects of this additional,
affordance input.

Due to the simple nature of the objects studied here,
the affordance coding used in the present study only
encodes the object size. In general, one object will have
multiple affordances. The ambiguity then would be
solved using extra cues such as the contextual state of
the network. We chose a coarse coding of object size
with ten units. Each unit has a preferred value; the firing
of a unit is determined by the difference of the preferred
value and the value being encoded. The difference is
passed through a non-linear decay function by which the
input is limited to the 0 to 1 range (the larger the dif-
ference, the smaller the firing rate). Thus, the explicit
affordance coding network has 220 inputs (210 hand
state inputs, plus 10 units coarse coding the size). The
number of hidden layer units was again chosen as six
and there were again three output units, each one
corresponding to a recognized grasp.

We have seen that the MINS1 model without explicit
affordance input displayed a biasing effect of object size
in Sect. 5.1.1; the network was biased toward power
grasp while observing a wide precision pinch grasp (the
network initially responded with a power-grasp activity
even though the action was a precision grasp). The
model with full affordance replicates the grasp resolu-
tion behavior seen in Fig. 12. However, we can now go
further and ask how the temporal behavior of the model
with explicit affordance coding reflects the fact that
object information is available throughout the action.
Intuitively, one would expect that the object affordance
would speed up the grasp resolution process (which is
actually the case, as will be shown in Fig. 19).

In Sects. 5.2.1 and 5.2.2 we look at the effect of
affordance information in two cases: (i) where we study
the response to precision pinch trajectories appropriate
to a range of object sizes, and (ii) where on each trial we
use the same time-varying hand-state trajectory but
modify the object affordance part of the input. In each
case, we are studying the response of a network that has
been previously trained on a set of normal hand-state
trajectories coupled with the corresponding object
affordance (size) encoding.

5.2.1 Temporal effects of explicit affordance coding. To
observe the temporal effects of having explicit coding of
affordances to the model, we choose a range of object

0

oy

1.0

turns on the precision grip mirror neuron). Middle: the output of the
network after the object change (Only the precision grasp related
activity is plotted; the other two outputs are negligible.)

sizes, and then for each size drive the (previously trained)
network with both affordance (object size) information
and the hand-state trajectory appropriate for a precision
pinch grasp appropriate to that size of object. For each
case we looked at the model’s response. Figure 18 shows
the resultant level of mirror responses for four cases (tiny,
small, medium, and big objects). The filled squares
indicate the precision activity while the empty squares
indicate the power-grasp-related activity. When the
object to be grasped is small, the model turns on the
precision mirror response more quickly and with no
ambiguity (Fig. 18, top panels). The vertical bar drawn at
time 0.6 shows the temporal effect of object size
(affordance). The curves representing the precision grasps
are shifted towards the end (time = 1), as the object size
gets bigger. Our interpretation is that the model gained
the property of predicting that a small object is more
likely to be grasped with a precision pinch rather than a
power pinch. Thus the larger the object, the more of the
trajectory that had to be seen before a confident
estimation could be made that it was indeed leading to
a precision pinch. In addition, as we indicated earlier, the
explicit affordance coding network displays the grasp
resolution behavior during the observation of a precision
grip being applied to large objects (Fig. 18, bottom
panels: right panel and, to a lesser degree, the left panel).

We also compared the general response time of the
nonexplicit affordance coding implementation with the
explicit coding implementation. The network with af-
fordance input is faster to respond than the previous
one. Moreover, it appears that — when affordance and
grasp type are well correlated — having access to the
object affordance from the beginning of the action not
only lets the system make better predictions but also
smoothes out the neuron responses. Figure 19 summa-
rizes this: it shows the precision response of both the
explicit and nonexplicit affordance case for a tiny object
(dashed and solid curves, respectively).

5.2.2 Teasing apart the hand state and object affordance
components. We now look at the case where the hand-
state trajectory is incompatible with the affordance of
the observed object. In Fig. 20, the upper-left panel
shows the system output for a precision grasp directed to
a medium-sized object whose affordance is supplied to
the network. We then repeatedly input the hand-state
trajectory generated for this particular action but in each
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Fig. 18. The plots show the level
of mirror responses of the ex-
plicit affordance coding object
for an observed precision pinch
for four cases (tiny, small, me-
dium, and big objects). The filled
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Fig. 19. Solid curve: the precision grasp output, for the nonexplicit
affordance case, directed to a tiny object. Dashed curve: the precision
grasp output of the model to the explicit affordance case, for the same
object

trial use an object affordance discordant with the
observed trajectory affordance (i.e., using a reduced or
increased size of the object). The plots in Fig. 20 show
the change of the output of the model due to the change
in the affordance. The results shown in these plots tell us
two things. First, the recognition process becomes
fuzzier as the object gets bigger, because the larger
object sizes biases the network towards the power grasp.
In the extreme case the object affordance can even
overwhelm the hand state and switch the network
decision to power grasp (Fig. 20, lower right panel).
Moreover, for large objects, the large discrepancy

04

activity

between the observed hand state trajectory and the size
of the objects results in the network converging on a
confident assessment for neither grasp.

Secondly, the resolution point (the crossing point of
the precision and power curves) shows an interesting
temporal behavior. It may be intuitive to think that as
the object gets smaller the network’s precision decision
gets quicker and quicker (similar to what we have seen in
Sect. 5.2.1). However, although this is the case when the
object is changing size from big to small, it is not the
case when the object size is getting medium to tiny (i.e.,
the crossing time has a local minimum between the two
extreme object sizes, as opposed to being at the tiny-
object extreme). Our interpretation is that the network
learned an implicit parameter related to the absolute
value of the difference of the hand aperture and the
object size such that the maximum firing is achieved
when the difference is smallest; that is, when the hand
trajectory matches best with the object. This will explain
why the network has the quickest resolution for a size
between the biggest and the smallest sizes.

Figure 21 shows the time of resolution versus object
size in graphical form. We emphasize that the model
easily executes the grasp recognition task when the
hand-state trajectory matches object affordance. We do
not include all the results of these control trials, as they
are similar to the cases mentioned in Sect. 5.1.

5.3 Justifying the visual analysis of hand state schema

Before closing, we would like to present a simulation run
using a real video input to justify our claim that hand
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Fig. 20. Filled squares indicate the precision-grasp-related cell activity,
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The grasps show the effect of changing the object affordance while
keeping a constant hand-state trajectory. In each case, the hand-state
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Fig. 21. The graph is drawn to show the decision switch time versus
object size. The minimum is not at the boundary, that is, the network
will detect a precision pinch quickest with a medium object size. Note
that the graph does not include a point for “Biggest object” since there
is no resolution point in this case (see the lower right panel of Fig. 20)

state can be extracted from real video and used to drive
the core mirror circuit. The object affordances are
supplied manually since we did not address object
recognition in our visual system. However, the rest of
the hand state is extracted by the hand recognition system
as described in Sect. 4.3. Figure 22 depicts the precision-
grasp action used as input video for the simulation.

The result of 3-D hand matching is illustrated in
Fig. 23. The color extraction is performed as described
in Sect. 4.3.1, but is not shown in the figure. It would be
very rewarding to perform all our MNSI simulations
using this system. However, the quality of the video
equipment available and the computational power

trajectory provided to the network is appropriate to the medium-sized
object, but the affordance input to the network encodes the size
shown. In the case of the biggest object affordance, the effect is
enough to overwhelm the hand-state’s precision bias

Fig. 22. The precision-grasp action used to test our visual system is
depicted by superimposed frames (not all the frames are shown)

requirements did not allow us to collect many grasp
examples to train the core mirror circuit. Nevertheless,
we did test the hand state extracted by our visual system
from this real video sequence on the MNS1 model that
has already been trained with the synthetic grasp
examples.

Figure 24 shows the recognition result when the ac-
tual visual recognition system provided the hand state
based on the real video sequence shown in Fig. 23.
Although the output of the network did not reach a high
level of confidence for any grasp type, we can clearly see
that the network favored the precision grasp over the
side and power grasps. It is also interesting to note that a
similar competition (this time between side- and
precision-grasp outputs) took place as we saw (Fig. 14)
when the grasp action was ambiguous.
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Fig. 24. The output of the MNSI1 model when driven by the visual
recognition system while observing the action depicted in Fig. 22. It
must be emphasized that the training was performed using the synthetic
data from the grasp simulator, whereas testing is performed using the
hand state extracted by the visual system only. Dashed line, side grasp
related activity; solid line, precision grasp related activity. Power-grasp
activity is not visible as it coincides with the time axis

6 Discussion
6.1 The hand-state hypothesis

Because the mirror neurons within monkey premotor
area F5 fire not only when the monkey performs a certain
class of actions but also when the monkey observes
similar actions, it has been argued that these neurons are
crucial for understanding of actions by others. We agree
with the importance of this role and indeed have built

Frame 33

Fig. 23. The video sequence
used to test the visual system is
shown together with the 3-D
hand-matching result (over each
frame). Again, not all the frames
are shown

upon it elsewhere, as we now briefly discuss. Rizzolatti
et al. (1996b) used a positron-emission tomography study
to show that both grasping observation and object
prehension yield highly significant activation in the
rostral part of Broca’s area (a significant part of the
human language system) as compared to the control
condition of object observation. Moreover, Massimo-
Matelli (in Rizzolatti and Arbib 1998) demonstrated a
homology between monkey area F5 and area 45 in the
human brain (Broca’s area comprises areas 44 and 45).
Such observations led Rizzolatti and Arbib (1998),
building on Rizzolatti et al. (1996a), to formulate the
mirror-system hypothesis: human Broca’s area contains a
mirror system for grasping which is homologous to the
FS5 mirror system of monkey, and this provides the
evolutionary basis for language parity; i.e., for an
utterance to mean roughly the same for both speaker
and hearer. This adds a neural “missing link™ to the
tradition that roots speech in a prior system for
communication based on manual gesture.

Arbib (2001) then refines this hypothesis by showing
how evolution might have bridged from an ancestral
mirror system to a “language-ready” brain via increas-
ingly sophisticated mechanisms for imitation of manual
gestures as the basis for similar skills in vocalization and
the emergence of protospeech. In some sense, then, the
present paper can be seen as extending these evolution-
ary concerns back in time. Our central aim was to give a
computational account of the monkey mirror system by
asking (i) what data must the rest of the brain supply to
the mirror system? and (ii) how could the mirror system
learn the right associations between classification of its
own movements and the movement of others? In seeking



136

to ground the answer to (i) in earlier work on the control
of hand movements (Iberall and Arbib 1990), we were
led to extend our evolutionary understanding of the
mirror system by offering the hand-state hypothesis: the
basic functionality of the F5 mirror system is to elabo-
rate the appropriate feedback — what we call the hand
state — for opposition-space-based control of manual
grasping of an object. Given this functionality, the social
role of the F5 mirror system in understanding the
actions of others may be seen as an exaptation gained by
generalizing from one’s own hand to another’s hand.

The hand-state hypothesis provides a new explana-
tion of the evolution of the ““social capability” of mirror
neurons, hypothesizing that these neurons first evolved
to augment the “‘canonical”” F5 neurons (active during
self-movement but not specifically during the observa-
tion of grasping by others) by providing visual feedback
on “hand state,” relating the shape of the hand to the
shape of the object.

6.2 Neurophysiological predictions

We introduced the MNS1 model of F5 and related brain
regions as an extension of the FARS model of circuitry
for visually guided grasping of objects that links parietal
area AIP with F5 canonical neurons. The MNS1 model
illustrated in Fig. 5 includes hypotheses as to how
different brain regions may contribute to the functioning
of the mirror system, and the region-by-region analysis
of neural circuitry remains a target for current research
and future publications. However, the implementation
here took a different approach, aggregating these regions
into three ‘“‘grand schemas” — visual analysis of hand
state, reach and grasp, and the core mirror circuit — for
each of which we present a detailed implementation. To
justify the claim that the model exhibits neurophysiolog-
ically interesting behaviors, we must look more carefully
at the structure of the implementation, stressing that it is
only the activity of mirror neurons in the core mirror
circuit for which we make this claim. We developed the
visual analysis of hand state schema simply to the point
of demonstrating algorithms powerful enough to take
actual video input of a hand (though we simplified the
problem somewhat by using colored patches) and
produce hand-state information. The reach and grasp
schema then represented all the functionality for taking
the location and affordance of an object, and determining
the motion of a hand and arm to grasp it. However, the
aim in the present paper was not to model the neural
mechanisms involved in these processes. Instead, we
showed that if we used the reach and grasp schema to
generate an observed arm-—hand trajectory (i.e., to
represent the reach and grasp generator of the monkey
or human being observed), then that simulation could
directly supply the corresponding hand-state trajectory,
and we thus use these data so that we can analyze the core
mirror circuit schema (Fig. 6b) in isolation from the
visual analysis of hand state. However, note that we have
also justified the visual analysis of hand state schema by
showing in a simulation that the core mirror circuit can

be driven with the visual system without any synthetic
data from the reach and grasp schema.

Moreover, this hand-state input (regardless of being
synthetic or real) was presented to the network in a way
which avoids the use of a dynamic neural network. To
form the input vector, each of the seven components of
the hand-state trajectory, up to the present time ¢, is
fitted by a cubic spline. Then this spline is sampled at 30
uniformly spaced intervals; i.e., no matter what fraction
t is of the total time T of the entire trajectory, the input
to the network at time ¢ comprises 30 samples of the
hand state uniformly distributed over the interval [0, 7].
The network is trained using the full trajectory of the
hand state in a specific grasp; the training set pairs each
such hand-state history as input with the final grasp type
as output. On the contrary, when testing the model with
various grasp observations, the input to the network was
the hand-state trajectory that was available up to that
instant. This exactly parallels the way the biological
system (the monkey) receives visual (object and hand)
information: when the monkey performs a grasp, the
learning can take place after the observation of the
complete (self-) generated visual stimuli. On the other
hand, in the observation case the monkey mirror system
predicts the grasp action based on the partial visual
stimuli (i.e., before the grasp is completed). The network
thus yields a time course of activation for the mirror
neurons, yielding predictions for neurophysiological
experiments by highlighting the importance of the timing
of mirror neuron activity. We saw that initial prefixes
will yield little or no mirror neuron activity, and am-
biguous prefixes may yield transient activity of the
“wrong”’ mirror neurons.

Since our aim was to show that the connectivity of
mirror neuron circuitry can be established through
training, and that the resultant network can exhibit a
range of novel, physiologically interesting behaviors
during the process of action recognition, the actual
choice of training procedure is purely a matter of com-
putational convenience, and the fact that the method
chosen, namely back propagation, is nonphysiological
does not weaken the importance of our predictions
concerning the timing of mirror neuron activity.

With this we turn to neurophysiological predictions
made in our treatment of the core mirror circuit, namely
the “grounding assumptions” concerning the nature of
the input patterns received by the circuit and the actual
predictions on the timing of mirror neuron activity
yielded by our simulations.

6.2.1 Grounding assumptions. The key to the MNSI
model is the notion of hand state as encompassing data
required to determine whether the motion and preshape
of a moving hand may be extrapolated to culminate in a
grasp appropriate to one of the affordances of the
observed object. Basically a mirror neuron must fire if
the preshaping of the hand conforms to the grasp type
with which the neuron is associated; and the extrapola-
tion of hand state yields a time at which the hand is
grasping the object along an axis for which that
affordance is appropriate. What we emphasize here is



not the specific decomposition of the hand state F(t)
into the seven specific components [d(¢), v(¢), a(t), 0;(1),
05(1), 03(1), 04(t)] used in our simulation, but rather that
the input neural activity will be a distributed neural code
which carries information about the movement of the
hand toward the object, the separation of the virtual
fingertips, and the orientation of different components
of the hand relative to the opposition axis in the object.
The further claim is that this code will work just as well
for measuring how well another monkey’s hand is
moving to grasp an object as for observing how the
monkey’s own hand is moving to grasp the object,
allowing self-observation by the monkey to train a
system that can be used for observing the actions of
others and recognizing just what those actions are.

We provided experiments to compare the perfor-
mance of the core mirror circuit with and without the
availability of explicit affordance information (in this
case, the size of the object) to strengthen our claim that
it is indeed adaptive for the system to have this addi-
tional input available, as shown in Fig. 6b. Note that the
“grasp-command” input shown in that figure serves here
as a training input, and will, of course, plays no role in
the recognition of actions performed by others.

Also we have given a justification of the visual anal-
ysis of hand state schema by showing in a simulation
that the core mirror circuit can be driven with the visual
system we implemented without requiring the reach and
grasp simulator to provide synthetic data.

6.2.2 Novel predictions. Experimental work to date has
tended to emphasize the actions to be correlated with the
activity of each individual mirror neuron, while paying
little attention to the temporal dynamics of mirror
neuron response. By contrast, our simulations make
explicit predictions on how a given (hand-state trajecto-
ry, affordance) pair will drive the time course of mirror
neuron activity — with non-trivial response possibly
involving the activity of other mirror neurons in addition
to those associated with the actual grasp being observed.
For example, a grasp with an ambiguous prefix may
drive the mirror neurons in such a way that the system
will, in certain circumstances, at first give weight to the
wrong classification, with only the late stages of the
trajectory sufficing for the incorrect mirror neuron to be
vanquished.

To obtain this prediction we created a scene where the
observed action consisted of grasping a wide object with
a precision pinch (thumb and index finger opposing each
other). Usually this grasp is applied to small objects
(imagine grasping a pen along its long axis versus
grasping it along its thin center axis). The mirror response
we got from our core mirror circuit was interesting. First,
the system recognized (while the action was taking place)
the action as a power grasp (which is characterized by
enclosing the hand over large objects; e.g. grasping an
apple), but as the action progressed the model unit rep-
resenting precision pinch started to become active and
the power-grasp activity started to decline. Eventually
the core mirror circuit settled on the precision pinch. This
particular prediction is testable and indeed suggests a
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whole class of experiments. The monkey has to be pre-
sented with unusual or ambiguous grasp actions that
require a ‘“‘grasp resolution.” For example, the experi-
menter can grasp a section of banana using precision
pinch from its long axis. Then we would expect to see
activity from power-grasp-related mirror cells followed
by a decrease of that activity accompanied by increasing
activity from precision-pinch-related mirror neurons.

The other simulations we made lead to different
testable predictions such as the mirror response in case
of a spatial perturbation (showing the monkey a fake
grasp where the hand does not really meet the object)
and altered kinematics (perform the grasp with different
kinematics than usual). The former is in particular a
justification of the model, since in the mirror-neuron
literature it has been reported that the spatial contact of
the hand and the object is almost always required for the
mirror response (Gallese et al. 1996). On the other hand,
the altered kinematics result predicts that an alteration
of the kinematics will cause a decrease in the mirror
response. We have also noted how a discrepancy be-
tween hand-state trajectory and object affordance may
block or delay the system from classifying the observed
movement.

In summary, we have conducted a range of simula-
tion experiments — on grasp resolution, spatial pertur-
bation, altered kinematics, temporal effects of explicit
affordance coding, and analysis of compatibility of the
hand state to object affordance — which demonstrate
that the present model is not only of value in providing
an implemented high-level view of the logic of the mirror
system, but also serves to provide interesting predictions
ripe for neurophysiological testing, as well as suggesting
new questions to ask when designing experiments on the
mirror system. However, we must note that this study
has excluded some actions (such as tearing and twisting)
for which mirror activity has been observed. As new
neurophysiological studies on monkeys expand the
range of actions for which the temporal response of the
mirror system is delimited, we will expand our model to
explain the new findings and suggest yet further classes
of experiments to probe the structure and function of the
mirror system — as well as increasing the set of brain
regions in Fig. 5 for which increasingly realistic neural
models are made available.
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Appendix: Implementation details

The system was implemented in Java on a Linux
operating system. The grasp simulator can be accessed
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at http://java.usc.edu/~erhan/sim6.1. The material at
this URL also includes the action recognition circuitry.
The simulation environment enables the users to test this
simplified version of the action recognition ability of the
network.

A.1 The segmentation system

The segmentation system as a whole works as follows:

1. Start with N rectangles (called nodes), set thresholds
for red, green, and blue variances as rV, gV, bV.

2. For each node calculate the red, green, blue variance
as rv, gv, bv.

3. If any of the variance is higher than the threshold
(rv>1V or gv>gV or bv>DbV), then split the node
into four equal pieces and apply steps 2 and 3 recur-
sively.

4. Feed in the mean red, green, and blue values in that
region to the color expert to determine the color of
the node.

5. Make a list of nodes that are of the same color (add
node to the list reserved for that color).

6. Repeat steps 2—5 until no split occurs.

7. Cluster (in terms of Euclidean distance on the image)
the nodes and discard the outliers from the list (use
the center of the node as the position of the node).
The discarding is performed either when a region is
very far from the current mean (weighted center) or it
is not ““‘connected” to the current center position. The
connectedness is defined as follows. The regions A
and B are connected if the points lying on the line
segment joining the centers of A and B are the same
color as A and B. Once again, the color expert is used
to determine the percentage of the correct colors (of A
and B) lying on the line segment. If this percentage is
over a certain threshold (e.g., 70%) then the regions A
and B are taken as ““connected.” (This strategy would
not work for a ‘““sausage-shaped” region, but does
work for patches created by the coloring we used in
the glove.)

8. For each pruned list (corresponding to a color), find
the weighted (by the area of the node) mean of the
clusters (in terms of image coordinates).

9. Return the cluster mean coordinates as the segmented
region’s center.

So we do not exactly perform the merge part of the split—
merge algorithm. The return values from this procedure
are the (x,y) coordinates of the center of color patches
found. Another issue is how to choose the thresholds.
The variance values are not very critical; a too-small
value increases computation time but does not affect the
number of colors extracted correctly (though the
returned coordinates may be shifted slightly). To see
why intuitively, one can notice that the center of a
rectangle and the centroid of the centers of the quarter
rectangles (say after a split operation) would be the
same. This means that if a region is split unnecessarily
(because the threshold variances were set to very small
values), it is likely to be averaged out by our algorithm

since it is likely that the four split rectangles will have the
same color and will be connected (with our definition of
connectedness).

A.2 Grasp planning and execution for a precision pinch

Precision pinch planning involves the folowing steps:

1. Determine the opposition axis to grasp the object.

2. Compute the two (outer) points A and B at which the
opposition axis intersects the object surface. These
serve as the contact points for the virtual fingers that
will be involved in the grasp.

3. Assign the real fingers to virtual fingers. The partic-
ular heuristic we used in the experiments was the
following. If the object is on the right (left) with re-
spect to the arm, then the thumb is assigned to the
point A if A is on the left of (at a lower level than), B;
otherwise the thumb is assigned to B. The index finger
is assigned to the remaining point.

4. Determine an approximate target position C, for the
wrist. Mark the target for the wrist on the line seg-
ment connecting the current position of the wrist and
the target for the thumb a fixed length (determined by
the thumb length) away from the thumb target.

5. Solve the inverse kinematics for only the wrist reach
(ignore the hand).

6. Solve the inverse kinematics for grasping. Using the
sum of distance squares of the finger tips to the target
contact points, do a random hill-climbing search to
minimize the error. Note that the search starts with
placing the wrist at point C. However, the wrist po-
sition is not included in the error term.

7. The search stops when the simulator finds a config-
uration with error close to zero (success) or after a
fixed number of steps (failure to reach). In the success
case the final configuration is returned as the solution
for the inverse kinematics for the grasp. Otherwise
“failure to reach” is returned.

8. Execute the reach and grasp. At this point the sim-
ulator knows the desired target configuration in terms
of joint angles. So what remains to be done is to
perform the grasp in a realistic way (in terms of ki-
nematics). The simplest way to perform the reach is to
linearly change the joint angles from the initial con-
figuration to the target configuration. But this does
not produce a bell-shaped velocity profile (nor exactly
a constant-speed profile either because of the
nonlinearity in going from joint angles to end-effector
position). The perfect way to plan an end-effector
trajectory requires the computation of the Jacobian.
However we are not interested in perfect trajectories
as long as the target is reached with a bell-shaped
velocity profile. To get the effect it is usually sufficient
to modify the idea of linearly changing the joint an-
gles a little bit. We simply modulate the change of
time by replacing time with a third-order polynomial
that will match our constraints for time (starts at 0
and climbs up to 1 monotonically). Note that we are
still working in the joint space and our method may



suffer from the nonlinearity in transforming the joint
angles to end-effector coordinates. However, our
empirical studies showed that a satisfactory result, for
our purposes, could be achieved in this way.
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