
Vol.:(0123456789)

European Journal of Applied Physiology (2024) 124:1807–1820 
https://doi.org/10.1007/s00421-023-05405-y

ORIGINAL ARTICLE

Blood flow restriction increases necessary muscle excitation 
of the elbow flexors during a single high‑load contraction

Alex A. Olmos1 · Tony R. Montgomery Jr.1 · Kylie N. Sears1 · Taylor K. Dinyer1 · Shane M. Hammer1 · 
Haley C. Bergstrom2 · Ethan C. Hill3 · Pasquale J. Succi2 · John Lawson3 · Michael A. Trevino1 

Received: 3 July 2023 / Accepted: 9 December 2023 / Published online: 18 January 2024 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Purpose  To investigate the effects of blood flow restriction (BFR) on electromyographic amplitude (EMGRMS)–force rela-
tionships of the biceps brachii (BB) during a single high-load muscle action.
Methods  Twelve recreationally active males and eleven recreationally active females performed maximal voluntary con-
tractions (MVCs), followed by an isometric trapezoidal muscle action of the elbow flexors at 70% MVC. Surface EMG was 
recorded from the BB during BFR and control (CON) visits. For BFR, cuff pressure was 60% of the pressure required to 
completely occlude blood at rest. Individual b (slope) and a terms (gain) were calculated from the log-transformed EMGRMS–
force relationships during the linearly increasing and decreasing segments of the trapezoid. EMGRMS during the steady force 
segment was normalized to MVC EMGRMS.
Results  For BFR, the b terms were greater during the linearly increasing segment than the linearly decreasing segment 
(p < 0.001), and compared to the linearly increasing segment for CON (p < 0.001). The a terms for BFR were greater dur-
ing the linearly decreasing than linearly increasing segment (p = 0.028). Steady force N-EMGRMS was greater for BFR than 
CON collapsed across sex (p = 0.041).
Conclusion  BFR likely elicited additional recruitment of higher threshold motor units during the linearly increasing- and 
steady force-segment. The differences between activation and deactivation strategies were only observed with BFR, such 
as the b terms decreased and the a terms increased for the linearly decreasing segment in comparison to the increasing seg-
ment. However, EMGRMS–force relationships during the linearly increasing- and decreasing-segments were not different 
between sexes during BFR and CON.

Keywords  Blood flow restriction · Electromyography · Motor unit control strategies · Biceps brachii

Abbreviations
ANOVA	� Analysis of variance
AOP	� Arterial occlusion pressure
BB	� Biceps brachii
BFR	� Blood flow restriction

BABF	� Brachial artery blood flow
CON	� Control
EMGRMS	� Electromyography amplitude
MVC	� Maximal voluntary contraction
MU	� Motor unit
mCSA	� Muscle cross-sectional area
N-EMGRMS	� Normalized electromyographic amplitude
sFAT	� Subcutaneous fat

Introduction

Blood flow restriction (BFR) is used during exercise to 
partially restrict arterial inflow and completely occlude 
venous outflow, via a tourniquet or cuff applied over the 
proximal portion of the training limb (Scott et al. 2015; 
Patterson et al. 2019). Previous studies have reported that 
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when matched for the same relative low-load, training 
with BFR set at 120–270 mmHg resulted in greater mus-
cle hypertrophy (Yasuda et al. 2015; Takarada et al. 2002) 
and strength (Takarada et al. 2002; Yasuda et al. 2015) 
compared to non-occluded exercise. Additionally, a recent 
meta-analysis indicated that electromyographic amplitude 
(EMGRMS) was increased to a greater degree during low-
load exercise when BFR was applied compared to similar 
non-occluded relative load exercise (Centner and Lauber 
2020). Greater increases for EMGRMS may reflect the addi-
tional recruitment of higher threshold motor units (MUs) 
(Martinez-Valdes et al. 2018), which could partially explain 
why utilizing BFR during low-load training can result in 
greater muscle hypertrophy than without BFR as increases 
in EMG activity have been associated with single fiber and 
whole muscle growth (Häkkinen et al. 2001; Seynnes et al. 
2007). Despite research indicating benefits of utilizing BFR 
with low-load exercise, less is known regarding the influence 
of BFR during high-load exercise. For example, Behringer 
et al. (2018) reported four sets of unilateral eccentric knee 
extensions at 75% of one repetition maximum to volitional 
failure with femoral BFR set at 20 mmHG below individual 
occlusion pressure resulted in metabolic stress, hormonal 
responses, muscle damage markers, and muscle swelling 
that were similar to non-BFR despite ~40% less repetitions 
(85.6 ± 15.4 vs. 142.3 ± 44.1). However, the authors did not 
record any EMG measures. Therefore, information regard-
ing the effects off BFR on neuromuscular behavior at higher 
loads is still lacking.

We are aware of only one study that has examined the 
effects of BFR on neuromuscular behavior during acute 
high-load isometric exercise (Cayot et al. 2016). Cayot et al. 
(2016) reported BFR at 130% systemic blood pressure did 
not alter EMGRMS of the vasti muscles (i.e., quadriceps) 
during one set of four, five second isometric step contrac-
tions at randomly ordered submaximal loads (20, 40, 60, and 
80% maximal voluntary contraction [MVC]) that were sepa-
rated by 30 s of rest. Considering BFR commonly increases 
EMGRMS during low-load exercise performed with slower 
rates of force development (Yasuda et al. 2008, 2013; Mori-
tani et al. 1992), it is possible that the rate of force develop-
ment influences EMGRMS responses for BFR and non-BFR 
conditions during high-load exercise (Cayot et al. 2016). A 
slower rate of force development may be necessary for dif-
ferences in EMGRMS to manifest with BFR; however, this 
has yet to be investigated. Therefore, more information is 
needed regarding potential benefits of BFR with high-load 
exercise.

Surface EMGRMS is commonly used to assess the level 
of muscle excitation, and is influenced by MU recruitment 
and/or firing rates of active MUs (Farina et al. 2004, 2014). 
However, the surface EMGRMS signal can be influenced by 
other factors, such as the quantity, length, and diameter of 

the muscle fibers that comprise the signal, distance from the 
electrode to the muscle fibers, and the amount of subcutane-
ous fat (sFAT), among others (Farina et al. 2010). There-
fore, it has been suggested that EMGRMS–force relationships 
should be examined on a subject-by-subject basis (Farina 
et al. 2004). Previous studies have demonstrated that log-
transforming the EMGRMS–force relationships during lin-
early increasing and decreasing muscle actions and applying 
simple linear regression provides a quantitative and reliable 
method for describing the individual patterns, and allows 
for subject-by-subject comparisons (Hill et al. 2023; Jeon 
et al. 2023; Trevino and Herda 2015; Herda et al. 2010). 
For instance, the log-transformation procedure produces the 
equation Y = a ∙ Xb, where Y = EMGRMS, X = force, a = gain 
coefficient, and b = exponential coefficient. The a term (anti-
log of the y-intercept) can be viewed as a “gain factor” since 
the exponential model forces the a term through the zero, 
and it reflects a downward or upward shift in EMGRMS with-
out altering the linearity of the relationship. Conversely, the 
b term (slope) reflects the rate of change of the Y variable 
(EMGRMS) in relation to the X variable (force). Previously, 
cross-sectional studies examining the a and/or b terms from 
the log-transformed EMGRMS–force/torque relationships 
during isometric trapezoidal muscle actions have been 
sensitive to MU activation and muscle action-related dif-
ferences among chronic training statuses (i.e., aerobically 
trained, resistance-trained, sedentary) during single (Trevino 
and Herda 2015) and repeated contractions to fatigue (Jeon 
et al. 2023), and during prolonged contractions following 
short-term (5 weeks) endurance cycling training (Olmos 
et al. 2023a). Furthermore, Herda et al. (2009) reported a 
good day-to-day reliability for the a and b terms from the 
log-transformed EMGRMS–torque relationships across multi-
ple days, during numerous contractions loads. Therefore, the 
aforementioned studies suggest that this analytical method is 
sensitive to acute and longitudinal changes in neuromuscu-
lar behavior. However, no study has examined the influence 
of BFR on EMGRMS–force relationships during a high-load 
isometric trapezoidal muscle action. Furthermore, utiliz-
ing an isometric trapezoidal muscle action to examine the 
effects of BFR may provide additional information regard-
ing neuromuscular adjustments, as it has been reported that 
motor control strategies differ during MU activation and 
deactivation, and at steady force (Trevino and Herda 2015; 
Olmos et al. 2023a; Orizio et al. 2010). For example, dif-
ferences in MU recruitment and derecruitment thresholds 
(Herda et al. 2015; Jesunathadas et al. 2010; De Luca et al. 
1982a), as well as MU firing rates during increasing, steady, 
and decreasing muscle actions at the same effort level have 
been reported (Herda et al. 2015; Trevino et al. 2016; Del 
Vecchio et al. 2019).

Although equivocal findings have been reported regarding 
the level of required muscle excitation between males and 
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females across various fatiguing intensities for the biceps 
brachii (BB) (Hill et al. 2016; Kalra et al. 2012; Yoon et al. 
2007; Kavanagh et al. 2020), there are only a few studies that 
have examined sex-related differences in EMGRMS during a 
single high-load muscle action not taken to failure (Bilodeau 
et al. 1992; Pradhan et al. 2020). However, these studies did 
not account for the normalization of EMGRMS. Normalizing 
EMGRMS reduces variability in the measurement (De Luca 
1997; Farina et al. 2010) and may provide further insight 
regarding sex-related differences in neuromuscular behavior 
at a targeted force (Diong et al. 2022). Therefore, the pur-
pose of this study was to examine the influence of BFR on 
EMGRMS–force relationships in males and females during a 
70% MVC isometric trapezoidal muscle action of the BB. 
Although high-load exercise to volitional failure with BFR 
has induced metabolic stress, hormonal responses, muscle 
damage markers, and muscle swelling similar to non-BFR 
(Behringer et al. 2018), it remains unknown if utilizing BFR 
during a single higher load muscle action can alter EMG 
responses without volitional failure (Kolind et al. 2023; Wer-
nbom et al. 2009). Thus, we examined a load that is com-
monly used in applied settings (Maestroni et al. 2020; Bandy 
and Hanten 1993) is similar to the methods of Behringer 
et al. (2018), and recruits the majority of the MU pool (96%) 
for the BB (De Luca and Kline 2011). We hypothesized that 
BFR would elicit divergent MU control strategies, such as 
greater muscle excitation at steady force and alterations in 
the linearity (b terms) and gain (a terms) of the EMGRMS 
patterns compared to a non-BFR treatment. In addition, we 
hypothesized that females would require a greater level of 
muscle excitation at the targeted force for both treatments to 
compensate for smaller muscle fibers and MU twitch forces 
compared to the males, due to smaller muscle cross-sec-
tional areas (mCSA) previously reported for the BB (Miller 
et al. 1993; Nonaka et al. 2006). It has been reported that 
sFAT can low-pass filter EMG signals (Bartuzi et al. 2010; 
Farina et al. 2004). Therefore, sFAT of BB was examined 
to provide confidence that any treatment- and/or sex-related 
differences for EMGRMS parameters were not the result of 
low-pass filtering.

Methods

Subjects

Twelve healthy males (mean ± SD; age: 25 ± 4 years, 
height: 177.59 ± 6.72 cm, body mass: 90.64 ± 8.90 kg) 
and eleven healthy females (age: 22 ± 5 years, height: 
165.74 ± 5.43 cm, body mass: 61.54 ± 11.72 kg) partici-
pated in this study. All participants were currently resist-
ance training (6.41 ± 2.89 h/wk) and had more than 1 year 
of resistance training experience (6.57  ±  4.14  years). 

Additionally, participants had reported no ongoing neuro-
muscular diseases, or musculoskeletal injuries specific to 
the shoulder, elbow, or wrist. The sample size was based on 
a recent investigation that reported sex-related differences 
for N-EMGRMS during a 70% MVC isometric trapezoidal 
contraction (Olmos et al. 2023b). This study was approved 
by the University’s institutional review board for human 
subject’s research. Written consent was obtained from all 
participants before their participation.

Experimental design

This study used a randomized cross-over design. Participants 
reported to the laboratory on three occasions separated by a 
minimum of 2 days, but no more than 7 days. All experimen-
tal visits were scheduled at the same time of day (±1 h) from 
their original testing visit. Visit one consisted of ultrasonog-
raphy for the BB to determine sFAT, and familiarization of 
MVCs and the isometric trapezoidal muscle actions for the 
elbow flexors with blood flow restriction (BFR) and without 
(control [CON]). Visits two and three were randomized for 
either the CON or BFR treatments, where participants per-
formed MVC followed by a submaximal isometric trapezoi-
dal muscle action of the elbow flexors at 70% MVC. EMG 
was recorded from the BB during the BFR and CON visits. 
Participants were instructed to refrain from any alcohol and 
caffeine consumption, and physical activity for 24 and 48 h, 
respectively, before each visit.

Ultrasonography

Muscle cross-sectional area (mCSA) of the BB and sFAT 
overlying the BB was evaluated via ultrasonography using a 
portable brightness-mode (B-mode) Logiq® S8 ultrasound 
device (LOGIQ S8 GE Ultrasound System; GE Healthcare, 
Milwaukee, WI, USA) with a 4–15 MHz multi-frequency 
linear array probe (ML6-15-D; 50 mm field of view; GE 
Healthcare system). Scan depth was set to 5 cm, gain was 
58 dB, and transducer frequency was 17 MHz to optimize 
image quality, and was held constant across all subjects. 
During testing, participants were examined on a padded 
table in the supine position with their arm abducted, relaxed, 
and supported on a wooden table, and their forearm extended 
at the elbow. After 10 min of rest to allow fluid shifts to set-
tle (Berg et al. 1993), a generous amount of water soluble 
transmission gel was applied to the skin to reduce possible 
near field artifacts and enhance acoustic coupling, and three 
panoramic images were captured at half the distance from 
medial acromion to the fossa cubit (similar placement as the 
EMG sensor). Great care was taken to limit the compression 
of the muscle with the probe. ImageJ software (National 
Institutes of Health, Bethesda, MD) was used to analyze all 
ultrasound images. Each image was scaled from pixels to 
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cm using the straight line function. For mCSA, the muscle 
was outlined using the polygon function, with care taken 
to exclude the surrounding fascia. Furthermore, using the 
straight line function, sFAT was quantified as the distance 
between the skin and the superficial aponeurosis of the BB.

Isometric strength testing

Isometric strength assessments of the dominant elbow flex-
ors were performed on an isometric ergometer (MUC1; OT 
Bioelettronica SRL, Torino, Italy) fitted with a load cell 
(CCT Transducer, linear, full scale 100 kg) and the signal 
recorded with the force transducer was amplified (500×). 
During testing, participants were seated in an upright posi-
tion with their shoulder and elbow joint flexed at 90° and the 
upper forearm strapped to the ergometer.

For each experimental visit, participants first per-
formed two, 3–4 s held submaximal isometric warm-up 

contractions at 50 and 70% of perceived maximal effort, 
followed by two-to-three MVCs, each separated by 2 min 
of rest. During the MVCs, participants were instructed 
to “pull as hard and as fast as possible” and sustain the 
maximal contraction for 3–4  s. Additionally, verbal 
encouragement was provided during each attempt. The 
MVC with the highest force (N) averaged over a 0.25 s 
epoch determined maximal strength and the force level 
for the subsequent submaximal contractions. Following 
2 min of rest, participants performed an isometric trap-
ezoidal muscle action at 70% MVC with BFR or without 
(CON). For the isometric trapezoidal muscle action trajec-
tory, baseline consisted of 5 s, followed by an increase in 
force at a rate of 10% MVC/s to the desired force level, a 
12 s steady force segment, followed by a decrease of 10% 
MVC/s to baseline. Therefore, the duration of the 70% 
contraction lasted 26 s (Fig. 1). During each isometric 
trapezoidal muscle action, participants were instructed to 

Fig. 1   The electromyographic 
(EMG) signal from the Biceps 
Brachii (BB) during the 70% 
isometric trapezoidal contrac-
tion from one participant (top). 
The force signal (bottom) is 
overlaid onto the trapezoidal 
template as it appeared for the 
participant during the trial. 
The vertical lines represent the 
(A) linear force increasing, (B) 
steady force, and (C) linear 
force decreasing segments of 
the 70% isometric trapezoidal 
contraction. The EMG signals 
that corresponds with the con-
traction segments (A–C) were 
selected for analysis
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maintain their force output as accurately as possible to the 
target force presented digitally in real time on a computer 
monitor. For the BFR visit, the occlusion cuff was inflated 
immediately prior to performing the trapezoidal muscle 
action and remained inflated during the entirety of the 
contraction. The occlusion cuff was immediately deflated 
following the completion of the muscle action. A second 
attempt was given after 90 s if a participant was unable to 
sustain their target force output on the first trial.

Blood flow restriction

During the BFR condition, participants performed the iso-
metric trapezoidal muscle action with a (5 cm) pneumatic 
nylon cuff (model: SC5D™, Hokanson®, Bellevue, WA, 
USA) applied around the most proximal portion of the con-
traction arm. Before starting the session, arterial occlusion 
pressure (AOP) was determined in the supine position for 
each participant. The cuff pressure was steadily increased 
at a rate of 5 mmHg per sec until resting brachial arterial 
pulse was no longer detected (100% arterial occlusion), and 
then reduced slowly at a rate of 1–2 mmHg per second until 
reappearance of pulse velocity. This process was complete 
within 30 s. AOP was assessed by Doppler ultrasound sys-
tem (LOGIQ S8; GE Medical systems, Milwaukee, WI) 
equipped with a multi-frequency linear array transducer 
operating at 10 MHz. During the submaximal muscle action, 
the cuff pressure was inflated to 60% of each individual’s 
AOP, which is in agreement with the previous studies that 
have examined the acute effects of BFR on neuromuscular 
behavior (Hill et al. 2022, 2023).

Electromyography

During the trapezoidal muscle actions, surface EMG signals 
were recorded from the BB using a 5-pin array sensor (Del-
sys, Boston, MA, USA). Each pin has a diameter of 0.5 mm 
and is positioned at the corners of a 5 × 5 mm square, with 
the fifth pin in the center. Prior to sensor placement, the 
surface of the skin was prepared by shaving, removing 
superficial dead skin with adhesive tape, and sterilized with 
alcohol. The sensor was placed over the muscle belly of the 
BB (Ye et al. 2015; Petersen et al. 2002; Kidgell et al. 2010). 
The reference electrode was placed over the seventh cervical 
vertebrae at the neck. The signals recorded from the four 
pairs of the sensor electrode were differentially amplified 
and filtered with a bandwidth of 20 Hz–9.5 kHz. Channel 
1 of the four differential EMG signals was selected for the 
time-domain (amplitude) analyses (Dimmick et al. 2018; 
Trevino et al. 2022; Olmos et al. 2023a) and used for all 
subsequent analyses and statistical comparisons.

Signal processing

The EMG (μV) and force (N) signals were simultaneously 
sampled at 2 kHZ with a National Instrument compact data 
acquisition system (NI cDAQ-9174) during each contrac-
tion. All subsequent signals were stored and processed 
off-line with custom-written software (LabVIEW version 
18; National Instruments, Austin, TX). EMG signals were 
band-pass-filtered (fourth-order Butterworth) at 10–500 Hz. 
During the isometric trapezoidal muscle action, consecutive, 
non-overlapping 0.25-s epochs were analyzed for the force 
and EMG signals. Root mean square (RMS) was used to 
calculate the amplitude of the EMG signals.

Statistical analysis

For the linearly increasing and decreasing segments of the 
isometric trapezoid, simple linear regression models were fit 
to the natural log-transformed EMGRMS–force relationships 
(Trevino and Herda 2015; Jeon et al. 2023). The equations 
were represented as

where ln[Y]  =  the natural log of the EMGRMS values, 
ln[X] = the natural log of the force values, b = slope, and 
ln[a] = the natural log of the y-intercept. This can also be 
expressed as an exponential equation after the anti-log trans-
formation of both sides of the equation

where Y = predicted EMGRMS values, X = force, b = slope 
of Eq.  (1), and a =  the anti-log of the y-intercept from 
Eq. (1). Individual slopes and the y-intercepts were calcu-
lated using Microsoft Excel® version 2016 (Microsoft, Inc., 
Redmond, WA, USA) to allow subject-by-subject analysis. 
For the steady force segment of the trapezoid, EMGRMS was 
calculated by averaging the values from each 0.25-s epoch 
during the steady targeted contraction force, and normalized 
(N-EMGRMS) to the EMGRMS value that corresponded to the 
highest 0.25 s peak force during the MVC for the respective 
visit.

The test–retest reliability for MVC force was assessed 
between the BFR and CON visits with a model 2,1 to cal-
culate intraclass correlation coefficients (ICC), standard 
error of measurement (SEM), and minimal difference 
(MD). Two independent samples t tests were performed 
to examine potential sex-related differences in mCSA and 
sFAT. A two-way mixed factorial repeated-measures anal-
ysis of variances (ANOVA) (sex [male vs. female] × visit 
[CON vs. BFR]) were used to analyze possible differ-
ences in MVC between sexes and experimental visits. 

(1)ln [Y] = b(ln [X]) + ln [a],

(2)Y = aX
b,
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Additionally, a separate two-way mixed factorial repeated-
measures analysis of variances (ANOVAs) (sex [male vs. 
female] × condition [CON vs. BFR]) were used to ana-
lyze possible differences in N-EMGRMS between sexes and 
conditions. Separate, three-way mixed factorial repeated-
measures ANOVAs (sex [males vs. females] × condition 
[CON vs. BFR] × segment [increase vs. decrease]) were 
performed to examine differences in the b and a terms 
from the log-transformed EMGRMS–force relationships 
during the linearly increasing and decreasing segment of 
the 70% MVC isometric trapezoidal muscle action. When 
appropriate, follow-up analyses included independent and 
paired samples t tests with Bonferroni corrections. Lastly, 
to assess if sFAT may have biased EMG parameters, ten 
Pearson’s product moment correlation coefficients were 
calculated comparing sFAT with N-EMGRMS during the 
steady force segment, and the b terms and a terms from 
the log-transformed EMGRMS–force relationships dur-
ing the linear increasing and decreasing segments of the 
isometric trapezoidal muscle actions for CON and BFR, 
respectively. The level of significance was set at p ≤ 0.05. 
Effect sizes for interactions were estimated using par-
tial eta squared and were classified as small (0.01–0.06), 
medium (0.06–0.14), or large (>0.14). Additionally, effect 
sizes for between or within comparisons were estimated 
using Hedges’s g and were classified as minimal (0–0.2), 
small (0.2–0.5), medium (0.5–0.8), or large (>0.8). All 
statistical analyses were performed using SPSS 20 (IBM 
Corporation, Armonk, New York, USA).

Results

Reliability

For the MVCs during the BFR and CON visits, the ICC 
(0.989) indicated excellent reliability (Koo and Li 2016). 
In addition, the SEM was MD were 8.39 and 23.26 N, 
respectively. Only 1 subject out of 23 (4%) displayed a 
difference in MVCs between trials that exceeded the MD.

Maximal strength

There was no two-way interaction (sex  ×  visit; 
F[1,21] = 4.139; p = 0.055; ηp2 = 0.165) or main effect for 
visit (F[1,21] = 3.655; p = 0.070; ηp2 = 0.148) for MVC. 
However, there was a main effect for sex (F[1,21] = 34.900; 
p  <  0.001; ηp2  =  0.624). Males had a greater MVC 
(328.70  ±  53.00  N) than females (200.05  ±  49.64; 
g = 2.50) when collapsed across condition.

Linear increasing and decreasing EMGRMS–force 
relationships

All 92 log-transformed EMGRMS–force relationships were 
significant during the linearly increasing (p < 0.05; r 
range = 0.912–0.995) and decreasing segments (p < 0.05; 
r range = 0.914–0.993) of the isometric trapezoidal mus-
cle actions for BFR and CON. The lower limits of the 
95% CIs constructed around the b terms from the natural 
log-transformed EMGRMS–force relationships during the 
linearly increasing and decreasing muscle actions were 
>1. Therefore, the EMGRMS–force relationships were non-
linear with an upward acceleration in EMGRMS across the 
force spectrum for both muscle actions during BFR and 
CON. For a clearer interpretation of the EMGRMS–force 
patterns for each treatment and segment, the predicted 
N-EMGRMS values were calculated for each subject at the 
targeted force using the exponential equation (Eq. 2 of the 
methods) from 10 to 70% MVC (Fig. 2).

For the b terms, there was no significant three-way 
interaction (sex × condition × segment; F[1,21] = 0.006; 
p = 0.939; ηp2 < 0.001). Additionally, there were no two-
way interactions for segment and sex (F[1,21] = 0.973; 
p  =  0.335; ηp2  =  0.044), or condition and sex 
(F[1,21]  =  2.223; p  =  0.151; ηp2  =  0.096). However, 
there was a significant two-way interaction for condition 
and segment (F[1,21] = 9.109; p = 0.007; ηp2 = 0.303). 
During the linear increase, b terms were greater for 
BFR (1.57 ± 0.38) than CON (1.30 ± 0.29; p < 0.001; 
g = 0.78). For BFR, the b terms were greater during the 
linear increase (1.57 ± 0.38) than the linear decrease 
(1.27 ± 0.28; p < 0.001; g = 0.88) (Fig. 3). For CON, b 
terms were similar between the linearly increasing and 
decreasing segments (1.22 ± 0.22; p = 0.148; g = 0.31). 
In addition, there were no differences in the linear decrease 
segments between CON and BFR (p = 0.366; g = 0.19).

For the a terms, there was no significant three-way 
interaction (sex × condition × segment; F[1,21] = 0.782; 
p = 0.387; ηp2 = 0.036). In addition, there were no two-
way interactions for segment and sex (F[1,21] = 2.513; 
p  =  0.128; ηp2  =  0.107), or condition and sex 
(F[1,21]  =  1.075; p  =  0.312; ηp2  =  0.049). However, 
there was a significant two-way interaction for condition 
and segment (F[1,21] = 5.7324; p = 0.026; ηp2 = 0.214). 
For BFR, the a terms were greater during the linearly 
decreasing (0.43 ± 0.80) than the linearly increasing seg-
ment (0.15 ± 0.29; p = 0.028; g = 0.46) (Fig. 3). There 
were no differences in a terms between segments for 
CON (p = 0.799; g = 0.06), nor were there differences 
between the a terms for CON and BFR (p = 0.115–0.532; 
g = 0.13–0.46).
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Steady force segment

For N-EMGRMS, there was no significant two-way inter-
action (sex  ×  condition; F[1,21]  =  1.872; p  =  0.186; 
ηp2 = 0.082). However, there were main effects for con-
dition (F[1,21] = 4.739; p = 0.041; ηp2 = 0.184) and sex 

(F[1,21] = 5.598; p = 0.028; ηp2 = 0.210). N-EMGRMS 
was significantly greater for BFR (82.50 ± 22.92%) than 
CON (72.27 ± 17.28%; g = 0.50) when collapsed across 
sex. In addition, N-EMGRMS was greater for females 
(81.72 ± 23.44%) than males (68.55 ± 18.01%; g = 0.63) 
when collapsed across conditions (Fig. 4).

Fig. 2   Plotted means and standard error of the mean for the blood 
flow restriction (BFR; closed triangle) and control (CON; open tri-
angle) treatments during the (A) linearly increasing and (B) decreas-
ing segments of the predicted normalized electromyographic 

(N-EMGRMS)–force relationships. *Indicates predicted N-EMGRMS 
during the linearly increasing segment was greater for BFR in com-
parison to CON at 60% (p = 0.034) and 70% MVC (p = 0.019)

Fig. 3   Plotted individual values for the b and a terms from the elec-
tromyographic amplitude vs. force relationships for males (closed 
circles) and females (open circles) from the linearly increasing and 
decreasing segments of the isometric trapezoidal contraction for the 
blood flow restriction (BFR) and control (CON) treatments. Bars 
represent the means, with the 95% confidence intervals and standard 

deviations displayed for the b and a terms, respectively. *Indicates 
that the b terms during the linearly increasing segment were greater 
for BFR in comparison to CON (p < 0.001) and the linearly decreas-
ing segment for BFR (p < 0.001). †Indicates greater a terms for BFR 
during the linearly decreasing segment in comparison the linearly 
increasing segment (p = 0.045)
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Ultrasound measurements

mCSA was significantly greater for males (12.71 ± 2.11 cm2) 
than females (6.38 ± 1.90 cm2; t[21] = 7.545; p < 0.001; 
g  =  3.14). sFAT was not significant different between 
males (0.17  ±  0.08  cm) and females (0.22  ±  0.12  cm; 
t[21] = −1.438; p = 0.176; g = 0.49).

Correlations

Only one of the ten Pearson’s product moment correlations 
(10%) for sFAT among EMGRMS parameters were signifi-
cant. For CON, sFAT was not correlated with the b or a 
terms for the linearly increasing and decreasing segments 
(p = 0.227–0.719; r = −0.079 to 0.262). For BFR, sFAT was 
not correlated with b and a terms during the linearly increas-
ing (p = 0.078–0.171; r = −0.375 to 0.296) and a terms dur-
ing the linearly decreasing segment (p = 0.127; r = 0.328). 
However, sFAT was correlated with the b terms during the 
linearly decreasing segment of the EMGRMS-force relation-
ships for BFR (p = 0.026; r = −0.464). In addition, sFAT 
was not correlated with N-EMGRMS for the CON (p = 0.248; 
r = 0.251) or BFR (p = 0.257; r = 0.246) treatments.

Discussion

Previous studies have only examined the influence of BFR 
on electromyographic parameters at failure during a series 
of repetitive low-load contractions, rapid high-load step con-
tractions, or after an acute bout of exercise (Moritani et al. 

1992; Hill et al. 2022, 2023; Cayot et al. 2016; Yasuda et al. 
2013). Therefore, this study examined MU control strate-
gies during activation, constant force, and deactivation via 
EMGRMS–force relationships during a single high-load 
(70% MVC) isometric trapezoidal muscle action with and 
without BFR for males and females. Significant and novel 
findings as a result of the BFR treatment include: (1) an 
increase in the slope (greater b terms) for the EMGRMS–force 
relationship during the linearly increasing segment of the 
trapezoidal muscle action, (2) greater N-EMGRMS during 
the targeted steady force segment, and (3) a decrease in the 
slope (reduced b terms) coupled with an increase in the gain 
(greater a terms) for the EMGRMS-force relationships during 
the linearly decreasing muscle action compared to the lin-
early increasing-muscle action of the isometric trapezoidal 
muscle action. Another interesting finding was that females 
displayed greater N-EMGRMS at steady force compared to 
the males for both treatments (CON and BFR). The find-
ings of this study suggest that BFR may elicit changes in 
motor control strategies within seconds of starting a con-
trolled high-load contraction, as muscle excitatory input 
(EMGRMS) significantly increased during the first segment of 
isometric trapezoidal muscle action, and remained elevated 
at the targeted force. In addition, the sex-related difference 
for N-EMGRMS at the targeted force suggests that females 
require greater muscle excitation when completing a high-
load contraction at the same relative intensity. The similar 
sFAT between sexes coupled with the lack of correlations 
between sFAT and EMGRMS parameters provides confidence 
the findings were not the result of sFAT filtering of the EMG 
signal (Jeon et al. 2023; Trevino and Herda 2015; Herda 
et al. 2010).

This is the first study to report that BFR alters electro-
myographic behavior during a single muscle action. During 
the linearly increasing segment, the b terms were greater 
for the BFR treatment, indicating EMGRMS increased at a 
greater rate relative to force compared to the CON treatment. 
It is well understood that during submaximal isometric mus-
cle actions, increases in muscle excitation to the motor unit 
pool when augmenting force induce the orderly recruitment 
of MUs by order of size (Henneman et al. 1965; Goldberg 
and Derfler 1977; Milner-Brown et al. 1973; Trevino et al. 
2019), and a simultaneous increase in the firing rates of 
active MUs (Monster and Chan 1977; Farina et al. 2009; De 
Luca and Hostage 2010). However, surface EMGRMS may be 
more representative of the size of the action potentials from 
active MUs, rather than a reflection of firing rate changes 
(Martinez-Valdes et al. 2018). For example, Martinez-Valdez 
et al. (2018) examined surface EMGRMS, the change in MU 
firing rates from recruitment to the targeted torque (neural 
drive), and MU action potential sizes of the vastus lateralis 
and vastus medialis during four contraction intensities rang-
ing from 10 to 70% MVC. Although both muscles received 

Fig. 4   Plotted individual values for normalized electromyographic 
amplitude (N-EMGRMS) from the control (CON) and blood flow 
restriction (BFR) treatments for the males (closed circle) and females 
(open circle) during the steady force segments of the isometric trape-
zoidal contraction. Bars represent the means and standard deviations. 
†Indicates greater N-EMGRMS for BFR than CON (p = 0.041) when 
collapsed across sex. *Indicates greater normalized EMGRMS for the 
females than males (p = 0.028) when collapsed across conditions
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similar neural drive, differences in surface EMGRMS between 
muscles were mainly explained by the size of MU action 
potentials. Therefore, the larger b terms (greater increase 
in EMGRMS relative to force) during the linearly increas-
ing segment of the isometric trapezoidal muscle action 
with BFR may likely suggest the accelerated recruitment of 
higher threshold MUs, which possess larger action poten-
tials, was necessary to match the targeted force trajectory. 
In addition, it is speculated that increased accumulation of 
metabolic byproduct, mechanosensitivity, and nociception 
from venous occlusion during BFR exercise may increase 
feedback input of group III/IV afferent neurons to the central 
nervous system (Yasuda et al. 2010; Moritani et al. 1992; 
Kolind et al. 2023). Initial input of these afferent neurons 
during muscle contraction can excite the flexor MU pool at 
the presynaptic level of group Ia afferents, and/or directly 
synapse with α-motoneurons (Laurin et al. 2015; Kniffki 
et al. 1981; Martin et al. 2008), which may result in the 
recruitment of additional MUs (Martin et al. 2008; Moritani 
et al. 1992). Therefore, during a single non-fatiguing mus-
cle action, it is possible that group III/IV afferent neurons 
may be eliciting a potential feedback response that initially 
warrants greater muscle excitation (EMGRMS) to the motor 
neuron pool to recruit additional MUs when matching the 
desired force levels (Fatela et al. 2019; Moritani et al. 1992; 
Tucker et al. 2009). Consequently, the accelerated increase 
for EMGRMS with BFR may provide support that the addi-
tional recruitment of higher threshold MUs occurred when 
producing the targeted force during the linearly increasing 
segment.

Previous studies have reported differences for EMGRMS 
between BFR and CON conditions during the later stages 
of intermittent low-load acute exercise (Yasuda et al. 2009, 
2013; Moritani et al. 1992; Fatela et al. 2016). This is likely 
the result of their prolonged exercise duration coupled with 
BFR exacerbating the metabolic environment and, conse-
quently, increasing the feedback response of group III/IV 
afferents to augment muscle excitation. Interestingly, the 
current study indicated differences for the b terms between 
treatments during the linearly increasing segment (first 7 s). 
Considering, non-occluded isometric contractions have been 
shown to alter oxygenation upon the onset of higher force 
production (Muthalib et al. 2010), it can be speculated the 
BFR quickly evoked the afferent response due to a combina-
tion of mechanical and metabolic stimuli. It should be noted 
that differences in predicted N-EMGRMS for the current 
study appeared to become larger as the target force increased 
during the linearly increasing segment (Fig. 2). In support, 
a secondary analysis comparing predicted N-EMGRMS at 
10% MVC increments between treatments and segments 
indicated BFR elicited greater values than CON at 60% and 
70% MVC during the linearly increasing segment (p < 0.05; 
Fig. 2). Therefore, using BFR during slowly increasing 

high-load efforts altered motor control strategies during a 
single contraction. Future research should investigate if BFR 
can alter EMGRMS–force relationships during a single iso-
metric trapezoidal muscle action at lower intensities than the 
one utilized for the current study.

In agreement with Moritani et al., (1992), but in contrast 
to Cayoet et al. (2016), N-EMGRMS during the steady force 
segment was greater for the BFR (~83%) compared to the 
CON (~72%) treatment. Cayot et al., (2016) reported no dif-
ferences for EMGRMS of the vasti muscles during BFR when 
performing one set of four, 5 s isometric step contractions at 
various submaximal target intensities (20, 40, 60, and 80% 
MVC) separated by a 30 s rest period with occlusion set at 
130% systemic blood pressure. The authors stated the test-
ing protocol was designed to reduce the influence of fatigue 
and/or metabolic stress on neuromuscular function. Conse-
quently, their 30 s rest period between contractions may not 
have been sufficient to elicit divergent electromyographic 
responses between the BFR and non-BFR conditions. How-
ever, Moritani et al. (1992) reported greater EMGRMS dur-
ing 2 s repeated contractions at 20% MVC followed by 2 s 
of rest for 4 min when 200 mmHg of occlusion pressure 
was applied between the 1st and 2nd minute. Therefore, it 
appears low-load intermittent isometric exercise may require 
multiple sets and/or numerous repetitions to elicit divergent 
EMGRMS responses between BFR and non-BFR conditions, 
which may be the result of increased difficulty clearing 
metabolites and partial pressure CO2 during longer applica-
tions (Yasuda et al. 2010). Conversely, our testing protocol 
included a gradual linearly increasing segment (10% MVC/s 
[7 s]) to 70% MVC, where it was maintained for an addi-
tional 12 s. It has been reported that slower rates of force 
production require a greater recruitment of higher thresh-
old motor units than faster rates to produce to same relative 
load (Miller et al. 2019). Thus, our slower rate of increase 
preceding the targeted steady force segment likely resulted 
in greater recruitment than Cayot et al. (2016), and was 
further accentuated with the BFR treatment. Subsequently, 
BFR appears to increase the recruitment of higher threshold 
MUs, which are comprised of fibers that primarily express 
type II characteristics (Yoshida and Watari 1997; Suga et al. 
2009, 2010). The greater N-EMGRMS values with BFR for 
the steady force segment may suggest a greater percentage 
of the MU pool was likely active during our BFR treatment. 
Furthermore, these findings may highlight the importance 
of utilizing slower rates of force development with BFR for 
training and clinical applications during a single high-load 
contraction.

During the linearly decreasing segment, there were 
muscle action-related differences for only the BFR treat-
ment (Fig. 3), specifically, decreases and increases for 
the b and a terms in comparison to the linearly increas-
ing segment, respectively. Therefore, the decreased b 
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term indicated a smaller rate of change for EMGRMS in 
relation to force during the linearly decreasing segment, 
whereas the greater a term indicated an upward gain for 
the EMGRMS–force relationship across the force spectrum. 
Orizio et al. (2010) suggested that initial decreases for 
EMGRMS during the onset of a linearly decreasing iso-
metric task reflect the selective derecruitment and/or a 
decrease in the firing rates of larger MUs, resulting in a 
greater reliance on smaller MUs with longer action poten-
tial durations to match force levels, which may be due to 
the size-related sensitivity of MUs to inhibition (De Luca 
et al. 1982b). For example, the density of inhibitory inputs 
is suggested to be similar across the MU pool (Clamann 
et al. 1974); therefore, afferent impulses may have more 
difficulty reaching the terminal branching structures of the 
nerve fibers for the larger compared to the smaller MUs 
(De Luca et al. 1982b). Subsequently, a greater percentage 
of the synaptic endings on the smaller MUs are activated, 
resulting in larger excitatory postsynaptic potentials and 
higher excitability (Lüscher et al. 1979). In regards to an 
isometric trapezoidal contraction during BFR, initial input 
of the group III/IV afferent neurons may be excitatory, 
resulting in greater recruitment of higher threshold MUs 
during the linearly increasing segment (Kniffki et al. 1979, 
1981). However, higher threshold MUs are more fatigable 
(Burke 1978; Fuglevand et al. 1999; Burke et al. 1973), 
and as fatigue increases, activated group III/IV afferents 
can decrease central motor output (Taylor et al. 2006; Lau-
rin et al. 2015; Gandevia 2001) and result in greater MU 
derecruitment (Moritani et al. 1992; Leonard et al. 1994; 
Garland 1991). Therefore, visually anticipating the force 
decrease, coupled with greater fatigue of higher thresh-
old MUs, may have increased inhibitory input to the MU 
pool, which is also competing with the excitatory input 
to match the targeted force. The reduction of excitatory 
input leads to the orderly derecruitment and decrease in 
firing rates of active larger, higher threshold MUs. Conse-
quently, the size of the largest activated MUs at the onset 
of the linearly decreasing segment may have been smaller 
compared to the same relative force (%MVC) during the 
linearly increasing segment. The decrease in large MUs at 
the onset of the linearly decreasing segment may explain 
the smaller rate of change for EMGRMS in relation to force. 
It is also possible that discomfort during BFR stimulated 
inhibitory inputs from spinal/supraspinal and/or presyn-
aptic levels (Ia and group III/IV afferents). For example, 
previous studies have reported greater levels of discomfort 
with AOP ≥ 40% during acute exercise (Kolind et al. 2023; 
Bell et al. 2018; Wernbom et al. 2006). Therefore, increas-
ing discomfort during the steady force segment may have 
also allowed greater derecruitment of higher threshold 
MUs at the onset of the linearly decreasing segment (Tay-
lor et al. 2006; De Luca et al. 1982b; Kennedy et al. 2014). 

The upward gain for the EMGRMS–force relationship for 
the BFR treatment may be due to hysteresis of the active 
lower threshold MUs (Powers and Heckman 2015), such 
that firing rates are greater for the lower threshold MUs 
during the linearly decreasing- in comparison to linearly 
increasing-segment, and the MUs are derecruited at lower 
levels of excitation than their recruitment threshold (De 
Luca et al. 1982a; De Luca and Contessa 2012). Consider-
ing N-EMGRMS values for BFR are likely representative 
of a higher percentage and larger MUs that were active 
prior to the linearly decreasing segment, we speculate 
that their accelerated derecruitment during the onset of 
the linearly decreasing segment resulted in a greater con-
tribution of the lower threshold MU to match the targeted 
force (Fig. 2).

Another interesting finding was that regardless of treat-
ment (CON or BFR), females (~82%) exhibited higher 
N-EMGRMS values than males (~69%) during the steady 
segment of the isometric trapezoidal muscle action (Fig. 4), 
suggesting that greater muscle excitation was necessary to 
match the targeted force. Muscle excitation to the MU pool 
will adjust in response to MU force twitches when pro-
ducing a desired muscle force output (Contessa and Luca 
2013; De Luca and Contessa 2015; Trevino et al. 2022). In 
addition, previous studies have indicated that larger MUs 
produce greater force twitches (Milner-Brown et al. 1973; 
Goldberg and Derfler 1977; De Luca and Hostage 2010; 
Olson et al. 1968), and that the BB for males have greater 
muscle cross-sectional areas and larger mean muscle fiber 
sizes (Miller et al. 1993; Nonaka et al. 2006). In the current 
study, the mCSA of the BB for the males was roughly double 
that of the females. Therefore, it is plausible that our sex-
related discrepancies for N-EMGRMS could be due to smaller 
MUs and muscle fibers for the females (Trevino et al. 2019; 
Miller et al. 1993; Simoneau and Bouchard 1989; Olmos 
et al. 2023b), resulting in greater recruitment of additional 
higher threshold MUs and greater firing rates of active MUs 
to compensate for smaller MU force twitches when modulat-
ing force. Future research should examine single MU firing 
rate and recruitment patterns of the BB between males and 
females at high-load targeted forces.

A limitation of the current study is the lack of mus-
cle architectural imaging during the muscle actions. 
EMGRMS–force relationships can be influenced by force–fas-
cicle length relationships (de Brito Fontana and Herzog 
2016); therefore, it is possible that cuff inflation may have 
affected fascicle shortening and lengthening during the 
increasing and decreasing segments of the isometric trap-
ezoidal template, respectively. In addition, physical com-
pression of the muscle belly from the inflated cuff may have 
reduced the force generating capabilities of the elbow flexors 
(de Brito Fontana et al. 2018), requiring greater effort to 
match the relative load during the BFR treatment.
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Conclusions

In summary, this is the first study to demonstrate BFR influ-
ences motor control strategies during a single, high-load iso-
metric muscle action. The greater b terms (i.e., slope) during 
the linearly increasing segment and N-EMGRMS at steady 
force with the BFR treatment may suggest the additional 
recruitment of higher threshold MUs to match the targeted 
force. In addition, BFR resulted in muscle action-related 
differences during the isometric trapezoidal muscle action, 
such as decreases and increases for the slope and gain of the 
EMGRMS–force relationships during the linearly decreasing- 
in comparison to the linearly increasing segment, respec-
tively. The findings suggest that it may be beneficial to 
utilize BFR during a high-load muscle action(s) with a con-
trolled tempo during resistance training or clinical settings 
to potentially recruit additional higher threshold MUs com-
pared to non-BFR exercise. It is reported that higher thresh-
old MUs experience greater atrophy and denervation with 
aging/disuse compared to lower threshold MUs (Inns et al. 
2022; Sterczala et al. 2018; Lexell et al. 1988). Therefore, 
using high isometric load exercise with BFR in rehabilitation 
settings may be more practical than traditional exercise, as 
isometric training is a common method for the rehabilita-
tion process when mobility is limited (Maestroni et al. 2020; 
De Ruiter et al. 2005; Bandy and Hanten 1993). Addition-
ally, there were sex-related differences for N-EMGRMS at 
steady force, regardless of treatment, suggesting that females 
recruited a greater percentage of the MU pool to complete 
the same relative load. Future research should investigate 
if a resistance training program for females can reduce the 
amount of necessary muscle excitation (N-EMGRMS) during 
high-load efforts, as this may be beneficial for activities of 
daily living/occupational performance.
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