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Abstract
Resistance training is frequently performed with the goal of stimulating muscle hypertrophy. Due to the key roles motor unit 
recruitment and mechanical tension play to induce muscle growth, when programming, the manipulation of the training vari-
ables is oriented to provoke the correct stimulus. Although it is known that the nervous system is responsible for the control 
of motor units and active muscle force, muscle hypertrophy researchers and trainers tend to only focus on the adaptations 
of the musculotendinous unit and not in the nervous system behaviour. To better guide resistance exercise prescription for 
muscle hypertrophy and aiming to delve into the mechanisms that maximize this goal, this review provides evidence-based 
considerations for possible effects of neural behaviour on muscle growth when programming resistance training, and future 
neurophysiological measurement that should be tested when training to increase muscle mass. Combined information from 
the neural and muscular structures will allow to understand the exact adaptations of the muscle in response to a given input 
(neural drive to the muscle). Changes at different levels of the nervous system will affect the control of motor units and 
mechanical forces during resistance training, thus impacting the potential hypertrophic adaptations. Additionally, this article 
addresses how neural adaptations and fatigue accumulation that occur when resistance training may influence the hypertrophic 
response and propose neurophysiological assessments that may improve our understanding of resistance training variables 
that impact on muscular adaptations.
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Abbreviations
HDEMG  High-density surface electromyography
MPS  Muscle protein synthesis
MVIC  Maximum voluntary isometric contraction
RFD  Rate of force development
SC  Satellite cells (SC)
1RM  One repetition maximum

Introduction

Skeletal muscle hypertrophy is targeted by bodybuilders 
(Hackett et al. 2013) but also by athletes of various sports 
such as weightlifting (Storey and Smith 2012) or judo (Cal-
lister et al. 1991; Franchini et al. 2011) to improve perfor-
mance. In addition, greater muscle mass is associated with 
a lower risk of mortality due to multiple causes in differ-
ent populations (Wannamethee et al. 2007; Srikanthan and 
Karlamangla 2014; Srikanthan et al. 2016; Sedlmeier et al. 
2021). Skeletal muscle hypertrophy is defined as an increase 
in the size of skeletal muscle, which is accompanied by an 
increase in mineral, protein, or substrate abundance (Haun 
et al. 2019). When the size of the muscle is increased, there 
is not only myofibrillar hypertrophy, but also connective tis-
sue and sarcoplasmic hypertrophy (Haun et al. 2019). The 
myofibrillar hypertrophy induced by resistance training con-
tributes to the gains experienced by the subjects in muscle 
strength, increasing the capacity of the muscle to produce 
force (Taber et al. 2019). In this way, a recent study reported 
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that for a given net neural drive to the muscles, chronically 
strength trained athletes were able to generate significantly 
higher absolute forces compared with the untrained subjects, 
what indirectly suggests that morphological factors (i.e., 
the muscle gain) play an important role for volitional force 
generation during submaximal force-modulating tasks after 
years of training practice (Casolo et al. 2021). The adapta-
tions to the muscle are mediated by the recruitment and rate 
coding of motor units. This is not surprising as the mus-
cle adapts to the neural stimulus in a stimulus-dependent 
fashion.

Resistance training, being more effective than aerobic 
training (Grgic et al. 2019), is commonly used to promote 
skeletal muscle hypertrophy. During resistance training, 
skeletal muscle fibers produce forces against the load used in 
each exercise. The correct manipulation of resistance train-
ing variables is needed to maximize the increases in muscle 
mass (Kraemer and Ratamess 2004). When optimizing the 
resistance training programming aimed to increase muscle 
hypertrophy, different variables such as volume (Schoenfeld 
et al. 2017a; Baz-Valle et al. 2018), load/intensity (i.e., % 
of 1RM) (Schoenfeld et al. 2017b), inter-set rest (Schoe-
nfeld et al. 2016b; Grgic et al. 2017), and frequency (Sch-
oenfeld et al. 2016a, 2019b) have been reported to produce 
the maximum hypertrophic response. In fact, resistance 
training is just a specific training based on programming 
external variables such as load or exercises selection to gen-
erate high mechanical forces by the neuromuscular system 
against resistance. The goal of strength and conditioning 
is to manipulate the resistance training variables to induce 
specific physiological responses that will trigger muscular 
gains. Thus, the stimulus caused by the resistance training 
performed is the key to the specific induced adaptations 
(Wackerhage et al. 2019). However, very little knowledge 
from both the technical and physiological perspective is 
given to an accurate quantification of the stimulus received 
by the muscle (e.g., the neural drive to the muscle). Neural 
drive to the muscle refers to the ensemble of action potential 
trains (reflecting the number of single motor units activated 
and their discharge rate) from the pool of α-motoneurons 
innervating a muscle. This neural signal is the ultimate code 
of a movement, containing the information on the motor 
task and modulating the forces produced by the muscles 
through motor unit recruitment and discharge rate adjust-
ments (Farina et al. 2010). In fact, Desmedt and Godaux 
already demonstrated in 1977 that the force of ballistic con-
tractions was graded by both the recruitment of additional 
motor units in stronger contractions and the increase in their 
firing rate, when the activity of the tibialis anterior motor 
units was measured during ankle dorsiflexion (Desmedt and 
Godaux 1977).

The behaviour of the human body is not static but dynamic. 
A proof of the dynamism of human body is the low reliability 

of the last repetition velocity of a set to failure (García-Ramos 
et al. 2020) or the nervous system plasticity, being the excit-
ability of neurons modifiable in short periods of time due 
to reasons such as resistance training (Nuzzo et al. 2016; 
Colomer-Poveda et al. 2020). Because of these fluctuations 
caused by human physiology, not only the baseline of the sub-
ject but also the changes experienced by them during and after 
resistance training, will influence the responses and adapta-
tions produced. In this regard, changes in the nervous system 
caused by physical exercise or other reasons could influence 
the results obtained by the resistance training. An example of 
the nervous system implications is the greater strength gains 
produced by resistance training when the muscle adaptations 
do not differ between groups, but the neural adaptations are 
greater (Jenkins et al. 2017; Nuzzo et al. 2017). Note that the 
central nervous system is responsible of human movement and 
it recruits motor units, and then, muscle fibers to contract pro-
ducing forces (Kandel et al. 2000; Enoka 2015).

Muscle force is regulated by the central nervous system, 
which vary the activity of the motor units that comprise the 
muscle (Clamann 1993; Fuglevand et al. 1993). Thus, when 
movements such as lifting weights are performed, the cen-
tral nervous system is responsible of its execution, causing 
the muscle contraction that trigger muscle force. The nerv-
ous system seems in general to compensate for the muscle 
mechanics when performing fast movements. In chronically 
strength trained athletes, it seems that they are able to gener-
ate higher explosive force by compressing the recruitment 
range (Del Vecchio et al. 2018); on the other hand, when 
the muscle show slow intrinsic force profiles such as in 
newborns, the only way for the central nervous system to 
increase the speed of contraction is to increase the synchrony 
between motor unit discharge times (Del Vecchio et al. 
2020). Although muscle force has been extensively explored 
for its important role in skeletal muscle hypertrophy (Schoe-
nfeld 2010; Wackerhage et al. 2019), the role of the central 
nervous system (which is responsible of active muscle force) 
has received less attention. Knowing that nervous system 
regulates and causes muscle force, the purpose of this review 
is to draw an overview of the importance of exploring the 
effects of the nervous system behaviour on muscle adapta-
tions induced by resistance training. We also want to raise 
awareness of the possible importance of neurophysiological 
measurements in studies that explore the effect of different 
resistance training programs on skeletal muscle hypertrophy.

Resistance training and nervous system

Motor control in voluntary movements

During a voluntary movement such as lifting a weight dur-
ing resistance training, the output from each motor neuron, 
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that will determinate the force produced in its muscle fibers, 
depends on the input received from supraspinal levels, spinal 
cord circuitry, and afferent feedback (Enoka 2015; Taylor 
et al. 2016). In this sense, the cerebral cortex, excited by dif-
ferent areas such as thalamus or midbrain, has an important 
role to produce the muscle forces that allow human vol-
untary movement (Cheney 1985; Hanes and Schall 1996). 
From different areas of the motor cortex and brainstem 
pathways is sent the efferent output, commonly known as 
the central command, to the lower levels of the central nerv-
ous system to finally recruit the motor units (Graziano et al. 
2002). In the cerebral cortex, not only the motor cortex has 
an important role in human movement but also other regions 
such as prefrontal cortex (Cheney 1985; Robertson et al. 
2016). When performing high-intensity exercise (e.g., sets 
close to failure), cognitive functions play an important role 
(Hagger et al. 2010), being the prefrontal cortex involved in 

the inhibitory control (Diamond 2013), which is determi-
nant for performance in these physical tasks (Hagger et al. 
2010) (see Fig. 1). Non-invasive brain stimulation seems to 
enhance motor function targeting both motor (Angius et al. 
2017; Alix-Fages et al. 2019) and prefrontal cortex (Vieira 
et al. 2020; Lattari et al. 2020; Alix-Fages et al. 2020). After 
stimulating their dorsolateral prefrontal cortex, subjects 
increased the total number of repetitions performed during 
resistance trainings sessions such as sets of bench press at 
5 repetitions with 1 min of inter-set rest against the 75% 
of 1RM (i.e., one repetition maximum) till failing in a set 
(Alix-Fages et al. 2020) or 3 maximal sets of back squat 
at 80% of 1RM with 1 min of inter-set rest (Vieira et al. 
2020). Prefrontal cortex does not only have a key role in 
cognitive tasks but also in motor function (Diamond 2000), 
being important for the integration of the afferent feedback 
from the periphery in combination with the motivational 

Fig. 1  Schematic illustration of the neural control of human volun-
tary movement during a resistance training exercise such as squatting. 
The example of a squat set going close to failure (e.g., 8 repetitions 
performed with a 10 RM load) is represented in the left side of the 
figure. Different structures involved in the motor control of the physi-

cal task are depicted in the right side of the figure. Not only efferent 
but also afferent activity is represented. Supraspinal and spinal cir-
cuitry are both affected by the afferent feedback and it influences the 
final efferent signalling affecting motor units’ recruitment, which will 
determinate the neuromuscular performance in the physical task
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and emotional context provided by other areas (Robertson 
et al. 2016). In this regard, prefrontal cortex role is vital for 
making decisions during exercise, which will determinate 
performance (Robertson et al. 2016). In this line, the role 
of prefrontal cortex on self-regulation functions is also vital 
for attentional control when performing muscle endurance 
exercise at high levels of pain and effort (Wolff et al. 2018), 
being the cognitive resources of the prefrontal cortex key for 
strength endurance performance in dynamic resistance train-
ing involving moderate-to-high repetitions such as 10 (Bar-
bosa-Netto et al. 2021) or 25–30 reps (Ribeiro et al. 2019) 
but not for shorter tasks such as maximum voluntary iso-
metric contraction (MVIC), because after being depleted by 
mental fatigue, MVIC performance is not affected (Pageaux 
et al. 2013, 2015; Rozand et al. 2014; Martin et al. 2015). 
Then, prefrontal cortex roles could be determinant for reach-
ing failure or getting close to it when performing resistance 
training sets at moderate–high repetitions (i.e., ≥ 8RM). Note 
that non-invasive brain stimulation over the prefrontal cortex 
seems to enhance physical performance at 75% (Alix-Fages 
et al. 2020) or 80% of 1RM resistance training (Vieira et al. 
2020) but not at shorter physical tasks such as 1RM bench 
press (Alix-Fages et al. 2020), 30 m running sprint (Alix-
Fages et al. 2021), or countermovement jumps (Romero-
Arenas et al. 2019). Besides, prefrontal cortex and motor 
cortex excitabilities have been shown to be linked (Cao et al. 
2018). Subcortical areas, such as basal ganglia, cerebellum, 
or different motor centers of the brain stem, are also deeply 
involved in human movement (Kandel et al. 2000; Enoka 
2015). The complex cerebral circuitry along with spinal cord 
circuitry, being both affected by multitude of feedbacks, will 
finally determinate the neural drive from pools of motor neu-
rons to the muscles (Enoka 2015; Taylor et al. 2016). Thus, 
any change given in some of these central nervous regions 
could influence the muscle forces produced. It means that 
resistance training performance could be affected and maybe 
also the induced adaptations.

Once the action potential is propagated along the mus-
cle fiber membrane and spreads through the T-tubules, it 
will provoke the release of the  Ca2+ (calcium ions) from the 
sarcoplasmic reticulum after interacting with the dihydro-
pyridine and ryanodine receptors (Dulhunty 2006; Calderón 
et al. 2014). With the transient increase of  Ca2+ concentra-
tion in the muscle cell cytoplasm and its interaction with 
troponin, the crossbridge cycling is caused by the interaction 
between myosin and actin allowing the muscle contraction 
to produce force (Frontera and Ochala 2015). Other proteins 
such as titin and nebulin also contribute to the mechanical 
and physiological properties of muscle (Frontera and Ochala 
2015). All these processes mentioned occur because of the 
nerve stimulation, being the action potential propagated by 
the axon of the motor neuron and initiated in the muscle fib-
ers through the transmission produced in the neuromuscular 

junction by the release of acetylcholine neurotransmitters 
(Calderón et al. 2014). Thus, being the action potential the 
regulator of the excitation–contraction coupling (i.e., the 
series of events that happen from the generation of the action 
potential and its propagation through the membrane of the 
muscle fibers to the beginning of the muscle force after 
 Ca2+ release), the nervous system controls muscle force. 
The amount of force produced by muscle fibers depends on 
the firing rate of their motor neuron (Duchateau and Baudry 
2014; Enoka and Duchateau 2017; Del Vecchio et al. 2019b, 
c). Note that motor units are recruited in an orderly fashion, 
always from small motor units to large (Henneman et al. 
1974), as Henneman’s Size Principle described after report-
ing in 1957 the relation between the motor neuron soma size 
and its susceptibility to generate action potentials at a given 
input current (Henneman 1957). In fact, a recent in vivo 
study that reported a very stable recruitment order between 
different sessions of fast contractions performed by monkeys 
showed that the neural drive to the muscle is highly struc-
tured in a hierarchical fashion, finding that the only compo-
nent that predicted the rapid movements was constrained by 
the size principle (Del Vecchio et al. 2021b). In this sense, 
the membrane resistance of the motoneurons is essential for 
the orderly recruitment from low-threshold to high-threshold 
motor units (Powers and Binder 2001). As more motor units 
are recruited, higher mechanical forces will be produced by 
the muscles (Enoka and Duchateau 2017; Del Vecchio et al. 
2019a). In this line, the central nervous system is able to 
modulate the mechanical forces produced by each muscle 
through sending them action potentials at different rates dur-
ing simple (e.g., knee extension) or complex (e.g., squat) 
exercises. Because of that, even when synergistically acti-
vated muscles of the quadriceps seemed to be primarily con-
trolled by a shared neural drive, sharing their motor neuron 
pools most of their synaptic input from both afferent feed-
back [measured signals at 6–12 Hertz (Hz)] and descending 
cortical inputs (∼20 Hz) (Laine et al. 2015), several motor 
neurons of the lateral and medial head did not share their 
synaptic input (Avrillon et al. 2021), reporting a large inter-
individual variability in the proportion of muscle-specific 
neural drive, that is, the drive unique to each muscle (range: 
6–86%).

Neuromuscular adaptations to resistance training

Chronic adaptations induced by resistance training are not 
only produced at muscle levels but also at nervous system 
levels (Gabriel et al. 2006; Siddique et al. 2020). In 1981, 
Häkkinen, Komi, and Tesch performed a study where 14 
trained men went through progressive 16-week dynamic 
resistance training of combined concentric and eccentric 
contractions for barbell squat at 80–120% of 1RM three 
times per week and a subsequent 8-week detraining period 
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(Hakkinen et al. 1981). The training program improved the 
maximal isometric force and squat performance accompa-
nied by fast-twitch and slow-twitch muscle fibers hyper-
trophy, but both, muscle force along with hypertrophy, 
decreased after the detraining period. Squat jump perfor-
mance was also improved and related to relative fast-twitch 
muscle fibers hypertrophy (Hakkinen et al. 1981). Two years 
later, Häkkinen and Komi published a study using the same 
protocol but incorporated EMG measurements. They found 
that muscle force improvements were also accompanied by 
significant increases in maximum EMG of the trained mus-
cles, being both reduced after the detraining period (Häk-
kinen and Komi 1983). After considering the results of both 
studies and the timing of the measured neural and hyper-
trophic adaptations, authors concluded that the early change 
in muscle strength may be related to neural factors with a 
gradually increasing contribution of later hypertrophic fac-
tors, although the magnitudes and the occurrence of these 
changes may vary depending on several variables (Häkkinen 
and Komi 1983). Besides, in a later study, after an explosive 
strength training program that included jumping exercise 
with and without load, authors observed specific changes to 
the training stimulus for the isometric force–time curve due 
to the greater improvements in the time of force production 
than in maximal force that were related to the changes of 
neural activation measured with EMG and the increase of 
fast-twitch:slow-twitch muscle fibers area ratio, being neural 
and selective muscle adaptations related to the specific train-
ing stimulus (Hakkinen et al. 1985b).

Neural adaptations induced by resistance training could 
be due to changes in different parts of the central nervous 
system, being involved supraspinal (Aagaard et al. 2002; 
Nuzzo et al. 2017) and spinal levels (Aagaard et al. 2002; 
Carroll et al. 2002; Del Vecchio et al. 2019a). A recent sys-
tematic review and meta-analysis (Siddique et al. 2020) 
found that although the excitability of corticospinal axons 
seems to not be affected by resistance training, and sub-
cortical and cortical circuitry does, being the descending 
inhibition reduced, and also, the neural drive from the spi-
nal cord increased. Besides, recent research showed that not 
only cortical but also reticulospinal adaptations contribute 
to strength gains in monkeys after 8–9 weeks of resistance 
training (5 days per week) pulling a loaded handle with 
progressively increased weights towards the body using 
their right hand (Glover and Baker 2020). These chronic 
responses to resistance training comprise a large type of 
changes such as modulations in agonist (Häkkinen et al. 
1998; del Olmo et al. 2006; Gabriel et al. 2006) or antago-
nist muscle activity (Carolan and Cafarelli 1992; Häkkinen 
et al. 1998; Gabriel et al. 2006). Focusing on the adaptations 
produced to recruit a muscle, every change produced on the 
descending drive, the spinal circuitry, and the afferent feed-
back or in the motor neuron properties, could affect to the 

motor units activity (Duchateau et al. 2006). In this sense, 
finally, the output from the spinal cord to the muscles, which 
is expressed by the recruitment of motor units and their fir-
ing rate, will determinate the muscle force produced and 
then influence the motor performance (Desmedt and Godaux 
1977; Duchateau et al. 2006).

Decoding the neural activity of the motor units recorded 
from the muscles of a joint using high-density surface elec-
tromyography (HDEMG), the real forces produced and 
measured by a dynamometer could be accurately estimated, 
which means that the neural information could be translated 
into the biomechanical function of the joint (Sartori et al. 
2017). At the level of motor units, resistance training has 
demonstrated to increase its drive to the muscles (Carroll 
et al. 2002; Del Vecchio et al. 2019a). HDEMG allow sci-
entists to explore changes in motor units’ behaviour longitu-
dinally (Martinez-Valdes et al. 2016, 2017; Del Vecchio and 
Farina 2019). Thereby, it has been recently demonstrated 
by HDEMG that neural but not muscular adaptations are 
responsible of the absence in rate of force development 
(RFD) enhancement while increasing maximal muscle force 
production after 4 weeks of isometric strength training, con-
sisting of ankle dorsiflexion MVICs and a combination of 
rapid (4 sets × 10 repetitions reaching 75% MVIC in 1 s) 
and sustained ramp (3 sets × 10 repetitions increasing force 
at 37.5% MVC/second till reaching 75% MVIC), which was 
supported by computer simulations using a model based 
on the neural and muscular determinants of maximal RFD 
(Del Vecchio et al. 2021a, b). Authors observed that even 
though the discharge rate of motoneurons increased during 
the plateau phase of the muscle contractions, the recruitment 
speed and discharge rate did not change during the initial 
phase (Del Vecchio et al. 2021a, b). These specific adapta-
tions resulted in a similar rate of force development before 
and after training. In this sense, after 4 weeks of isometric 
resistance training in which maximal force of dorsiflexor 
muscles during a voluntary contraction was augmented by 
performing MVCs and 4 sets of 10 repetitions of 40 maximal 
ballistic contractions in 60 s with 1 min inter-set rest, signifi-
cant increases in tibialis anterior motor units discharge rates 
and reductions in the recruitment threshold have been shown 
(Del Vecchio et al. 2019a). Despite this, the input–output 
gain of the motor neurons remained without changes and the 
adaptations in motor unit function could be due to changes 
in the synaptic input, but alterations at the motor neuron 
level cannot be excluded (Del Vecchio et al. 2019a). These 
results are in line with studies that found improvements in 
descending drive from the motor cortex to recruit motor 
units (Nuzzo et al. 2017; Siddique et al. 2020). Taken the 
actual evidence about the improvements in the activation of 
the muscles by the nervous system due to resistance training 
(del Olmo et al. 2006; Siddique et al. 2020), we hypothesize 
that this adaptations could not only affect strength but also 



1116 European Journal of Applied Physiology (2022) 122:1111–1128

1 3

muscle gains, influencing the hypertrophy obtained by resist-
ance training because of the changes provoked in the motor 
units behaviour and then in the muscle fibers forces. It could 
be interesting to explore these relations in future research, 
measuring not only the muscle size but also voluntary 
activation and the activity of motor units using HDEMG. 
Besides, neurophysiological measurements such as neuronal 
excitability or inhibition using transcranial magnetic stimu-
lation could also be interesting.

Several questions about neural adaptations to resistance 
training have still to be explored. As such, neural adaptations 
have been traditionally proposed to be experienced by the 
subjects during the first weeks of resistance training contrib-
uting strength gains, while structural adaptations occur later 
(Moritani and DeVries 1979; Goodall et al. 2014). Despite 
this, a work of Häkkinen, Alén, and Komi in 1985 already 
showed that during a 24-week dynamic resistance training 
program of combined concentric and eccentric squats at high 
loads (70–120% of 1RM) three times per week, although 
increases in neural activation measured by EMG accom-
panied improvements in strength during the course of all 
the very intense training (neural activation decreased when 
training with lower intensities), muscle adaptations only 
occurred during the first 12 weeks (Hakkinen et al. 1985a). 
In the same way, although some neural adaptations occur 
after 12 weeks of resistance training, in comparison, other 
are improved when 4-year resistance-trained subjects are 
tested (Balshaw et al. 2019), which could means that not 
all neural adaptations to resistance training occur in the first 
months of training, but they could be enhanced by years of 
resistance training. In this line, strength gains in resistance-
trained individuals cannot always being explained by muscle 
growth (Dankel et al. 2017a), and while strength is highly 
associated to muscle hypertrophy, it could not be possible if 
the central nervous system does not recruit muscles effec-
tively to produce force (Taber et al. 2019). Other factors 
including intrinsic changes on the myocytes (not hypertro-
phy) occur contributing to the neuromuscular performance 
(Chin et al. 1998; Dankel et al. 2019). Neural adaptations 
increasing the neural drive to the muscles have been shown 
in highly skilled athletes after 16 weeks of resistance train-
ing divided into four phases: (1) strength conditioning phase 
(~ 4 sets of 8–10 repetitions at 60% of 1RM for each exer-
cise), weeks 1–4; (2) strength development phase (~ 1–4 
sets of five repetitions at 85% of 1RM for each exercise), 
weeks 5–8; (3) strength–power phase (~ 1–4 sets of eight 
repetitions at 80% of 1RM for each exercise), weeks 9–12; 
and (4) peaking and maintenance phase, where exercises 
were limited to 3–5 repetitions of the classic power lifts and 
Olympic lifts at 80–90% of 1RM during the weeks 13–16 
(Judge et al. 2003). In addition, in a case study, two active 
healthy subjects, one of them experienced in resistance-
trained, increased their strength and voluntary activation 

after 8 weeks of a resistance training program consisting of 
high-intensity concentric and eccentric isokinetic exercise at 
8–10 reps and three sets of traditional whole-body resistance 
training exercises at 8–10 RM (Brown et al. 2017). Taken 
the actual evidence together, it seems that neural adapta-
tions could accompany structural adaptations and contribute 
to strength gains in resistance-trained subjects, because if 
not, hypertrophy could not be related to strength as it does 
because for muscles to produce forces, central nervous sys-
tem has to recruit them.

Muscle hypertrophy adaptations induced by resistance 
training have been shown to be similar using high (> 60% 
of 1RM) or low (≤ 60% of 1RM) loads, but strength gains 
are greater training with high loads (Schoenfeld et al. 2017b; 
Lasevicius et al. 2018). In this sense, performing 3 set of 
leg extension to failure with 2 min of inter-set rest at 80% of 
1RM during 6 weeks (3 times per week) has demonstrated 
to be more effective to increase 1RM and MVIC than per-
forming the same training at 30% 1RM, while muscle thick-
ness increased similarly in both groups (Jenkins et al. 2017). 
Resistance training at 80% 1RM also provoked greater 
improvements in voluntary activation during MVIC and was 
the only load that increased electromyographic amplitude, 
which means that greater neural adaptations were induced 
training at higher loads (Jenkins et al. 2017). In the same 
way, a classic study that evaluated the training adaptations 
of 13 elite weight-lifter during 1 year showed that during the 
5–8 months of training, when they trained at the lowest aver-
age intensity (77.1%), the maximal neural activation meas-
ured by EMG decreased, while in the last 4 months, when 
they trained at slightly higher average intensities (79.1%), 
the maximum EMG and muscular strength increased (Häk-
kinen et al. 1987). Besides, another study that equated vol-
ume load reported lower relative increases of 1RM after 
training bench press during 10 weeks (2 days per week) 
at 12RM (18.7 ± 10.1%) compared to 8RM (29.5 ± 11.6%) 
or 4RM (28.4 ± 10.0%) (Kubo et al. 2021). Knowing that 
reaching failure during sets, motor units are fully recruited 
regardless of the load used (Morton et al. 2019) and central 
fatigue (i.e., fatigue attributed to processes within the nerv-
ous system) is not greater training at higher loads (Behm 
et al. 2002; Robbins et al. 2010; Farrow et al. 2021), mecha-
nism of different neural adaptations between loads are still 
unknown. Despite this, motor units’ recruitment pattern dif-
fers between high and low loads. In this sense, an isometric-
based model of fatiguing tasks at different percentages of 
MVIC force has been recently proposed (Potvin and Fug-
levand 2017). This work showed that when applying forces 
against a low (i.e., 20% MVIC) or moderate load (i.e., 50% 
MVIC), all motor units will be recruited during more time, 
but higher threshold motor unit will not reach maximal firing 
rate, and therefore, they will not reach their maximal force 
production (Potvin and Fuglevand 2017). Instead, when 
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applying forces against a high (i.e., 80% MVIC) or maximal 
load (i.e., 100% MVIC), all motor units reach their maximal 
firing rate, but they are activated during less time (Potvin 
and Fuglevand 2017). Knowing that an improvement of 16% 
have been shown for muscular endurance when following 
a low-load training, while no improvement was shown for 
high-load training (Schoenfeld et al. 2015), it is logical to 
think that not only muscle structural but also neural adapta-
tions are specific of the resistance training type performed. 
In this sense, it is possible that while nervous system adapts 
to low-load training with the aim of being more efficient and 
energy saver modulating motor units recruitment pattern (De 
Luca and Contessa 2015) to increase long-duration task per-
formance, high-load training adaptations could emphasize 
in the improvement of the maximal muscle force produc-
tion in short time tasks such as higher voluntary activation 
when performing an MVIC (Jenkins et al. 2017). In this 
sense, a recent study found that in resistance-trained indi-
viduals, 3 weeks of a “strength training phase” (i.e., 4 sets 
of back squat and leg press 45° at 1–3 RM twice a week) 
prior to 5 weeks of a “hypertrophy oriented training” (i.e., 
4 sets of back squat and leg press 45° at 8–12 RM twice a 
week), increased muscle thickness and maximum strength 
responses compared to 8 weeks of only hypertrophy oriented 
training (Carvalho et al. 2020). Despite this, not only the 
possible greater neural adaptations but also other reasons 
such as the stimulus variation or the lower fatigue period 
could have affected to the results. The role of neural adapta-
tions increasing force production by maximal muscle acti-
vation in hypertrophy responses, is still unknown and more 
research is needed.

Stimulus and fatigue in hypertrophy training

What is the actual training stimulus for skeletal 
muscle hypertrophy?

The main goal of hypertrophy-based resistance training 
programs is to induce an increase in muscle protein syn-
thesis (MPS), to get a positive protein net balance (Damas 
et al. 2015; Figueiredo 2019). The skeletal muscle fiber is 
a mechanically sensitive cell and it has been proposed that 
muscle fiber growth is mainly dependent on intrinsic prop-
erties (Olsen et al. 2019; Wackerhage et al. 2019). Through 
different mechanotransducting proteins and complexes, the 
outside of the cell (extracellular matrix) and the inside (cit-
oesqueleton) are linked, allowing signal transduction from 
inside to outside and vice versa and converting mechani-
cal events into molecular and biochemical responses (Olsen 
et al. 2019). In summary, the force generated by each muscle 
fiber is transmitted laterally and longitudinally activating 
different mechanical sensors that triggers anabolic signalling 

events, increasing acutely MPS and generating chronic phys-
iological adaptations that will finally favour muscle hyper-
trophy. Along with mechanical forces (stimuli proposed as 
the main muscle hypertrophy mechanism), metabolic stress 
and muscle damage have been proposed as hypertrophy 
mechanisms (Wackerhage et al. 2019). Despite this, studies 
finding metabolic stress or muscle damage as hypertrophy 
stimulus could be affected by confounding factors such as 
mechanical force. It has been proposed that the effect of 
metabolic stress triggering muscle hypertrophy is mainly 
related with the increased motor units recruitment provoked 
by muscle fatigue to maintain the mechanical forces when a 
set is close to failure (Dankel et al. 2017b). In fact, although 
low loads (i.e., ≤ 60% of 1RM) provoke higher levels of 
metabolic stress, they do not lead more muscle hypertrophy 
than higher loads (i.e., > 60% of 1RM) (Schoenfeld et al. 
2017b). A recent study showed that when volume load was 
equated and sets were performed to failure, training at 40%, 
60%, or 80% of 1RM was effective for maximizing muscle 
hypertrophy but not training at 20% of 1RM (Lasevicius 
et al. 2018). Besides, another recent study equating volume 
load reported no differences in the volume of pectoralis 
major muscle measured by 3 T magnetic resonance imaging 
after training bench press at 4RM, 8RM, or 12RM during 
10 weeks (2 days per week) (Kubo et al. 2021). In the same 
way, although 1-min inter-set rest induces more metabolite 
accumulation, resting 3 min triggers greater muscle growth 
when there are not significant differences in volume load 
(Schoenfeld et al. 2016b) and when performing the same sets 
(3 sets) without equalized volume load (Longo et al. 2020). 
Also, a study that compared 6 weeks of blood flow restric-
tion training at 30% of 1RM to increase metabolic stress 
with traditional resistance training at 70% of 1RM found 
no differences in long-term myofibrillar MPS, ribosomal 
biogenesis, or muscle remodelling (Sieljacks et al. 2019). 
However, a recent work found that the addition of blood 
flow restriction enhanced type 1 fibers myofiber hypertro-
phy and myonuclear addition after 6.5 weeks of resistance 
training in national-level powerlifters (BjØrnsen et al. 2019), 
what could suggest an independent way of metabolic stress 
inducing muscle growth. Although it is still not clear how 
important are acute increases in hormonal levels induced by 
resistance training in healthy subjects for the whole skeletal 
muscle hypertrophy stimulus (Gharahdaghi et al. 2021), the 
role of neuroendocrine signalling in the process of repair and 
remodelling of muscle fibers should be considered (Kraemer 
et al. 2020) and metabolic stress influences it (Schoenfeld 
2013).

The immunological and satellite cells’ (SC) responses to 
resistance training have been shown to be determinant for 
muscle remodelling and hypertrophy (Fukada et al. 2020), 
which has been one of the main proposed mechanisms why 
muscle damage was thought to induce muscle hypertrophy. 



1118 European Journal of Applied Physiology (2022) 122:1111–1128

1 3

For example, larger hypertrophy seems to be experienced 
after eccentric damaging training compared to concentric 
(Schoenfeld et al. 2017c). However, this effect could be due 
to the higher mechanical forces caused by eccentric train-
ing. In this sense, a study published in 2014 discovered for 
the first time that there was a relationship between the acute 
temporal SC response to resistance training at 80% of 1RM 
and the accretion of lean mass as a result of exercise training 
(Bellamy et al. 2014). In the same way, a recent study con-
firmed these results for both males and females after 8 weeks 
of whole-body resistance training at 75% of 1RM (Sawan 
et al. 2021). As shown in studies cited above, SC responses 
occurs after the traditional resistance training and there is 
no need to accentuate muscle damage. In fact, a study where 
both trained and naïve subjects performed an 8 weeks lower 
body eccentric resistance training, although naïve subjects 
experienced higher muscle damage, both groups experi-
enced the same quadriceps hypertrophy (Flann et al. 2011). 
Besides, a recent study reported that muscle damage meas-
ured directly by Z‐band streaming did not correlate with 
myofibrillar MPS or hypertrophy at any time point during 
10 weeks of resistance training (3 sets of 45° leg press and 3 
sets of leg extension exercises at 9–12 maximal repetitions) 
(Damas et al. 2016). Myofibrillar MPS was only correlated 
to muscle hypertrophy in the third and tenth weeks when 
muscle damage was attenuated but not in the first one when 
muscle damage was at the highest levels (Damas et al. 2016).

As muscle damage or metabolic stress protocols were 
not able to separate them from confounding stimuli such as 
mechanical forces, all studies investigating skeletal muscle 
hypertrophy induced by resistance training involve a com-
mon confounding factor, the neural stimulus. As explained 
before, the production of mechanical forces through muscle 
fibers contractions is modulated by the central nervous sys-
tem through regulating the amount of motor units recruited 
and their firing rates (Duchateau and Baudry 2014; Enoka 
and Duchateau 2017). The neural stimulus is not only deci-
sive for skeletal muscle hypertrophy, because it modulates 
muscle mechanical forces and then also metabolic stress 
and muscle damage but also because it could be a stimulus 
for muscle adaptations itself. In this sense, in an interesting 
study from 1960, Buller and colleagues cut motoneurons 
axons of fast-twitch motor units (that predominantly inner-
vate type 2 muscle fibers) and of slow-twitch motor units 
(that predominantly innervate type 1 muscle fibers) from 
cat muscles and crossed them (Buller et al. 1960). Now, fast-
twitch motoneurons innervated slow-twitch muscle fibers 
and slow-twitch motoneurons innervated fast-twitch mus-
cle fibers. They found that slow-twitch muscle fibers were 
transformed into fast-twitch muscle fibers and vice versa 
(Buller et al. 1960). Considering that motoneurons char-
acteristics did not change, it seemed that the muscle fiber 
type is dependent on how its motoneuron activates and can 

adapt accordingly. In 1998, after showing that treating the 
adult soleus muscle of rats with calcineurin inhibitor cyclo-
sporin A partially transformed type 1 into type 2 muscle 
fibers, Chin and colleagues proposed that muscle fiber-type 
adaptations in response to motor nerve activity were con-
trolled by a signalling mechanism that involves calcineurin, 
a cyclosporin-sensitive, calcium-regulated serine/threonine 
phosphatase (Chin et al. 1998). Frequent motor nerve activ-
ity, characteristic of slow-twitch motor units, would result 
in sustained elevations of intracellular  Ca2+ and activate the 
calcineurin–NFAT (i.e., nuclear factor of activated t cells) 
pathway. MEF2 (i.e., myocyte enhance factor 2) require the 
collaboration between activated NFAT proteins and mus-
cle-restricted transcription factors in slow-fiber-specific 
gene transcription, along with other proteins. When NFAT 
proteins are unavailable for DNA binding and protein–pro-
tein interactions at target promoters, the slow-fiber-specific 
program is down-regulated, and genes encoding fast-fiber-
specific proteins are transcribed (Chin et al. 1998). Later 
studies support that calcineurin-NFAT signalling acts as a 
nerve activity sensor in skeletal muscle and controls nerve 
activity-dependent myosin switching (Serrano et al. 2001; 
McCullagh et al. 2004). Note that several studies reported 
that calcineurin–NFAT signalling is also key for skeletal 
muscle hypertrophy (Dunn et al. 1999; Sakuma et al. 2003; 
Miyazaki et al. 2006) and could work via MEF2, myostatin, 
and FOXO (i.e., forkhead box O) (Sakuma and Yamaguchi 
2010; Mukund and Subramaniam 2020).

Calcineurin–NFAT signalling is not the only pathway 
that modulates nerve activity-dependent muscle growth. 
RasC40, a Ras mutant that selectively activates the phospho-
inositide 3-kinase (PI3K) and its downstream target, the ser-
ine–threonine protein kinase B (PKB), also known as AKT, 
has been able to induce hypertrophy of transfected muscles 
(Murgia et al. 2000). In this study, authors denervated rat 
soleus muscles and found that when transfected with HA-
tagged RasC40, the size of the fibers was comparable with 
those that were innervated and about three times larger than 
other denervated fibers (Murgia et al. 2000). Note that the 
major signalling pathway that regulates muscle growth is 
the PI3K–PKB signalling pathway via its downstream target 
mammalian target of rapamycin (mTOR) (Mukund and Sub-
ramaniam 2020). In this sense, Pallafacchina and colleagues 
found in 2002 that the increase in muscle fibers size induced 
by innervation and electrostimulation in regenerating mus-
cles is partially inhibited by dominant negative inhibitor of 
PKB and rapamycin (Pallafacchina et al. 2002). Besides, 
authors discovered that RasC40 and PKB prevented the den-
ervation atrophy in vivo in regenerating rat skeletal muscle. 
However, when muscle hypertrophy of denervated fibers was 
induced by RasC40 and constitutively active PKB, rapam-
ycin completely blocked it, being mTOR the main PKB-
dependent pathway that controls nerve activity-dependent 
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muscle growth (Pallafacchina et al. 2002). In fact, when 
high-frequency (an intermittent 100 Hz protocol) and low-
frequency (3 h at 10 Hz) electrical stimulations have been 
applied to rat isolated muscles to simulate resistance and 
endurance training respectively, high-frequency electrical 
increased myofibrillar and sarcoplasmic protein synthesis by 
activating PKB-tuberin-mTOR and its downstream transla-
tional regulators, while low-frequency electrical stimulation 
did not (Atherton et al. 2005).

Regardless of the mechanisms involved on nerve activity-
dependent muscle growth, it is already clear that not only 
mechanical forces but also the excitation of membrane of 
the muscle fibers provoked by the neural action potentials 
inducing  Ca2+-release is needed for an optimal the hyper-
trophy stimulus. In this sense, an interesting recent study 
explored the effects of the excitation–contraction coupling 
and mechanical force development on signals regulating 
transcription, translation, and protein synthesis in isolated 
rat extensor digitorum longus muscles (Rindom et al. 2021). 
Authors manipulated the elements of different steps of the 
excitation–contraction coupling sequence by combining (a) 
the excitation-induced  Ca2+ release by electrical stimula-
tion, (b) blocking muscle contractions by chemically inhib-
iting the myosin ATPase, and (c) passive stretch to achieve 
mechanical force at equal amounts compared to actively 
contracting muscles. They found that although signalling 
for translation initiation is only dependent on muscle force 
per se, acute increases in protein synthesis and signalling for 
transcriptional regulation of myofibrillar genes are depend-
ent of both mechanical force and muscle excitation induc-
ing  Ca2+ release (Rindom et al. 2021). Thus, considering 
that not only mechanical forces but also muscle excitation 
by action potentials seem to be needed for increasing pro-
tein synthesis responsible for muscle hypertrophy, we pro-
pose that measuring the neural stimulus would represent 
the actual muscle hypertrophy stimulus. Note that in real 
resistance training, muscle mechanical forces are depend-
ent on the neural stimulus and they could not be separated. 
Remember that decoding the neural activity of motor units 
using HDEMG, the mechanical forces could be accurately 
estimated (Sartori et al. 2017).

Relation between stimulus and fatigue

As explained above, for skeletal muscles to grow after 
performing resistance training, muscle fibers have to be 
recruited by the nervous system generating forces against a 
load. The mechanical forces produced along with the neural 
stimulus and other factors such as metabolic stress, which 
is also produced by the metabolite accumulation originated 
by the metabolism that support muscle contractions, will 
stimulate muscle fibers to grow. Although stimulus and 
fatigue are linked, they are not the same. In this sense, it 

is known that more fatigue produced by resistance training 
will not always induce more strength gains (Pareja-Blanco 
et al. 2017, 2020), which means that the same stimulus to 
get stronger was provoked when less fatigue occurred. About 
hypertrophy measurements, although higher training vol-
ume is associated with higher muscle gains (Krieger 2010; 
Schoenfeld et al. 2017a, 2019a), it has been shown that 
there is a volume threshold from which more training vol-
ume does not mean more muscle gains, or even less muscle 
gains (Amirthalingam et al. 2017; Heaselgrave et al. 2019). 
Knowing that more training volume provoke more fatigue 
(Bartolomei et al. 2017), these results demonstrate that more 
fatigue does not always cause more muscle growth. In this 
line, when training volume is equated, although reaching 
failure promotes greater fatigue than not (Fonseca et al. 
2020), training to failure does not always cause more muscle 
gains (Terada et al. 2020). Thus, taking fatigue as a synony-
mous of stimulus is a great mistake.

How to measure the training stimulus for skeletal 
muscle hypertrophy?

Muscle adaptations are specific to the training stimulus (Chin 
et al. 1998; Tillin and Folland 2014; Pareja-Blanco et al. 2017). 
However, defining and measuring the training stimulus are a 
controversial and difficult topic. In this sense, aiming to meas-
ure the resistance training stimulus, variables such as volume 
or intensity use to be quantified (Marston et al. 2017). To quan-
tify training volume, it is common to measure total repetitions, 
time under tension, or the volume load (sets*repetitions*load) 
performed (Mcbride et al. 2009; Marston et al. 2017). How-
ever, it has been proposed that displacement could be added 
to the volume load (sets*repetitions*load*displacement) for 
greater precision (Hornsby et al. 2018). In this line, it has been 
suggested that total work (force*displacement) is the most 
accurate measurement of resistance training stimulus (Mcbride 
et al. 2009). Despite this, other variables such as training inten-
sity or density, are missed. In this sense, it has been proposed 
to measure exercise density in two different ways, one of 
them combining total work and time in seconds (total work/
time) and the other one using volume load (volume load/time) 
(Marston et al. 2017). Exercise density has been shown to bet-
ter correlate with markers of metabolic stress (Marston et al. 
2017). However, the same problem is also present in these 
metrics, other training variables are missed. Training intensity 
is one of the most important variables for the resistance train-
ing stimulus (Schoenfeld et al. 2015). Training intensity has 
been measured in different ways such as load (Marston et al. 
2017) or percentage of one repetition maximum (Thompson 
et al. 2020). Despite this, using repetition maximum targets or 
repetitions in reserve in the training sets would improve the 
training intensity prescription by a better precision of the level 
of effort (Helms et al. 2016; Zourdos et al. 2016b; Dos Santos 
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et al. 2020). Note that strength performance change depending 
on when it is measured (Zourdos et al. 2016a; Gantois et al. 
2021). Considering that each subject could perform different 
maximum repetitions against the same percentage of 1RM 
(Hoeger et al. 1990), if measuring the velocity of the repeti-
tions is not practical or possible, monitoring the level of effort 
is a useful strategy due to its low intersubject and intrasubject 
variability among different strength levels, intensities, and 
exercises (Hernández-Belmonte et al. 2021).

Resistance training stimulus is affected by all training 
variable. Similarly, if an accurate method to quantify all 
training variables is ever reached, only the external load 
parameters would be monitored. Trying to link external 
and internal load parameters, promising methods, such as 
combining the repetitions performed with the session rating 
of perceived exertion (Martorelli et al. 2021), have being 
applied. Nevertheless, most of methods used to measure 
training stimulus only focus in kinetic and kinematic vari-
ables, focusing in external load parameters through indi-
rect measurements far from the actual training stimulus, or 
physiological parameters such as acute hormonal responses. 
Evidence related to acute hormonal response is still not clear 
(Gharahdaghi et al. 2021), and even if it is relevant, it could 
be one of several responses to the application of a correct 
training stimulus. Neural data are missed in methods that try 
to measure resistance training stimulus. The measurement 
of motor units’ behaviour would imply an internal and direct 
approach of the stimulus that muscles fibers are receiving. 
It is known that the motor neurons behaviour will modu-
late the adaptations of the muscle fibers (Buller et al. 1960; 
Chin et al. 1998; McCullagh et al. 2004). Measuring data 
that represent the neural input to the muscle fibers (i.e., the 
amount of neural drive that the muscle fibers receive within 
a period of time) could be an interesting way of measuring 
the actual training stimulus. The neural input that muscle 
fibers receive will determinate the mechanical forces that 
modulate muscle hypertrophy (Olsen et al. 2019; Wacker-
hage et al. 2019) Also, the excitation of the muscle fibers by 
the nervous system will be a stimulus for increasing muscle 
protein synthesis itself (Rindom et al. 2021). In this sense, 
HDEMG could be an interesting method to use when trying 
to measure the actual resistance training stimulus. Despite 
this, a possible limitation of this method could be that the 
intrinsic proprieties of a muscle fiber, which could be modu-
lated by phenomena such as fatigue (Allen et al. 2008), can 
modulate its responses to the neural input received.

Could fatigue improve or impair training 
adaptations?

Muscle fatigue is known as the reduction in the ability to 
produce force or power with a muscle or muscle group 
induced by exercise (Gandevia 2001; Taylor et al. 2016). 

Depending of the sites in which fatigue is produced, it can 
be divided as peripheral fatigue (i.e., fatigue attributed to 
processes at or distal to the neuromuscular junction) or cen-
tral fatigue (i.e., fatigue due to processes within the central 
nervous system) (Taylor et al. 2016; Carroll et al. 2017). 
Despite this, central and peripheral fatigue are related and 
cannot be understood as separated levels, being nervous sys-
tem behaviour affected by peripheral factors (Taylor et al. 
2016). Due to peripheral fatigue, the ability of the muscle 
to produce force is declined because of many causes such 
as the deterioration of the action potential transmission 
through the membrane of the muscle fibers and its conduc-
tion through the T-tubules, the reduced  Ca2+ release from 
the sarcoplasmic reticulum and its reuptake or the decrease 
of the  Ca2+ sensitivity of myofibrillar proteins (Allen et al. 
2008). Although several mechanisms promote peripheral 
fatigue, many of them are influenced by the accumulation 
of metabolites (Allen et al. 2008). On the other hand, central 
fatigue reduces the force produced by the muscles because 
of the reduction of the neural drive to them (Taylor et al. 
2016) and it is due to processes within the central nervous 
system in both, spinal and supraspinal levels (Taylor et al. 
2006, 2016; Tanaka and Watanabe 2012). Several neural 
changes such as disturbances in neurotransmitters homeo-
stasis, changes in motor neuron excitability by its repeti-
tive activation, reductions in the descending drive from the 
motor cortex or inhibitory afferent feedback, promote cen-
tral fatigue (Taylor et al. 2016). Although Ib afferents group 
and Renshaw cell could not play an important role during 
physical fatigue (Gandevia 2001), the reduction of the motor 
neurons facilitation provoked by Ia afferents during fatiguing 
tasks seems to contribute to decline the motor units firing 
rate (Macefield et al. 1991). Besides, the increased firing 
from group III and IV muscle afferents caused by the mus-
cle force and metabolite accumulation have documented to 
develop central fatigue affecting to both, spinal and supraspi-
nal levels (Amann et al. 2011; Kennedy et al. 2014; Blain 
et al. 2016; Taylor et al. 2016; Sidhu et al. 2017, 2018). In 
this sense, these small-diameter muscle afferents could play 
an important role in central fatigue due to different causes 
such as inhibiting motor neurons directly and through the 
presynaptic inhibition of Ia afferents reducing or affecting 
supraspinal levels to reduce descending drive to the motor 
units (Taylor et al. 2016). In summary, because of several 
neural changes at different levels within the central nerv-
ous system, central fatigue will trigger in suboptimal muscle 
fiber recruitment to produce force.

Muscle fiber recruitment is not enough to produce hyper-
trophy. An example of this is that although a 1RM set fully 
recruits muscles, when it is performed by the elbow flex-
ors of one arm during several training sessions along with 
a maximum voluntary contraction, no hypertrophy occurs 
(Dankel et al. 2017a). Despite this, when in addition, 3 sets 
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were performed in the other arm, hypertrophy occurred 
(Dankel et al. 2017a). To provoke skeletal muscle hyper-
trophy, muscle fibers not only have to be recruited, but they 
also have to reach certain levels of force and fatigue (Dankel 
et al. 2017b), which is commonly reached going close to 
failure and performing multiple training sets. Thus, periph-
eral fatigue promoted partly by the metabolite accumulation, 
which is due to the metabolism that support muscle contrac-
tions to produce muscle force, could promote skeletal mus-
cle hypertrophy (Dankel et al. 2017b). In contrast, knowing 
the role of the neural stimulus, muscle mechanical forces and 
peripheral fatigue in skeletal muscle hypertrophy, central 
fatigue could impair hypertrophic stimulus during training. 
Note that central fatigue reduces muscle force and attenuates 
peripheral fatigue by decreasing the neural drive to the mus-
cles (Taylor et al. 2016). Related to this, it has been shown 
that mental fatigue induced by demanding cognitive tasks 
impairs the volume load performed in lower (de Queiros 
et al. 2021; Gantois et al. 2021) and upper body (Dorris et al. 
2012; Graham et al. 2017) resistance training, being volume 
load related to hypertrophy gains (Krieger 2010; Schoen-
feld et al. 2017a, 2019a). These effects of mental fatigue 
on physical performance have been reported regardless the 
duration of the cognitive task (Giboin and Wolff 2019) and 
even when the cognitive task was using social networks on 
a smartphone (Gantois et al. 2021). Although the mental 
fatigue induced by demanding cognitive tasks could be con-
sidered a distinct phenomenon than central fatigue and it 
involves different central nervous system functions and dif-
ferent brain areas (Pageaux et al. 2015), it could also impair 
the stimulus for muscle growth.

Central fatigue and resistance training 
programming variables

Central fatigue is affected by training variables. In this 
regard, longer duration’s endurance tasks have demonstrated 
to increase central fatigue more than shorter tasks (Behm and 
St-Pierre 1997; Eichelberger and Bilodeau 2007; Smith et al. 
2007; Yoon et al. 2007; Pearcey et al. 2015; Goodall et al. 
2015). About resistance training, different studies found no 
differences in central fatigue between different loads when 
performing a single set of biceps curl at 5RM, 10RM, or 
20RM (Behm et al. 2002) or when comparing equal volume 
load protocols of multiple sets performing biceps curls at 
5RM and 10RM (Robbins et al. 2010). Despite this, recent 
evidence is in line with endurance task studies, showing that 
although volume load was equated and every set was per-
formed to failure, performing unilateral knee extensions at 
40% of MVC reaching an average of induces greater central 
fatigue when compared to 80% of MVC (Farrow et al. 2021). 
Thus, although the lighter load group performed only one 
set to match volume load with heavier load group, which 

performed an average of 1.8 sets, longer set duration pro-
moted greater central fatigue (Farrow et al. 2021). Note that 
the average total number of repetitions of the heavier load 
group was 14.8, performing more sets, while for the lighter 
load group was 27.2. The fatigue provoked by leg extension 
exercise was not only greater for the exercised leg in the 
lighter load group but also this load provoked fatigue in the 
other leg that was not exercised, while higher load group did 
not (Farrow et al. 2021). It is known that central fatigue can 
affect not only exercised muscles but also others that were 
resting (Halperin et al. 2014a, b). Also, greater perceived 
effort has been shown using light loads (Fisher and Steele 
2017; Farrow et al. 2021), which is linked to central fatigue 
(Taylor and Gandevia 2008). In this sense, although mecha-
nisms are still unknown, very light loads (i.e., 20% of 1RM) 
have shown to promote less muscle gains even when volume 
load is matched and sets are performed to failure (Lasevicius 
et al. 2018). Central fatigue, which can last for days and is 
linked to peripheral factors such as muscle damage (Carroll 
et al. 2017; Macgregor and Hunter 2018), and its affection 
to exercised and non-exercised muscles, could be interesting 
to consider when programming resistance training variables 
such as load, exercise selection, range of motion, or exer-
cise order. Despite this, although longer sets tend to induce 
greater fatigue (Marshall et al. 2015; Bartolomei et al. 2017; 
Carroll et al. 2017; Farrow et al. 2021), it could be more 
difficult for resistance-trained subjects to experience central 
fatigue (Marshall et al. 2015). On the other hand, interfer-
ence between different physical activities should be consid-
ered because of the performance impairment. For example, 
knowing that high-intensity running tasks could provoke 
a reduction in the voluntary activation of the knee exten-
sors (Goodall et al. 2015), it is not interesting to perform a 
resistance training targeting knee extensors after that. For 
maximize adaptations, both trainings should be separated.

Conclusions

It would be a mistake to only focus in muscle tissue when 
resistance training is performed targeting skeletal muscle 
hypertrophy. Central nervous system is responsible of mus-
cle force and controls human movement. In this regard, 
motor unit activity will greatly influence the stimulus pro-
moted by resistance training. Thus, the modulation of the 
muscle fiber recruitment and the amount of force produced 
by them depends on central nervous system activity. In 
this way, future research should explore the role that neu-
ral activity has in the hypertrophic response to resistance 
training. Therefore, neurophysiological measurements such 
as voluntary activation, motor units activity measured by 
HDEMG or neuronal excitability/inhibition, should be tested 
to explore their role in the muscle growth stimulus promoted 
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by training. This is important not only for professional ath-
letes but also for patients aiming to achieve optimal results in 
their body composition. Besides, knowing that muscle fiber 
adaptations are influenced by the properties of their motor 
neurons, measuring neural activity to recruit muscles such as 

motor unit activity, could help to investigate skeletal muscle 
hypertrophy mechanisms.

Based on the current literature, it is known that the human 
physiology is not static but dynamic. In this sense, changes 
in nervous system activity provoked by different reasons 

Fig. 2  Overview of two different situations in which changes in nerv-
ous system behaviour could hypothetically influence the hypertrophy 
stimulus induced by resistance training. The baseline of the neuro-
muscular system [including not only musculotendinous but also cen-
tral nervous system (CNS) and peripheral nervous system (PNS) lev-
els] is represented at the top of the figure (1). In the left side, effects 
of impaired neural drive to the muscles from the motor neurons 

(MNs) of the spinal cord (SC) due to factors such as central fatigue 
reducing muscle force and then, possibly the hypertrophy stimulus 
induced by resistance training, are depicted (2). Conversely, the pos-
sible positive effects of the neural drive optimization originated by 
acute or chronic adaptations are also represented in the right side of 
the figure (3)
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such as neural adaptations, central fatigue or mental fatigue, 
could affect to the stimulus induced by resistance training to 
promote skeletal muscle hypertrophy. Therefore, apart from 
the relation between neural changes and muscle hypertrophy, 
the optimal manipulation of training variables to promote 
the possible neural changes to advantage muscle hypertro-
phy should also be investigated. To facilitate the understand-
ing of these applications, Fig. 2 provides examples to show 
possible changes in neural activity that could hypothetically 
influence muscle hypertrophy.

Neural science and hypertrophy training should be closer 
when trials are performed. Future research should link neu-
ral and muscle measurements.

Practical applications

It could be interesting to perform sets in different range 
of repetitions (i.e., 4–25), with set at ≥ 80% of 1RM being 
essential to ensure that the potential specific neuromuscular 
adaptations of the different ranges are beneficiating the mus-
cle hypertrophy results from training. Besides, it is beneficial 
to avoid demanding cognitive tasks (e.g., studying or even 
using social media) regardless of their duration or strenu-
ous physical activity of the targeted muscles before training 
them for muscle growth. Similarly, knowing that non-local 
fatigue (i.e., fatigue in non-exercised muscles) could occur, 
it is important to prioritize exercises that target the more 
important muscles to train when programming the exercises 
order, especially for long and strenuous resistance training 
sessions in which low-load (i.e., < 60% 1RM) maximal sets 
are performed.

When researching about muscle growth induced by resist-
ance training, neurophysiological measurements should be 
performed to discover the potential effects of the nervous 
system behaviour on the muscle adaptations. Thus, knowing 
the key role of muscle force on muscle hypertrophy, vari-
ables such as motor units’ activity measured by HDEMG, 
voluntary activation, or neuronal excitability/inhibition 
should be tested and related to the manipulated variables of 
the resistance training and the induced muscle adaptations.
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