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Abstract. Motivated by experimental studies of insects,
we propose a model for legged locomotion in the
horizontal plane. A three-degree-of freedom, energeti-
cally conservative, rigid-body model with a pair of
compliant virtual legs in intermittent contact with the
ground allows us to study how dynamics depends on
parameters such as mass, moment of inertia, leg
stiffness, and length. We find periodic gaits, and show
that mechanics alone can confer asymptotic stability of
relative heading and body angular velocity. We discuss
the relevance of our idealized models to experiments and
simulations on insect running, showing that their gait
and force characteristics match observations reasonably
well. We perform parameter studies and suggest that our
model is relevant to the understanding of locomotion
dynamics across species.

1 Introduction

The spring-loaded inverted pendulum (SLIP) or
spring-mass monopode model has proved useful in
unifying and explaining the mechanics of legged
locomotion in the sagittal plane for animals ranging
from 2.5 g cockroaches to 85 kg rams, encompassing
bipeds to 44-legged centipedes that employ trotting,
running, and hopping gait patterns (McMahon 1984;
McMahon and Cheng 1990; Blickhan and Full 1993;
Farley and Gonzalez 1996; Farley and Morgenroth
1999; Anderson 2000). In this paper we describe a
similar, simplified, lateral leg-spring (LLS) model for
dynamics and stability in the horizontal plane. While it
was developed with sprawled-posture animals such as
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insects in mind, and is applied here to the cockroach as
a test case, we believe it can serve as an exemplar for
stability and gait studies of other species. It shares the
simplicity of the SLIP, but includes inertia effects
to account for yawing motions. Ultimately we wish to
integrate horizontal- and sagittal-plane dynamics in a
coupled system.

The present paper follows Schmitt and Holmes
(2000a,b, 2001), in which the LLS model was developed
and analyzed, preliminary comparisons with
experimental data were made, and stability analyses
carried out. Here we provide detailed comparisons with
data from rapidly running cockroaches of the species
Blaberus discoidalis, and perform parameter variation
studies with a view to assessing the model’s ability to
account for variability both within and across species.
After describing the model in Sect. 2, we: (1) explicitly
define stability and provide measures of performance
(Sect. 3), (2) estimate parameters for a specific insect as a
test case and assess how well the model captures and
explains steady gaits over a range of speeds including the
preferred speed (Sect. 4), and (3) consider geometric size
scaling and determine how individual parameter varia-
tions affect performance (Sect. 5). The results are dis-
cussed and assessed in Sect. 6.

2 The lateral leg-spring model

The LLS model, illustrated in Fig. 1, and described in
detail in Schmitt and Holmes (2000b), consists of a
rigid body of mass m and moment of inertia / (in
insects, the head—thorax—body unit), that is free to
move in the plane under forces generated by two
massless, laterally rigid, axially elastic legs, pivoted
freely at a point P (generally displaced forward or
backward from the center of mass (COM) G), and
intermittently contacting the ground at feet F, F’ with a
0.5 duty cycle. F,F’, and P are pin joints (i.e., with no
torques). In considering multilegged animals, we appeal
to the stereotyped use of a double-tripod gait in
hexapods, and a double-quadruped gait in crabs
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Fig. 1a—c. Overhead views of a cockroach (a), a cartoon of the lateral
leg-spring bipedal model during one stride of period 7 (b), and model
details (¢). O denotes a fixed ‘origin’ on the ground, F is the current
foot position F’ (not shown) is the next foot position on the opposite
side of the body, and G is the body center of mass (COM). P is the leg
attachment point (also called center of pressure, COP) which may
move or be fixed with respect to G according to the prescribed
position function d(z). f and f; are components of force generated in
the leg with respect to body axes e;, e2; r(¢) = (x(¢), y(¢)) is the mass-
center position with respect to inertial frame e, e,. 0(¢) is the body
orientation, and ¢(z) is the leg angle relative to body. The leg
positions with respect to the body at the start of each step are sketched
in gray; £f is the leg angle with respect to the body centerline at
touchdown. d(¢), shown in a, is the angle of the mass center velocity
() with respect to the body centerline

(Blickhan and Full 1987). Errors induced by collapsing
leg groups linked in such stance phases to a single
virtual leg are discussed in Sect. 4.

A full stride begins at left touchdown at time r =1,
with spring relaxed at leg angle ¢ = +f relative to body
orientation; the left stance phase ends when the spring is
again relaxed, the body having ‘run past its foot.” At this
instant (¢, ) the left leg is raised to begin its swing phase
and the right leg is set down at angle —pf; its stance
phase, and the stride, ends with spring relaxation at right
liftoff/left touchdown. Choosing a linear spring, the
model is entirely characterized by six physical parame-
ters: leg stiffness, &, and relaxed length, /, the pivot
position relative to the COM, d, along with m, I, and f.
Balancing the linear and angular momentum results in
three equations of motion for COM translation
r(t) = (x(¢),y(¢)) and body orientation 0(¢) during stance:

mi = R(0(0))f, 10 = (re(ty) —r) x R(O(0))f (1)

where R(0) is the rotation matrix, needed to transform
leg forces f (relative to the body) to the inertial frame;
re(t,) denotes touchdown foot position, expressed via
d,l,p, and body angle 0(z,) at touchdown, and x

denotes the vector cross product. Normalizing length
with respect to / and nondimensionalizing time #, the
parameters reduce to four nondimensional groups:

kI = 1 d
- ml?’ 1’

Here v is a representative speed (e.g., COM velocity
magnitude at touchdown, or average forward speed (v))

~ ~ . ~ vt
k:W7 d= andﬁ; Wltht:7 . (2)

and V/k is a Strouhal number characterizing the ratio of
storable potential to kinetic energy. For fixed k,7,d, and
B, solutions of (1) describe identical paths in (x,y,0)
space, scaled by [, at rates determined by 7.

Global conservation of total energy, and conservation
of angular momentum about the foot in each stance
phase assist in integration of (1), complete accounts of
which appear in (Schmitt and Holmes 2000b). At
touchdown/liftoff the foot position instantaneously
switches to rr(¢,+1), and integration continues. Simple
codes may be written for numerical simulations in, for
example, the MATLAB environment.

The ‘hip pivot” P may be fixed, or may move depen-
dent on leg angle ¢ relative to body; the rule

d=dy+di(¢-7) (3)

exemplifies both cases (d; = 0, fixed; d; # 0, moving).
The latter moving center of pressure (COP) protocol can
better reproduce torques resulting from variations
among individual foot forces. (Specified torques could
also be applied at P: see Schmitt J and Holmes P,
unpublished work, 2002) Moreover, in place of passive,
SLIP-like force generation resulting from leg compres-
sion in which f derives from a potential function
depending on leg length (r — rg(z,)), leg forces f{(¢) may
be wholly prescribed as functions of time, or via
combinations of these limiting, ‘event-driven,” and
‘clock-driven’ strategies. In fact the prescribed force
studies of Kubow and Full (1999), in which representa-
tive forces were applied at foot positions, motivated the
present generalized models, which we believe are better
suited to represent the effects of mechanical feedback or
‘preflexes’ in gait stabilization. Further information and
detailed analyses of these models appear in Schmitt and
Holmes (2000b, 2001).

3 Steady periodic gaits
3.1 Families of gaits and stability

The dynamical behavior of the model (1) is conveniently
described in terms of touchdown values of COM
velocity magnitude v(¢) = |v(¢)| = |f(¢)] and COM
velocity heading o(¢) relative to body axis, body
orientation, or yaw angle 0(¢) relative to a fixed reference
frame, and body angular velocity 8(¢) = w(¢); see Fig. 1.
Integration of (1) (Schmitt and Holmes 2000b) produces
a stride or step map F specifying these variables at each
touchdown instant ¢ = #,,1 in terms of their values at the
preceeding touchdown ¢ = ¢,
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where v, = v(t,), etc. Here we retain the terminology of
Schmitt and Holmes (2000a,b). In traditional biological
usage, heading denotes the COM velocity with respect to
compass direction (i.e., the quantity 6 + ), and body
orientation denotes the angle the body makes with the
velocity vector (9).

In a steady periodic gait v,;; = v, =¥ etc., corre-
sponding to a fixed point of F. For stable gaits, the
variables converge toward constant values: §, — d, etc.;
see Fig. 2. Convergence rates are determined by the ei-
genvalues /; of the 4 x 4 Jacobian matrix of first deriv-
atives of F: perturbations decay at the rate |4;| per stride.
Two eigenvalues are necessarily unity, corresponding to
neutral speed (v) and orientation (0) stability due to
energy conservation and rotational symmetry: if all re-
maining |4;| < 1, we have stability; if any |4;| > 1, we
have instability and perturbations grow.

The model displays periodic gaits with fore—aft, lat-
eral, and yaw oscillations. Figure 3 shows gait families
for the fixed- and moving-COP models illustrating how
0,0,0 = w, and the relevant eigenvalue magnitude |4|
depend on v; all other parameters (m,[,/,d, k,[5) are
fixed. In all cases a saddle-node bifurcation (Gucken-
heimer and Holmes 1983) occurs at a critical COM
speed v = v, (or k = k), below which no gaits exist and
above which two branches emerge, one potentially stable
with relatively small lateral and yaw oscillations (small
|0]), and one with large oscillations (large |d]), which is
typically unstable. (Bifurcation theory (Guckenheimer
and Holmes 1983) implies that in general at most one
branch may be stable, but both could be unstable.) For
this model, with passive compliant spring legs and fixed
COP, the smaller |4| gaits exhibit relative heading and
angular velocity stability if d < 0 (hip behind COM),
and instability for d > 0; moving-COP gaits are stable

(UnJrla 5n+17 9n+la wn+l) = F(Una 5na 0,,, CL),,) )

' neutral stability, |\| = 1

asymptotic stability, [A| < 1

.as}-'mptotic stability, [A| <1
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Fig. 2. Response to perturba-
tions and stability explanation.
The cartoon shows the model
recovering from a perturbation to
a stable gait (v=0.2175,6=0.14,
0=0,0=—-0.9295 with parame-
ters k=2.25,m=0.0025,/ =

: ; 2.04 x 1077,d = —0.0025,=1)
applied at the beginning of the
third step. The graphs show the
state variables at the beginning of
each step. The model is neutrally
stable in 6 and v (corresponding
eigenvalues |4| of unit magnitude)
but asymptotically stable in @
(=6) and 9; the corresponding
eigenvalues are less than one in
magnitude. Note that @ changes
sign with each step and so is not
expected to decay to a straight

neutral stability, |A| = 1

; 10 15 line as the other state variables
Step do; the same might be true for 6,
except that this particular solu-
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Fig. 3. Families of periodic gaits for the fixed- and moving-COP
models with parameters characteristic of Blaberus discoidalis. From
top to bottom the panels show COM velocity vector direction J, body
angular velocity @ = 6, and body orientation 6 at touchdown, and
eigenvalue magnitudes |/|. See Sect. 4 for parameter values. (For fixed
COP 6 = const. at touchdown; for moving COP @ = 0 at touchdown:
hence our display of @ and 6.) Stable branches are shown solid, and
unstable branches are dashed (only the neutral and least stable
eigenvalues are shown). Note critical speed v, below which gaits do
not occur, neutral eigenvalues |4| = 1 corresponding to speed v and
orientation 6, and maximal |4| < 1 corresponding to COM heading &
and angular velocity w decay rates, and the stability optima for
v~ 0.23 and 0.20 < v < 0.34 m s~ !, respectively

provided d moves backward during stance (d; < 0 in
Eq. 3), as shown in Fig. 1b. Stability results from losses/
gains of angular momentum incurred in leg-to-leg
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transit. Note that minima in |4|, corresponding to sta-
bility optima, occur around 0.2 <v<0.3ms~! in
Fig. 3.

Since energy is conserved, there is neutral speed sta-
bility: a one-parameter family of gaits exists over a range
of forward speeds. Owing to the neutral eigenvalues,
typical perturbations result in adoption of a ‘new’ gait at
a different speed and orientation: the model returns to
running with COM position, heading, and orientation
oscillating stably about a new path; hence we term the
heading and body angular velocity stability relative (for
further details, see Schmitt and Holmes 2000a,b). These
results show that purely mechanical ‘preflexes,” with a
simple ‘feed forward’ leg touchdown/liftoff protocol re-
quiring minimal sensing, can yield stable straight run-
ning. In Schmitt and Holmes (2000a) it is also shown
that turns can readily be obtained by transient changes
in d applied over two strides.

3.2 Performance measures

The gaits pictured in Fig. 3, and Figs. 4-6 below, show
variations in fore—aft and lateral velocities and forces,
moments, and yaw angles throughout the stride. From
these time-dependent functions we extract four gross
performance measures. The maximum relevant eigenvalue
|2| < 1 is perhaps the most important, since it charac-
terizes the animal’s resistance to perturbations with
respect to all variables, which decay at least at the rate
|| per stride. The COM velocity at which || achieves its
minimum then suggests a preferred speed V. We take |J],
the COM heading angle relative to body orientation, as a
second performance measure; it characterizes the rela-
tive degree of lateral oscillation of the body. |F|, the peak
leg force which is available in many animal data sets,
provides a third measure, and |0|, the peak yaw angle
deviation (or ||, the peak angular velocity), is a final
performance measure.

0.05 0.1
0.05 0.1
Fig. 4. COM path, velocity, yaw, and leg force
and body moment variations for steady gait of
the fixed COP, spring-leg model with parameters
characteristic of Blaberus discoidalis running at
Joos 04 the preferred speed 0.22 m s~!. See Sect. 4 for
time (sec) parameter values

4 Comparison with Blaberus discoidalis gaits
4.1 Parameter estimates

Parameters characteristic of the death-head cockroach
Blaberus discoidalis were selected (Full and Tu 1990,
1991): m=0.0025kg,/ =2.04 x 10~ kgm?,/=0.01 m,d =
—0.0025m,k=2.25-3.5Nm™!, and f= 1radian (57.3°).
I and m may be directly measured, and choices of / and f§
are constrained by the requirement that stride length
Ly=4cos f~0.022m; see Fig. 4. Stiffnesses were chosen,
via k., to given a reasonable average forward speed
range for steady gaits (above (v)=0.15ms™!), and to
ensure that leg compressions at midstride were not
excessive.

4.2 Blaberus at the preferred speed

Figures 4 and 5 show typical COM path and velocity,
body angle, and fore—aft and lateral forces and moments
in steady gait for the fixed- and moving-COP models;
analogous data from experimental trials are shown in
Fig. 6.

It is immediately striking that the phased oscillatory
fore—aft and lateral force and velocity patterns produced
by the passive leg springs closely resemble those
observed in cockroaches (e.g., Full and Tu 1990; Full
et al. 1991; Kram et al. 1997): compare the top four
panels of Figs. 4-6. However, the fixed-COP model
(Fig. 4) produces yaw oscillations of sinusoidal rather
than the observed cosinusoidal form, due to body tor-
ques incurred by the fixed ‘hip.” This is remedied by
allowing a moving COP, as in Fig. 5, for which d was
specified by (3), resulting in variation of d = £0.002 m:
compare the bottom panels of Figs. 5 and 6. For these
computations, we took [ =0.008 m and
k=3.52 N m™!; again / and B are constrained by the
stride geometry; see Fig. 5.
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velocity magnitudes are good, with model values being
~30% higher than experimental values. Model fore—aft
magnitudes differ more appreciably, being lower than
experimental by factors of 2-10 when compared over a
large data set (Full and Tu 1990; Full et al. 1991,
Kram et al. 1997). However, we note that there is
significant variation among trials of individual animals,
and among animals, even after scaling to the mass
value (m = 0.0025 kg) used in the model. The data
shown as solid curves in Fig. 6 were reconstructed for a
typical run of one animal as in Garcia M, Full R,

of Full et al. (1991) and Kram et al. (1997) These data
were selected for their clean phase relationships, al-
though the fore—aft values are unusually high, and we
include fore—aft data from Full and Tu (1990) for a
second animal, closer to the mean values adopted in
Kubow and Full (1999), to illustrate the variability.
We also note that the LLS model describes only
horizontal plane dynamics, while Fig. 6 is derived from
full three-dimensional motions. This may account for
the underestimate of fore—aft forces and velocity varia-
tions by our models. Moments and yaw angles are
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significantly lower than observed (by factors of 10-20);
we ascribe this primarily to the collapse of the leg sup-
port tripod to a single virtual leg, as described in Sect.
4.3.

With the provisos noted here, we conclude that the
LLS model, with appropriate parameters, can reason-
ably capture the dynamics of one insect species. We have
already noted that it explains the robustly stable running
behavior of typical insects in purely mechanical terms
and allows one to rationally define a preferred speed at
which the performance measure |A| achieves its mini-
mum, corresponding to optimal stability with respect to
all variables. Referring to Fig. 3, this occurs in the range
0.2 <v<0.3ms™ !, as observed for Blaberus.

4.3 Tripod versus an effective leg

Any system of varying forces in the plane can be
reduced, at each instant, to a single resultant force and
moment acting at the COM (Meriam and Kraige 1997),
but these may not correspond to forces directed from
‘feet’” F and F’, fixed in inertial space, to a ‘hip,” P,
attached to the moving body, throughout the stance
phase. We have already noted that the fixed-COP model
fails to reproduce experimentally observed moments and
hence that yaw oscillations display incorrect phasing.
Here we consider how well the moving-COP model
reproduces trial data from running cockroaches (Full
and Tu 1990; Full et al. 1991; Kram et al. 1997). The
moment at the COM, effective moment arm d(¢), and
resultant force vector orientation relative to the body for
model and trial data are compared in Fig. 7.
Experimental quantities were computed by summing
the moments due to individual foot forces (Ting et al.

Fig. 7a—f. Moment (a), moment arm (b),
and orientation of force vector relative to
body axis (c¢) through left and right strides
for the moving-COP model compared with
results from the data of Fig. 6 (d—f). The
moment arm was found by calculating the
net force and moment on the body at each

instant and then calculating the position
along the body centerline where the net force
must act in order to produce the net moment

005 0.1 0.15

time (sec)

1994). Note that while d(¢) behaves qualitatively as in the
moving-COP simulation of Fig. 5, its magnitude is sig-
nificantly higher; indeed, at touchdown and liftoff, |d|
exceeds the insect’s body length. In the model, drp = 0.4/,
and, as noted above, increases in parameter d; of (3) lead
to an oscillatory yawing instability associated with a low
I/d value. The model is thus incapable of producing the
larger moment variations characteristic of the animal.

Figure 7 also reveals that the direction of the resolved
tripod forces relative to the body axis varies significantly
more than the leg angle for our bipedal model, being
oriented at &~ +20° and +160° at touchdown and liftoff,
respectively. We conclude that the tripod support phase
provides greater flexibility in moments and forces than a
single passive virtual leg affords.

4.4 Gait variation with speed

If all physical parameters remain constant, then £ drops
as v 2R <v>_2 with increasing speed. The resulting
decrease in lateral, fore—aft and yaw velocity variations
leads to a drop in maximum foot forces; see Fig. 8c.
Experimental evidence suggests instead an increase in
force magnitude of about 100% in the speed range 0.05
to 0.55 ms~!. This implies that the virtual leg stiffens
and/or lengthens as (v) increases, leading to a slower
reduction in k. (Holding & constant would lead to a
quadratic force increase with speed, via the time rescal-
ing: this is much greater than observed.) Moreover, fixed
/ and f, in particular, imply fixed stride length and
linearly increasing stride frequency, so in order to
reproduce the stride length/frequency data of (Ting et al.
1994, Fig. 2; see Fig. 8a,b), we must adjust one or both of
these parameters in the range (v) > 0.25ms™".
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force |Fy| . Variations, and d maximum eigenvalue magnitude ||,
with speed for the fixed- and moving-COP spring-leg models with
parameters characteristic of Blaberus discoidalis. Dashed-dotted lines,
fixed COP; dashed lines, moving COP; both with constant physical

60

We propose that increasing muscle activity with speed
leads to modest increases in k, and, at higher speeds, for
which muscle contraction rates may provide frequency
limits, increases in / and/or decreases in f§ result from
joint angle changes. We therefore constructed a family
of gaits over the speed range 0.10ms~' to 0.55 ms~! by
allowing stiffness & to increase linearly with speed from 1
Nm™! to 225Nm™!, as (v) rises to 0.25 ms~!, re-
maining fixed thereafter, and increasing / from 0.0092 m
to 0.0121 m and decreasing f§ from 1.3 radians to 0.73
radians throughout the entire speed range. The latter
were varied linearly above 0.25 m s~!, and slightly more
slowly from 0.1 ms~' to 0.25ms~! (keeping them con-
stant in this range led to nonsmooth stride-length and
frequency curves, with frequency decreasing above
0.25ms™!). The 20-30% variations lie within those ob-
served in running insects (Jindrich and Full 1999). The
lower limit for £ was dictated by the requirement that

parameters. Solid curves, fixed COP with varying parameters as
described in text. Filled circles are observations from Ting et al. (1994)
and the thicker gray line in ¢ is an estimate of lateral forces from
animal data (rescaled for m = 0.0025 kg), as explained in the text

ve < 0.1ms~!. Figure 8 shows the results of this proce-
dure for the fixed-COP model, along with fixed param-
eter studies for both fixed- and moving-COP cases. We
also show the maximum lateral force magnitudes in
comparison with estimates from experimental data of
Full et al. (1991) To create this estimate, we used force
data from single legs (normalized by animal weight) to
fit a curve of maximum lateral force as a function of
speed for each leg, and then summed the predicted leg
forces to estimate the whole-body lateral force as a
function of velocity.

We also note that the physical parameter variations
employed to produce the matched data of Fig. 8 result
in improved stability: the (largest-magnitude) eigenvalue
remains nearer its minimum over a wider speed range
than for constant parameter values: compare Fig. 8d
with the eigenvalue plots of Fig. 3. Thus, tuning spring
constant, leg length, and touchdown angle results in
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Table 1. Summary of parameter scaling effects on gait. The new
performance measures are equal to the appropriate column entry
multiplied by the old ones, depending on whether k, m, I, or 1/d
changes. The scale factors are computed as follows: R,, = my/my,
Ry =ka/ki, Ry = I/11, and Ry = Ld,/I\d. Stiffness scaling (k) is
exact, while mass (m), length (/), and inertia/pivot (I /d) scalings are
good approximations over a reasonable parameter range. Note that
the scaling effects can be superimposed linearly to determine the
effects of changing several parameters

New Pure ki —ky mi—m L1 —15L IL/d —L/d Old
geom alone  alone alone alone
o =1 1 See text  See text  See text x A
(52 1 1 1 1 ~1 61
P R, Ry 1 R, 1 F
0, 1 1 R, R, Rgl 0,
o RO Rl R, R;! o3
V5 Rl/() R]/2 R71/2 R, 1 1
m k m

superior stability over the speed range than could be
obtained were these parameters to remain fixed. Similar
observations can be made when parameters are varied in
the Kubow—Full model (Kubow and Full 1999).

5 Parameter dependence and scaling

For the results presented above, we estimated and then
fixed parameters. We now ask how parameter changes
with respect to those chosen for the cockroach affect
performance, and establish plausible ranges for the
nondimensional parameters of (2). We first consider the
effects on model gaits of geometrical scaling (McMahon
1984), in which physical parameters change in concert,
and then examine the effects of individual variation.
More extensive studies appear in Schmitt and Holmes
(2001, Sect. 3).

5.1 Geometric scaling

For geometrically similar animals, m ~ I3 and I ~ [°. If
we additionally assume that preferred speed scales with
Froude number (McMahon 1984), so v> ~ gl, and that
leg stiffness scales as k ~ /> (McMahon 1984), then the
nondimensional parameter vector i = (k,I,d,f) of (2)
remains constant and ¢ ~ v//7. (Note that this is based
on A.V. Hill’s proposal (Hill 1950) that muscle force
ml /> ~ I’v? scales as ki, and the use of v* ~ gl. Elastic
similarity yields the same result (McMahon and Bonner
1983; Blickhan and Full 1993)). Such animals should
therefore display similar fore—aft, lateral, and yaw
oscillations, normalized for size (~/), accelerations
should be similar in magnitude, forces should scale as
m ~ I3, and eigenvalues should remain constant, imply-
ing identical stability properties in that perturbations are
damped at the same rate per stride. Thus only |F| among
our performance measures varies — ||, || and |0| remain
constant. This is summarized in column 1 of Table 1.
Blickhan and Full (1993) and Farley et al. (1993)
observe that the sagittal-plane monopode should exhibit
similarity of nondimensional ‘relative stiffness’ over a

broad range of animals and adduce data supporting this.
We likewise argue that the nondimensional parameters
of (2) should occupy limited ranges, regardless of body
geometry. We now estimate these ranges, and then
explain the effects on gait of variations in individual
physical parameters.

I ranges. Allowable ranges of I can be estimated by
taking the moment of inertia of a uniform sphere of
radius R = % (a lady bug) to give a lower bound, and of a
rod of length 4/ (a stick insect) for an upper bound:

s 2 /N 1
11°Wz§m<§> '7:0'1’

1
—=1.33.
mi?

(Direct measurements for the death-head cockroach
Blaberus discoidalis (Ting et al. 1994) yield the estimate
1=0.82+0.2)

. 1 5
Ihigh ~ Em(4l) .

B and d ranges. Both f and d can be expected to vary
within individual animals as they adjust stride length
with speed, as well as across species (cf. Ting et al.,
and see Fig. 8). Since joint angle variations are
generally constrained to 25-125° (McMahon 1975;
Full and Ahn 1995; cf. McMahon 1984), values of f
of 0.6-1.2 radians seem reasonable. We initially
assumed that since foot forces are approximately
directed along the legs in certain insects (Full et al.
1991) and legs are attached near the COM, the
effective pivot position is unlikely to stray far from
the COM, suggesting that |d| remains small, but
evidence presented in Fig. 7e disputes this and it is
therefore difficult to estimate d.

k ranges. The parameter k£ depends on mass, speed,
effective leg length, and stiffness &, the latter being
perhaps the most difficult to estimate. ‘Order-zero’
behavior of £ can be obtained as follows. Since forward
progression is achieved by sequential pivoting about the
feet, leg cycle frequency f; is proportional to angular
velocity about the stance foot. Following Blickhan and
Full (1993) and taking the linear spring approximation

fs = /k/m, we find
f.fzﬁzconst. , (6)
m v

although this neglects the effective potential due to
conservation of momentum about the stance foot, which
causes effective stiffening and frequency increase, and
the fact that COM velocity v does not remain normal to
the leg (Fig. 4). An upper bound on admissible magni-
tudes can be obtained by computing the critical k. above
which steady gaits do not exist. We find
ke ~ (n/2 — B)"%, with an increase from 1 to 9 as
varies from 0.6 to 1.2 radians (Schmitt and Holmes
2001). (For = m/2 the leg is flung sideways, critical
speed v, drops to zero, and k. — o0.)
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5.2 Departures from geometric scaling:
Individual parameter changes

As noted above, steady gaits for fixed g = (l;,IN7 d, B)
follow identical paths, only differing via time rescaling.
Thus, given a gait, ', for one set of physical parameter
values, we can rescale to find the gait, I';, for any other
values which leave ji unchanged. We may use this device
to predict gait scaling in response to individual param-
eter changes.

Effects of changes in stiffness k. Since k enters only &, we
may keep [t constant by adjusting v alone, thereby
incurring a timescale change to keep ¢ constant.

Denoting variables for gaits I'y and I', with appropriate
subscripts, and proceeding as detailed in Schmitt and
Holmes (2001), we compute the scale changes summa-
rized in column 2 of Table 1. As k increases, the critical
speed v, and preferred speed increase, and forces at the
preferred speed (based on optimal stability) increase.
The other performance measures, including the maxi-
mum relevant eigenvalue, remain constant.

Effects of changes in mass m. Changes in mass leave ft
unchanged only if v and 7 are simultaneously adjusted.
However, for small d, the first (translational) equation of
(1) is only weakly influenced by the second (rotational)
equation. We may therefore allow I to change with m,
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Fig. 11. Effects of changes in |//d| on stability. Forward speed (v)
ranges over which gaits with a specified stability exit (maximum
|| < 1 having the value indicated), decrease as |//d| becomes small or
large. Eigenvalue magnitude contours computed for a fixed-COP
model with d = —0.0025 m. The typical operating region for Blaberus
(assuming d = —0.0025 m) — inferred from measurements of Kram et
al. (1997) — is shown in gray

holding / fixed, and need only compensate yaw angle 0
and angular velocities via 0,/0, = I, /I, = my/m cf. the
second equation of (1). This leads to the approximate
scale changes summarized in column 3 of Table 1. Here,
an increase in mass leads to decrease in critical and
preferred speeds, and in yaw angles and angular veloc-
ities at the preferred speed, and eigenvalue magnitudes
decrease at rescaled speeds. See Fig. 9 for an example of
how gait families transform under this scaling.

Effects of changes in leg length [. Changes in leg length
leave f unchanged only if v, I, and d are all adjusted, but
again we may obtain an approximate scaling relation by
compensating yaw angles to account for the fact that the
nondimensional moments causing yawing are propor-
tional to d. Thus 0,/0, = I,d»/Ld, =15/, and we
obtain the approximate scaling summarized in column 4
of Table 1. (Note that the timescale does not change in
this case, since ¢ = vyt /l; = vatp /15, but that all dimen-
sional quantities involving lengths are affected.) See
Fig. 10 for an example. Here, increases in [/ cause
increases in critical and preferred speeds, as well as
increases in forces, yaw angles, and angular velocities at
the preferred speed; however, eigenvalue magnitudes
decrease at rescaled speeds.

These figures illustrate that the approximate scaling
relations are acceptable (the maximum error is 8.8% in
these cases). As expected, stiffness scaling predictions are
exact, and an analog of Figs. 9 and 10 simply shows gait
curves translated horizontally, with the exception of
forces which increase with k. Further details and exam-
ples are given in Schmitt and Holmes (2001).

Effects of changes in I and d. We do not develop scaling
laws for I and d individually, since, for small d, these

parameters have little effect on translation dynamics and
hence on critical velocity v, or on d versus v gait curves.
Their main effects are on yaw angle, 0, rate, o, and
stability, via the ratio I /d (or equivalently 7/d). Low I/d
promotes ‘lively’ yawing behavior, with a Hopf bifurca-
tion (Guckenheimer and Holmes 1983) apparently
occurring at a critical speed value, with oscillatory
instability above this speed (although we have seen this
only for 7/d < 0.32, a range in which it is very difficult to
find the fixed points). For high 7/d the behavior is
‘sluggish; with w =~ constant and the angular velocity
eigenvalue approaching 1, as in the limiting case d = 0.
For each speed in the admissible range, there is thus an
optimal 7/d value for which the stability performance
measure |A| is minimized, much as a minimum emerges
as a function of speed in the constant physical parameter
gait families of Figs. 3, 9, and 10. Figure 11 illustrates
this, showing a contour plot of eigenvalue magnitudes
over the I/d-speed ({(v)) plane, with regions indicated in
which the stability eigenvalues are at least as small in
magnitude as the values shown.

The effects of these physical parameters on the per-
formance measures and preferred speed V' are summa-
rized in Table 1. Note that the COM-velocity heading
angle 6 remains fixed under all specified parameter
changes, but that stability properties, via ||, change
with m, I, and I/d, as does the speed at which maximal
stability is obtained (Fig. 11).

6 Discussion

In this paper we have described a simple three-degree-of-
freedom mechanical model for the horizontal plane
dynamics of rapidly running legged animals. The leg(s)
involved in each stance phase are modeled by a single
virtual or effective passive elastic member, the ‘foot’ of
which is set in contact with the ground according to a
preset feedforward protocol. The resulting bipedal LLS
model exhibits asymptotically stable periodic gaits —
similar to those of insects —over a range of forward speeds.

One of our major findings is that the LLS model be-
longs to a class of mechanical models for which neural or
other detailed feedback is not necessary for stability. The
purely mechanical effect of angular momentum transfer
from foot to foot can produce strong asymptotic sta-
bility of COM heading and body angular velocity. The
moments involved in this process are primarily due to
lateral forces generated at the feet, indicating that lateral
and yaw oscillations, which might seem inefficient, are
necessary for stable gaits. (In Schmitt and Holmes (2001)
we show that a model in which prescribed foot forces are
not allowed to rotate with the body during stride has
only unstable gaits.) In mechanics terms, for piecewise
holonomic models such as this one, the stability is as-
sociated with the globally nonholonomic nature of the
system (Ruina 1998), which arises from intermittent foot
constraints. Since the model conserves energy and has no
directional sensing, its speed and orientation are only
neutrally stable: after perturbation, straight running re-
sumes at a new angle and speed.



We also find that the stability properties vary over the
allowable speed range for which gaits exist, and that a
stability optimum occurs, corresponding to maximal
decay rate for perturbations in heading and angular
(yawing) velocity. This suggests a preferred speed based
on stability considerations. For the case of the cock-
roach, this minimum falls in the observed range of
preferred speeds.

In spite of its extreme simplicity and idealization (e.g.,
the assumption of energy conservation), the model, with
appropriate parameter choices, reproduces with accept-
able accuracy the horizontal-plane translational forces
and velocity variations observed in running cockroaches
at the preferred speed. Due to the collapse of the stance
support tripod to a single virtual leg, however, moments
and yaw variations are significantly underestimated. The
animal evidently has greater flexibility in generating
large moments without large net forces, than a model
with only a single effective leg along which forces are
supposed to act. This may be important in rapid turning,
and there is evidence (Jindrich and Full 1999) that
cockroaches adjust their individual foot forces in such
maneuvers. In this regard, we have shown (Schmitt and
Holmes 2000a) that both the fixed- and moving-COP
models can execute realistic turns if one allows transient
(positive) changes in the parameter d — during stance —
on the leg opposite to the desired turn: such changes
model ‘favoring the front outside leg.’

We conclude that the LLS model can reproduce and
help explain several aspects of locomotion dynamics in
cockroaches. It lends support to our conjecture that the
primary task of the neural central pattern generator in
fast running might be to ‘set the pace’ and determine
long-term heading and speed, leaving body mechanics to
take care of stability in the short term (also see Full and
Koditschek 1999). Moreover, we believe that this model
can assist in understanding motion control in rapidly
running animals more generally. Our scaling and pa-
rameter studies provide a basis for work, already in
progress, to estimate parameters for running and walk-
ing animals over a range of sizes and shapes and to
determine the extent to which: (1) the LLS model can
qualitatively predict their behavior and (2) in particular
how various parameters scale with size and gait style.

This work also provides a basis for more realistic
modeling, incorporating multiple legs and/or better vir-
tual leg specifications, active as well as passive joint
torques and stiffnesses to better represent muscle groups,
and models of sensory feedback and neural control. For
example, inclusion of energy losses via dissipation, and
its replenishment via muscle action, enables speed se-
lection and speed stabilization (Schmitt J and Holmes P,
unpublished work, 2002). In this and other cases, the
conservative model can form an armature on which
detail can be wound; in the terms of Full and Kodit-
schek (1999), it provides a template for more detailed
and realistic models to build on.
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