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Abstract
Endothelial function is commonly determined via the ultrasound-based flow-mediated dilation (FMD) technique which 
assesses arterial dilation in response to a hyperemia response following distal cuff occlusion. However, the low-flow-mediated 
constriction (L-FMC) response during cuff-induced ischemia is often overlooked. L-FMC provides unique information 
regarding endothelial function, but vascular researchers may be unclear on what this metric adds. Therefore, the objective 
of this review was to examine the mechanistic determinants and participant-level factors of L-FMC. Existing mechanistic 
studies have demonstrated that vasoreactivity to low flow may be mediated via non-nitric oxide vasodilators (i.e., endothelial 
hyperpolarizing factors and/or prostaglandins), inflammatory markers, and enhancement of vasoconstriction via endothelin-1. 
In general, participant-level factors such as aging and presence of cardiovascular conditions generally are associated with 
attenuated L-FMC responses. However, the influence of sex on L-FMC is unclear with divergent results between L-FMC in 
upper versus lower limb vessels. The ability of aerobic exercise to augment L-FMC (i.e., make more negative) is well sup-
ported, but there is a major gap in the literature concerning the mechanistic underpinnings of this observation. This review 
summarizes that while larger L-FMC responses are generally healthy, the impact of interventions to augment/attenuate 
L-FMC has not included mechanistic measures that would provide insight into non-nitric oxide-based endothelial function. 
Clarifications to terminology and areas of further inquiry as it relates to the specific pharmacological, individual-level fac-
tors, and lifestyle behaviors that impact L-FMC are highlighted. A greater integration of mechanistic work alongside applied 
lifestyle interventions is required to better understand endothelial cell function to reductions in local blood flow.
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Abbreviations
Ca2+  Calcium ion
COX  Cyclooxygenase
CYP  Cytochromes P450
EET  Epoxyeicosatrienoic acid
EDHF  Endothelial-derived hyperpolarizing factor
eNOS  Endothelial nitric oxide synthase

FMD  Flow-mediated dilation
K+  Potassium ion
L-FMC  Low-flow-mediated constriction
L-NMMA  NG-Monomethyl-l-arginine
NO  Nitric oxide
TNF-α  Tumor necrosis factor-α

Introduction

The development of adverse cardiovascular conditions is 
preceded by dysfunction of the vascular endothelium which 
is responsible for the release of vasoactive substances that 
promote vasoconstriction and vasodilation in response to 
chemical or physical stimuli (Konukoglu and Uzun 2017). 
Endothelial function of the conduit arteries can be deter-
mined via the flow-mediated dilation (FMD) technique 
(Thijssen et al. 2019), whereby the vasodilation in response 
to a brief reactive hyperemia following the release of a 
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cuff-induced period of ischemia is calculated. This ultra-
sound-based determination of endothelial function has been 
widely adopted and generally reflects the ability of endothe-
lial cells to release nitric oxide (NO) in response to influxes 
of blood flow and the corresponding shear stress stimuli 
(Green et al. 2014). During the distal cuff-induced ischemia, 
a conduit artery constrictor response is typically observed, 
referred to as low-flow-mediated constriction (L-FMC) 
(Gori et al. 2008) (Fig. 1). A greater constrictor response is 
generally healthier, whereas an attenuated L-FMC response 
may be less favorable. Despite FMD guidelines encourag-
ing the vessel of interest to be imaged throughout the entire 
technique (Thijssen et al. 2019), considerably less is known 
about L-FMC. However, the notion of assessing the vasore-
activity to changes in local shear stress is analogous to the 
FMD technique, but to a reduction- rather than an influx of 
shear stress.

Although observations that the brachial artery constricts 
in response to cuff-induced ischemia have been established 
in the late 1980s (Anderson and Mark 1989), L-FMC was 
termed in 2008, following the seminal study by Gori et al. 
who examined the mechanisms of radial L-FMC and inter-
estingly suggested L-FMC may reflect resting endothelial 
function (Gori et al. 2008). Since then, the number of pub-
lications investigating L-FMC has grown. L-FMC may pro-
vide unique and complementary clinically relevant informa-
tion compared to FMD alone (Gori et al. 2012). Specifically, 
while L-FMC is associated with and provides insight into 
the magnitude of FMD response in a healthy and clinical 
population (Aizawa et al. 2016), it may also be an indicator 
of the production of vasoactive substances that are not domi-
nant in the FMD response (e.g., prostaglandins and endothe-
lial-derived hyperpolarizing factors) and increases the pre-
dictive ability of FMD to detect endothelial dysfunction, 

such as that in a diseased population (e.g., coronary artery 
disease) (Gori et al. 2012). While reviews on the mechanistic 
determinants and participant-level factors (e.g., age (Seals 
et al. 2011), sex (Lew et al. 2022), and exercise (Ramos 
et al. 2015)) on FMD have been conducted, the impact of 
such factors on L-FMC are unclear. A vague understand-
ing of what information is gained by this metric is likely a 
primary barrier preventing cardiovascular and specifically 
FMD researchers from integrating L-FMC as part of their 
ultrasound assessments.

The objective of this narrative review was to examine the 
mechanistic and participant-level factors that impact L-FMC 
and emphasize the interpretation of it as a complimentary 
measure to FMD. Areas of further mechanistic study, con-
siderations for what information is gained by this metric, 
and our knowledge of exercise/movement as determinants 
of L-FMC are highlighted.

Mechanisms of low‑flow‑mediated 
constriction

The FMD response following cuff deflation has been 
shown to be primarily nitric oxide (NO) mediated, as evi-
dent by an attenuated response following the infusion of 
 NG-monomethyl-l-arginine (L-NMMA) (Green et al. 2014). 
L-NMMA is an endothelial nitric oxide synthase (eNOS) 
inhibitor, whereby eNOS mediates the conversion of L-argi-
nine to NO and L-citrulline. However, unlike FMD, the 
infusion of L-NMMA to block NO production did not alter 
L-FMC responses in the radial artery (Gori et al. 2008), 
indicating that vasoreactivity to low flow is not dictated 
by the potent vasodilator. Subsequent work examining the 
impact of trans-radial catheterization and thus endothelial 

Fig. 1  Illustration of how flow-mediated dilation (FMD) and low-
flow-mediated constriction (L-FMC) are derived. A The FMD and 
L-FMC tests are ultrasound-derived where the probe is connected to 
a high-resolution ultrasonography machine that provides images of 
the artery of interest. A pressure cuff is placed distally to the probe 
(blue). B After a 2-min baseline, the pressure cuff is inflated to supra-
systolic levels to induce the low-flow phase. Following 5 min, the cuff 
is deflated to elicit a reactive hyperemia. L-FMC can be calculated as 

percentage change in diameter from baseline during the last 30 s the 
low-flow phase. Peak constriction may be derived by calculating the 
average diameter during the last 30  s of cuff occlusion or based on 
the nadir diameter from ~ 3 s averages. The current figure represents 
L-FMC derived from the nadir diameter. FMD is characterized as a 
percent increase in diameter above the baseline following cuff defla-
tion
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denudation, observed attenuated L-FMC responses in the 
catheterized radial artery (− 2.1 ± 0.8 to 0.4 ± 0.8%), but a 
preserved L-FMC response in the non-intervention radial 
artery (Dawson et al. 2012). Therefore, despite not being 
NO-mediated, the L-FMC response in the radial artery is 
endothelial-dependent. Alternative vasoactive chemicals 
that may dictate the magnitude of the L-FMC response are 
discussed.

Endothelial‑derived hyperpolarizing factors

Endothelial-derived hyperpolarizing factors (EDHFs) are 
vasoactive substances [epoxyeicosatrienoic acid (EET), 
hydrogen peroxide, and potassium ions  (K+)] (Ozkor and 
Quyyumi 2011). EETs are the primary EDHF and largely 
involved in endothelial-derived hyperpolarization that 
results in an activation of transmembrane  K+ channels on 
vascular smooth muscle cells and blunts contraction. Spe-
cifically, acetylcholine, bradykinin, and shear stress increase 
endothelial intracellular  Ca2+ concentrations.  Ca2+ activates 
cytosolic phospholipase  A2, which releases arachidonic acid. 
EETs are created from oxygenated arachidonic acid via a 
cytochrome P450-2C9 epoxygenase pathway.

To understand whether endothelial-released EDHFs are 
involved in the L-FMC response, L-FMC tests were con-
ducted following the oral administration of 150 mg flucona-
zole, which blocks the cytochrome P450-2C9 epoxygenase 
pathway. In both the radial and popliteal arteries, fluconazole 
blunted L-FMC responses (Gori et al. 2008; Petterson et al. 
2021), supporting that the L-FMC response is mediated via 
EDHFs.

Similar to EET, a cytochrome P450 pathway (cytochrome 
P450 4A3 hydrolase) and arachidonic acid may create 
hydroxyeicosatetraenoic acid, which is a potent vasoconstric-
tor (Ozkor and Quyyumi 2011). Fluconazole is primarily a 
CYP epoxygenase inhibitor, but also may inhibit other CTY 
isoforms (e.g., cytochrome P450-4A3 hydrolase) (Ozkor and 
Quyyumi 2011). The specific mechanisms regarding how 
EDHFs are involved in the L-FMC response are not fully 
understood, but it is hypothesized that the L-FMC response 
involves CYP pathways. Specifically, the potential disrup-
tion of competing CYP isoforms (CYP2C9 vs CYP4A3) 
may cause vasodilation versus vasoconstriction. More tar-
geted EDHF inhibitors are needed to better understand the 
role of EDHFs in mediating L-FMC responses (Ozkor and 
Quyyumi 2011). For example, unlike fluconazole, Sulfa-
phenazole is a target of CYP2CP specifically and may serve 
a useful role in uncovering the divergent effects of these 
cytochrome P450 pathways on L-FMC. Understanding the 
specific EDHF pathways involved in mediating the vasore-
activity to low flow may lead to more targeted pharmaco-
logical interventions in studying and improving endothelial 
cell function.

Prostaglandins

The endothelium also releases prostaglandins, which may 
be a critical modulator of vascular tone (Yi et al. 2000). 
Similar to EDHFs, arachidonic acid is the most common 
precursor of prostaglandins, and is released from the cell 
membrane phospholipids, primarily by phospholipase  A2 
(Moncada and Vane 1978). Prostaglandins and thrombox-
ane  A2 are formed when arachidonic acid is metabolized 
by prostaglandin G/H synthase or cyclooxygenase (COX1 
and COX2 isoforms) (Félétou et al. 2011). COX1 and 
COX2 isoforms are the common substrates for multiple 
unique prostaglandin isoforms (Ricciotti and FitzGerald 
2011). COX2 may produce  PGI2 in response to increases 
in local shear stress (Koller et al. 1993), which activates 
adenylyl cyclase via a stimulatory G-protein that increases 
cyclic adenosine monophosphate (Ricciotti and FitzGerald 
2011) and causes vascular smooth muscle cell relaxation.

Unlike EDHFs, whether prostaglandins influence the 
L-FMC response is less clear. Specifically, a 500 mg oral 
administration of aspirin, an inhibitor of cyclooxygenase 
products (e.g., prostaglandins), impaired the L-FMC 
response in the radial (Gori et al. 2008), but not the bra-
chial or popliteal arteries (Petterson et al. 2021). Fur-
thermore, a separate study that administered 1200 mg of 
ibuprofen (prostaglandin inhibitor) did not alter L-FMC 
responses in the brachial artery (Carter et al. 2014). While 
both aspirin and ibuprofen (and any non-steroidal anti-
inflammatory drugs) inhibit COX, aspirin has an irrevers-
ible (versus a reversible with ibuprofen) antiplatelet effect, 
thinning blood to a greater extent than ibuprofen. The 
impact on platelets is unlikely to explain the differential 
observations given that a three-arm trial of antiplatelet 
agents of different potencies did not alter radial L-FMC 
acutely or after 28 days of repeated dosage in patients 
with unstable angina or requiring coronary intervention 
(Schnorbus et al. 2020). Of note, these studies are lim-
ited by the use of either aspirin or ibuprofen as they are 
non-selective inhibitors making it unclear whether they 
are affecting vasodilatory or vasoconstrictor prostaglan-
dins. However, reduced production of specifically  PGI2 
and  PGE2 may attenuate L-FMC, as these prostaglandins 
are responsible for vascular smooth muscle cell relaxation. 
It is unclear whether L-FMC is mediated via the inhibition 
of prostaglandins-vasodilatory pathway, or if it is depend-
ent upon the artery of interest (radial versus brachial or 
popliteal). Large-scale studies that are sufficiently pow-
ered to simultaneously compare prostaglandin inhibitors 
in multiple vascular beds are needed to better define this 
mechanistic pathway.



2690 European Journal of Applied Physiology (2023) 123:2687–2697

1 3

Endothelin‑1

In addition to local vasodilators (NO, EDHFs, prostaglan-
dins), the endothelium also regulates local vascular tone by 
releasing the potent vasoconstrictor, endothelin-1. Endothe-
lin-1 is a short (21-amino acid) peptide released continu-
ously by endothelial cells and vascular smooth muscle cells 
(Böhm and Pernow 2007). In response to increases in lami-
nar shear stress, preproendothelin-1 messenger RNA is tran-
siently upregulated in a dose-dependent manner. Preproen-
dothelin-1 (212 amino acids) undergoes proteolytic cleavage 
to form big endothelin-1 (39 amino acids) (Davenport et al. 
2016). At the endothelial cell membrane, endothelin convert-
ing enzyme converts big endothelin-1 to endothelin-1 in the 
myoendothelial space. The biological effects of endothelin-1 
are mediated through the activation of  ETA and  ETB receptor 
subtypes, with  ETB assisting in the clearance of endothelin-1 
from the vasculature and stimulating eNOS enzyme activity 
and NO formation (Rubanyi and Polokoff 1994).  ETB recep-
tors are located on both the endothelium and smooth muscle. 
Conversely, binding to the more dominant  ETA receptor on 
vascular smooth muscle stimulates the formation of inositol 
triphosphate from phosphatidylinositol biphosphate by phos-
pholipase C via a  Gq-protein (Bourque et al. 2011; Daven-
port et al. 2016). Increased inositol triphosphate within the 
vascular smooth muscle stimulates  Ca2+ release from the 
sarcoplasmic reticulum causing vasoconstriction.

In the radial artery, the contribution of endothelin-1 to the 
L-FMC response has been investigated by conducting the 
occlusion-hyperemia test following the intra-arterial infu-
sion of BQ-123 (vs. saline) (Spieker et al. 2003). BQ-123 is 
a selective  ETA endothelin receptor antagonist. In this sam-
ple of healthy young adults,  ETA inhibition attenuated radial 
L-FMC (-6.8% to -2.7%), but did not influence the FMD 
response, indicating that the L-FMC response is largely 
endothelin-1 mediated (Spieker et al. 2003).

Tumor necrosis factor‑α

Tumor necrosis factor-α (TNF-α) is an inflammatory 
cytokine that mediates inflammatory, proliferative, and cyto-
toxic effects in endothelial cells and vascular smooth muscle 
cells. TNF-α may promote endothelial dysfunction via inhib-
iting eNOS, CYP450, and enhancing the removal of NO 
through the increase in NADPH-dependent  O2- production, 
creating peroxynitrite (ONOO–) (Greenberg et al. 1993; Gao 
et al. 2007; Zhang et al. 2009). Providing a neutralizing anti-
body to TNF-α reduces the formation of reactive oxygen 
species (e.g.,  O2–, ONOO–, and  H2O2) and increases NO-
mediated dilation (Zhang et al. 2009).

The only study to investigate the impact of inflammation 
on L-FMC, administered 8–12 weeks of TNF-α inhibitors 
[adalimumab (40 mg once/2 week) or etanercept (50 mg 

once/week] in patients with moderate–severe psoriasis. After 
the anti-inflammatory intervention, brachial L-FMC was 
augmented and brachial FMD was unaffected (Wegner et al. 
2022). Despite the inability to discern the impact of repeated 
measures variability or timeline on L-FMC, as there was 
not a concurrent control group, Wegner et  al. provided 
support that brachial L-FMC may be favorably improved 
through repeated anti-inflammatory treatment in patients 
with psoriasis (Wegner et al. 2022). The actions of TNF-α 
on the endothelium are on NO production, reactive oxygen 
species, and inhibiting CYP450. Since L-FMC is not NO-
mediated, the impact of TNF-α inhibition on L-FMC may 
be specifically due to improved CYP450 pathway and thus 
EDHF production, which has been consistently implicated 
in the L-FMC response (Gori et al. 2008; Petterson et al. 
2021). Conversely, prior work demonstrating that L-FMC 
was not NO-mediated was conducted in the radial artery 
of healthy young adults (Gori et al. 2008). Therefore, the 
contribution of vasoactive chemicals to the L-FMC response 
may vary by artery and/or disease status. Further work is 
needed to understand the impact of inflammation on meas-
ures of endothelial vasomotor function in multiple arteries 
in healthy adults and those with varying disease conditions.

Summary

Existing work has investigated the endothelial-based 
mechanisms governing the L-FMC response primarily in 
healthy persons and in the radial artery (Table 1). While 
endothelial-dependent, L-FMC responses may be mediated 
through the inhibition of EDHF signaling(Gori et al. 2008; 
Petterson et al. 2021) and/or prostaglandin pathways (Gori 
et al. 2008), as well as enhanced vasoconstrictor signaling 
via endothelin-1 (Spieker et al. 2003). In addition, longi-
tudinal anti-inflammatory, TNF-α inhibition augmented 
L-FMC (Wegner et al. 2022). Therefore, the vasoreactivity 
to low flow may be determined by the inhibition of non-NO 
vasodilators (EDHF/prostaglandins), endothelin-1 signaling, 
and the inflammatory state of the endothelium. However, 
to comprehensively understand the L-FMC response future 
work must be conducted to understand the combine effect of 
these mechanism (i.e., using multiple concurrent inhibitors) 
and their influence in varying adult populations (i.e., age, 
sex, and disease status).

Resting versus recruitable endothelial 
function

The interpretation of what information is gained by examin-
ing the L-FMC response is generally heterogeneous across 
researchers. It has been positioned by some that L-FMC and 
FMD represent resting and recruitable endothelial function, 
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respectively (Gori et al. 2010, 2012, 2017). The position that 
L-FMC reflects resting endothelial-dependent vascular tone 
may be attributed to the observation that inhibiting vasodi-
lators (e.g., EDHFs or prostaglandins) resulted in blunted 
vasoconstrictor responses. The notion that inhibiting vaso-
dilator production results in an attenuated constriction may 
be peculiar on the surface. However, the administration of 
inhibitors ~ 60 min before beginning the FMD protocol low-
ers EDHF or prostaglandin production, including during the 
baseline portion of the occlusion-hyperemia test. Therefore, 
there may fewer vasodilators to inhibit or ability to further 
constrict from baseline. Then, in response to low flow, there 
is a lesser capacity for further constriction (i.e., floor effect). 
We provide an argument discussing some of the pitfalls of 
describing L-FMC was a measure of resting endothelial 
function or tone.

Endothelial tone is primarily regulated by the potent vas-
odilator, NO (Loscalzo and Jin 2010). Given that the L-FMC 
response has been shown to be unaffected by blocking the 
NO precursor (eNOS) (Gori et al. 2008), it may be a mis-
nomer to describe L-FMC as a measure of endothelial tone 
if one of the main vasoactive substances is not reflected by 
this assessment. Second, the notion that baseline vasoactive 

substances influences L-FMC also applies to the FMD test 
(positioned as recruitable function) in that an artery that is 
in a more dilated resting state is likely to exhibit a smaller 
FMD response. This is typically observed following acute 
exercise, whereby a reduction in FMD is observed when 
accompanied by an exercise-induced increase in resting 
diameter (Dawson et al. 2013). Third, the vasoconstrictor 
response is a result of a reduction in local shear stress and 
not to a resting state, as implied by the L-FMC name. With-
out a hypoemia stimulus (e.g., distal cuff inflation), there is 
not a concomitant vasoconstriction. Such ideas challenge 
the terminology of how L-FMC is described and suggests 
that L-FMC might be optimally described as endothelial-
dependent vasoconstrictor function rather than as a measure 
of resting endothelial function.

Related to L-FMC terminology, the description implies 
that vasoconstrictor responses are always observed in 
responses to low flow. However, there is considerable vari-
ability in whether arteries dilate, are unchanged, or constrict 
to reductions in local flow (Gori et al. 2008; Weissgerber 
et al. 2010; O’Brien et al. 2021b). For example, specific 
to the brachial artery, evidence consistently suggests that 
upwards of 60% of participants demonstrate a constrictor 

Table 1  Summary table of studies examining the local mechanisms of low-flow-mediated constriction

L-FMC low-flow-mediated constriction, EDHF endothelial-derived hyperpolarizing factors, ETA endothelin-a, eNOS endothelial nitric oxide 
synthase, L-NMMA  NG-monomethyl-l-arginine
a Catheterization results in endothelial denudation and demonstrated that L-FMC is endothelial dependent
b Findings are specific to baseline L-FMC 1-h after ibuprofen, but L-FMC was augmented after 20 min of ischemia–reperfusion injury, but not 
30 or 45 min of injury
c Findings were consistent within the brachial and popliteal arteries

Study Population Artery Drug used/intervention Main results

Spieker et al. (2003) Healthy, young adults Brachial Intra-arterial infusion BQ-123 
 (ETA-receptor antagonist)

Endothelin blockade: attenuated 
L-FMC

Gori et al. (2008) Healthy young males Radial Intra-arterial infusion of 
L-NMMA (eNOS inhibitor)

eNOS: unchanged L-FMC

Healthy young adults Oral 150 mg fluconazole 
(EDHF inhibitor)

EDHF inhibitor: attenuated 
L-FMC

Oral 500 mg aspirin (prosta-
glandin inhibitor)

Prostaglandin inhibitor: attenu-
ated L-FMC

Dawson et al. (2012) Coronary angiography or 
angioplasty patients

Radial Unilateral trans-radial 
 catheterizationa

Catheterization: attenuated 
L-FMC

Non-catheterization: unchanged 
L-FMC

Carter et al. (2014) Healthy young adults Brachial Oral 1200 mg Ibuprofen (pros-
taglandin inhibitor)

Prostaglandin inhibitor: 
unchanged L-FMCb

Petterson et al. (2021) Healthy, young adults Brachial,  Poplitealc Oral 150 mg fluconazole 
(EDHF inhibitor)

EDHF inhibitor: attenuated 
L-FMC

Oral 500 mg aspirin (prosta-
glandin inhibitor)

Prostaglandin inhibitor: 
unchanged L-FMC

Wegner et al. (2022) Patients with moderate–severe 
psoriasis

Brachial 8–12 weeks of adalimumab 
(40 mg 1×/2 wk) or etaner-
cept (50 mg 1×/wk) (TNF-α 
inhibitors)

TNF-α inhibitor: augmented 
L-FMC
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response during cuff inflation, while ~ 40% vasodilate or do 
not change (Harrison et al. 2011; Spiro et al. 2011; Aizawa 
et al. 2016; Shenouda et al. 2020). However, the radial artery 
exhibits an L-FMC response notably more consistent than 
the brachial artery (Weissgerber et al. 2010). Nevertheless, 
factors that are established to be associated with better car-
diovascular function (e.g., younger age and no chronic dis-
eases) are typically associated with an augmented L-FMC 
response. While an FMD is typically observed in response 
to hyperemia, some observe very modest increases or no 
changes in diameter (Holder et al. 2021). Accordingly, while 
not all people exhibit an L-FMC or an FMD response, the 
name of the assessment is directed towards the anticipated 
generally healthy response. Aizawa et al. (2016) observed 
a large proportion of participants exhibited a vasodilatory 
response during cuff occlusion (~ 40%), they observed that 
increased vasoconstriction was associated with a smaller 
subsequent FMD response in the brachial artery (Aizawa 
et al. 2016). Although the opposite L-FMC to FMD rela-
tionship has been observed in the popliteal artery (O’Brien 
et al. 2021b). It should be recognized that the positions 
presented herein on the terminology are not static and that 
with emerging evidence as to the importance of L-FMC and 
the specific information gained in various populations and 
between vessel beds, the terminology and best description 
of the technique may be refined.

Between‑artery considerations

There are known structural and functional differences 
between differing conduit arteries, as it relates to the L-FMC 
response. Known heterogeneous responses exist between the 
brachial and lower limb vessels, such as the popliteal artery 
(Thijssen et al. 2011). Specifically, the size of upper limb 
arteries are inversely correlated to the FMD response, but 
the same was not true for the superficial and common femo-
ral artery (Thijssen et al. 2011). Such disparities in responses 
may be due to artery diameter being inversely related to 
FMD, with larger arteries dilating less than smaller arter-
ies (e.g., brachial or radial) (Thijssen et al. 2008). Specifi-
cally, Thijssen et al. (2008) compared FMD in the brachial, 
radial, common femoral, superficial femoral and popliteal 
arteries in young adults and observed that resting arterial 
diameter was inversely related to the peak FMD responses 
(Thijssen et al. 2008). Lower limb arteries are more suscep-
tible to the development of atherosclerosis and peripheral 
vascular disease (Debasso et al. 2004). Despite this, there 
is evidence that FMD responses in the radial, brachial, and 
superficial femoral arteries are NO-mediated, as reviewed in 
(Green et al. 2014). The limb-specific differences in FMD 
may be attributed to the increased hydrostatic pressure in the 
lower limb due (Newcomer et al. 2004). With that, the lower 

limb arteries supply a greater muscle mass and experience 
sustained increases in blood flow during locomotion. Con-
versely, the popliteal artery experiences a greater reduction 
in local blood flow than upper limb vessels during sedentary 
postures.

While some evidence exists supporting that divergent 
FMD responses exist between the brachial and popliteal 
arteries (Nishiyama et al. 2008; Thijssen et al. 2011), bra-
chial vasoconstrictor responsiveness is also greater than 
that of the popliteal artery, which is exposed to larger shear 
stress fluctuations during bouts of sedentary behavior and 
traditional lower limb modes of exercise. Importantly, most 
mechanistic insights into the L-FMC response have been 
conducted in the radial or brachial arteries (Spieker et al. 
2003; Gori et al. 2008; Carter et al. 2014). Furthermore, 
another key difference between upper and lower limb vessels 
may related to the impact of artery structure and its impact 
of vasoactive responses. It is well established that regional 
heterogeneity exists between arteries in terms of wall archi-
tecture and thickness (Tinken et al. 2008). Specifically, sub-
jects with enlarged wall-to-lumen ratios exhibit generalized 
increased vasoactive responses. Therefore, smaller arteries, 
such as those found in the upper limbs possess more smooth 
muscle relative to elastic laminae and have enlarged wall-to-
lumen ratios facilitating their hyperresponsiveness (Thijssen 
et al. 2008).

Participant factors on L‑FMC

The local endothelial-based mechanisms discussed above 
contribute to the magnitude of the L-FMC response, but 
such mechanisms are impacted by participant-level factors. 
Compared to FMD, L-FMC is relatively understudied, but 
the limited work has begun to advance our understanding of 
participant characteristics and lifestyle behaviors on L-FMC. 
We briefly highlight important participant-level character-
istics (e.g., age and sex) factors on L-FMC and emphasize 
areas that warrant further investigation.

Impact of age

Aging is associated with several unfavorable vascular adap-
tations that perpetuate endothelial dysfunction, as character-
ized by attenuated endothelial-dependent and endothelial-
independent dilation (Black et al. 2009). In a large sample 
of 584 patients (67 ± 11 years), age was an independent 
positive predictor of radial L-FMC in multivariate analysis 
that considered sex, smoking, coronary artery disease and 
diabetes (Gori et al. 2017). In healthy participants matched 
for aerobic fitness, age, and sex-specific percentiles, pop-
liteal artery L-FMC was also attenuated with age in both 
males and females (O’Brien et al. 2021a). This attenuated 
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L-FMC response with age occurred despite aging being 
associated with a greater baseline lumen diameter (O’Brien 
et al. 2021a). This is relevant as a larger conduit artery diam-
eter may have a greater capacity to constrict, with baseline 
diameter being shown to be inversely associated with the 
magnitude of L-FMC in the brachial and radial arteries of 
young adults (Sen et al. 2020). This further substantiates the 
need for mechanistic and longitudinal research to be con-
ducted in younger and older adults to provide insight into the 
this observation that aging, even in the absence of chronic 
disease, impairs L-FMC.

Impact of sex

The impact of biological sex on vascular function has been 
well studied in the FMD literature, with mixed results as 
to whether females exhibit augmented or similar FMD 
responses to males (Holder et  al. 2019, 2021; O’Brien 
et al. 2019b; Johns et al. 2020). In young adults, popliteal 
L-FMC has been demonstrated to be similar between males 
and females matched for habitual physical activity levels 
(O’Brien et al. 2019b) or age/sex-specific aerobic fitness per-
centiles (O’Brien et al. 2021a). Similarly, in a larger sample 
size of popliteal L-FMC (n = 110), sex was not a predictor 
of L-FMC in univariate or multivariate controlled analy-
ses (O’Brien et al. 2021b). Conversely, in a large sample of 
radial L-FMC (n = 584), females exhibited an augmented 
L-FMC response compared to males (Gori et al. 2017). 
While early work failed to initially observe brachial L-FMC 
differences between males and females, normalizing L-FMC 
to the decrease in shear rate resulted in a more pronounced 
normalized L-FMC among females (Levenson et al. 2001). 
Therefore, it is hypothesized that a greater consideration 
of the shear rate changes during the cuff occlusion on the 
L-FMC response may reveal sex differences. Of note, while 
normalizing FMD to shear rate area under the curve (i.e., the 
stimulus for the FMD response) is still a controversial prac-
tice that is not recommended unless statistical assumptions 
are met (Atkinson et al. 2009), the applicability of normaliz-
ing L-FMC to its shear rate stimulus during the cuff-inflation 
period should be further investigated. Specifically, it may be 
possible that the assumptions required to normalize FMD 
to SR (i.e., correlation between the shear rate stimulus and 
the FMD response is statistically significant, and the 95% 
confidence intervals of the y-intercept encompass zero) may 
be extrapolated to L-FMC and provide a more accurate inter-
pretation of the metric, but this warrants further study.

Furthermore, sex differences may be limb-dependent 
with some work demonstrating smaller L-FMC responses 
in the popliteal versus brachial arteries (O’Brien et al. 
2019a). How sex and the associated differences between 
males and females (e.g., hormonal, genetic, etc.) impact 
L-FMC is unclear. Notably, when females are tested 

throughout their menstrual cycle may impact results (Wil-
liams et al. 2001), but previous work in the popliteal artery 
was conducted when hormones were lowest to control for 
this phenomenon (O’Brien et al. 2019b, 2021a, b). An 
inclusion of these methodological factors that account for 
the shear rate stimulus are, therefore, needed to advance 
our understanding on sex differences in L-FMC.

Impact of chronic disease

Impaired endothelial function is typically a preceding 
characteristic to the development of cardiovascular dis-
eases (Drexler and Hornig 1996; Paterick and Fletcher 
2001). Compared to young adults or healthy age-matched 
controls, attenuated radial L-FMC responses are observed 
in patients with coronary artery disease, congestive heart 
failure, and hypertension (Gori et al. 2010). In multivari-
able analyses, coronary artery disease, but not diabetes 
mellitus, was predictive of attenuated radial L-FMC (Gori 
et al. 2017). Similarly, radial L-FMC is further attenuated 
among multi-vessel versus single vessel coronary artery 
disease (Gori et al. 2012). In the brachial artery, coro-
nary artery disease patients and moderate-severe psoriasis 
patients exhibited smaller L-FMC responses than healthy 
young adults (Wegner et al. 2022). In contrast, Spiro et al. 
observed that brachial artery L-FMC were attenuated in 
patients with unstable vs. stable (larger L-FMC) coronary 
atherosclerosis and smaller following percutaneous coro-
nary intervention (Spiro et al. 2011). While Gori et al. 
frequently observed attenuated L-FMC responses in the 
radial artery of cardiovascular compromised patients (Gori 
et al. 2008, 2011), observations in the brachial artery by 
Spiro et al. (Spiro et al. 2011) are inconsistent. An obvious 
rationale for the divergent results is not clear. Certainly, 
a better understanding as to how much a larger/smaller 
L-FMC response represents an (un)healthy response, its 
associated mechanistic underpinnings, and clinical rel-
evance is needed.

Summary

Although limited research has been conducted on L-FMC 
responses relative to FMD responses, existing work has 
demonstrated that healthy aging and presence of cardio-
vascular conditions generally are associated with attenu-
ated L-FMC responses. Whether sex differences in L-FMC 
exist may be limb-dependent, where future research should 
address that observations in the lower limb do not necessar-
ily reflect the more commonly assessed upper limb. Nev-
ertheless, participant-level factors generally influence the 
magnitude of L-FMC.
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Exercise and movement factors and L‑FMC

The cardiovascular benefits of regular exercise are well 
established, with numerous reviews supporting the efficacy 
of exercise to improve FMD (Ashor et al. 2015; Ramos 
et al. 2015; Early et al. 2017). As outlined in a recent 
review of the topic, higher aerobic fitness is associated 
with- and engaging in aerobic exercise training augments 
L-FMC responses (O’Brien et al. 2022). Such results were 
observed across the radial, brachial, and popliteal arter-
ies. However, conflicting evidence exists as to whether 
resistance training or prolonged sitting impacts L-FMC. 
Accordingly, such information suggests that exercise type 
may result in a differential impact of endothelial-depend-
ent vasoconstriction, with aerobic exercise specifically 
augmenting this response.

Among aerobic exercise studies, cross-sectional work 
documented an inverse relationship between aerobic fit-
ness and brachial L-FMC in young males (Bell et al. 2017) 
and older adults (O’Brien et al. 2019c), but a stronger rela-
tionship with popliteal L-FMC in older adults (O’Brien 
et  al. 2019a). Given that traditional forms of aerobic 
exercise involve the lower limb, it is unsurprising that 
lower limb arteries are more related with aerobic fitness. 
Acutely, 30 min of cycling augmented radial L-FMC in 
young males (Elliott et al. 2018). The intervention by Van 
Craenenbroeck et al. did not observe changes in L-FMC 
but consisted of at home cycling in patients with stage 
3 or 4 chronic kidney disease (Van Craenenbroeck et al. 
2015). It is plausible that a lack of supervision of partici-
pants or health status of the participants are responsible 
for the divergent results with other work. Conversely, a 
6-week training intervention conducted by Rakobowchuk 
et al. (2012) observed increased L-FMC (i.e., more con-
striction) following both moderate and vigorous intensity 
interval training in healthy adults (Rakobowchuk et al. 
2012). While the clinical or prognostic value of L-FMC 
has yet to be established, the notion of examining vaso-
reactivity to changes in local blood flow follows a similar 
line of thinking as the FMD technique but under divergent 
mechanisms. Given the higher aerobic fitness and engage-
ment of exercise training are associated with better car-
diovascular function, indirectly, this is suggestive of an 
augmented vasoconstrictor response to low-flow being a 
healthier response. Of relevance, most work relating move-
ment and L-FMC has been conducted in the last 5 years, 
indicating some adoption by vascular exercise researchers 
(O’Brien et al. 2022). Establishing the clinical relevance 
may further propagate this metric among researchers.

The mechanisms responsible for the augmented L-FMC 
with aerobic exercise are unclear, and this is a call for 
conducting studies in this worthy area of investigation. 

Endothelin-1 levels are typically lower in older adults who 
are more aerobically fit(Nyberg et al. 2013) and if basal 
endothelin-1 levels are lower pre-occlusion then there 
may be a greater capacity to produce vasoconstrictors 
in response to low-flow, contributing to the augmented 
L-FMC among persons who are more aerobically fit. In 
addition, aerobic exercise training improves vasodilatory 
signaling of endothelial-derived hyperpolarizing factors 
(Minami et al. 2002) and prostaglandins (Spier et al. 2007) 
in rodent models. Lastly, a long-term adaptation to regular 
exercise is an improved anti-inflammatory response, sup-
pressing TNF-α (Petersen and Pedersen 2005). Systemic 
TNF-α is reduced following moderate and high-intensity 
exercise training in Wistar rats (Jiménez-Maldonado et al. 
2019). Integrating this mechanistic information alongside 
cross-sectional and exercise training studies in humans are 
needed to advance our understanding of the mechanistic 
contributions of lifestyle factors on endothelial function. 
Researchers probing the impact of exercise training on vas-
cular function occlusion-reaction ultrasound assessments 
are encouraged to integrate these relatively straightforward 
mechanistic measurements to strengthen their research 
studies and our understanding of vascular physiology.

Of note, other lifestyle factors such as diet may influence 
the L-FMC response. However, only one study has investi-
gated the impact of diet on L-FMC and observed that high 
dietary sodium intake attenuated L-FMC in salt-resistant 
adults (Shenouda et al. 2020). Future studies should consider 
diet to uncover the other effects it may have on L-FMC.

Summary

Existing work supports that aerobic exercise may augment 
L-FMC (O’Brien et al. 2022), but our understanding of the 
mechanistic underpinnings of this observation are not well 
studied. To improve our understanding of the endothelial 
impact of exercise and the possible benefits of including 
L-FMC alongside FMD, studies incorporating inhibitors 
of L-FMC within their movement interventions are essen-
tial. Such information would provide mechanistic insight 
and may advance our knowledge on the non-NO-mediated 
changes in endothelial function. Our existing understand-
ing of the factors that might be determinants of L-FMC are 
outlined in Fig. 2.

Conclusion

L-FMC represents a unique measure of endothelial function 
that provides information beyond that gained by FMD in iso-
lation but is often not reported. Existing work supports that 
L-FMC is mediated via the inhibition of non-NO vasodila-
tors (EDHF/prostaglandins), endothelin-1 signaling, and the 
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inflammatory state of the endothelium. Participant factors 
(e.g., younger age and absence of chronic disease) and engag-
ing in aerobic exercise are associated with augmented L-FMC, 
but the mechanistic underpinnings of these observations are 
unclear. A greater integration of mechanistic work alongside 
applied lifestyle interventions is required to better understand 
endothelial cell function to reductions in local blood flow.
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