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Abstract
Purpose  Sickle cell trait is characterized by the presence of both normal and abnormal haemoglobin in red blood cells. The 
rate of exertional collapse is increased in athletes and military recruits who carry the trait, particularly in stressful environ-
mental conditions. The aim of the present study was to investigate microvascular function and its determinants in response to 
intense exercise at control and warm environmental temperatures in carriers (AS) and non-carriers (AA) of sickle cell trait.
Methods  Nine AS and 11 AA, all healthy physically active young men, randomly participated in four experimental sessions 
(rest at 21 °C and 31 °C and cycling at 21 °C and 31 °C). All participants performed three exercises bouts as follows: 18-min 
submaximal exercise; an incremental test to exhaustion; and three 30-s sprints spaced with 20-s resting intervals.
Results  Skin Blood Flow (SkBF) was similar at rest between AA and AS. SkBF for all participants was higher at 31 °C 
than 21 °C. It was significantly higher in the AS group compared to the AA group immediately after exercise, regardless of 
the environmental conditions. No significant differences in hemorheological parameters, muscle damage or cardiac injury 
biomarkers were observed between the two groups. Our data also suggest higher oxidative stress for the AS group, with high 
superoxide dismutase (P = 0.044 main group effect).
Conclusion  A specific profile is identified in the AS population, with increased microvascular reactivity after maximal 
exercise in stressful environment and slight pro-/antioxidant imbalance.
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Introduction

Sickle cell trait (SCT) is the heterozygous form of sickle cell 
anaemia characterized by the presence of normal haemoglobin 
A (HbA) and about 40% of abnormal haemoglobin S (HbS). It 
is usually considered an asymptomatic and benign condition. 
However, epidemiological studies on cohorts of U.S. army 
youth (Harmon et al. 2012; Kark et al. 1987; Nelson et al. 
2018; Quattrone et al. 2015; Singer et al. 2018) and young 
athletes (Key et al. 2015; O’Connor et al. 2012) have reported 
serious events such as exertional rhabdomyolysis, some-
times resulting in death immediately after exercise in SCTs. 
Numerous case studies indicate high exercise intensity may 
present major risks of exercise collapse in the context of SCT 
(Hedreville et al. 2009; Quattrone et al. 2015; Singer et al. 
2018). Particular attention should be paid to hot environmental 
conditions. Hemorheological disturbances may be accentuated 
by the effect of dehydration in these conditions.

Nevertheless, the mechanisms underlying these compli-
cations have not been clearly defined. Increased blood vis-
cosity and slightly decreased red blood cell (RBC) deform-
ability have been reported after exercise in SCT carriers in 
comparison with non-SCT carriers and it has been suggested 
that this specific blood rheological profile may impair blood 
flow through the microcirculation. Blood viscosity has been 
found to be further increased in SCT carriers when they exer-
cise in hot conditions with water deprivation(Diaw et al. 2014; 
Tripette et al. 2010a, b) the contributions of enhanced coagu-
lation activity, oxidative stress and inflammation have also 
been suspected in exertional collapse in SCT (Chirico et al. 
2016). However, no direct evidence links the pathogenesis of 
exercise-related death to microvascular obstruction by rigid 
RBCs and/or highly viscous blood (Connes et al. 2006; Trip-
ette et al. 2010a, b). Despite clear evidence of vascular altera-
tions noted post-mortem in humans, no study has investigated 
the microvascular specificity of SCT carriers both at rest and 
after intense exercise, and more particularly in various ambient 
environmental temperatures. The aim of the present study was 
to compare the microvascular function and its determinants 
in response to intense exercise conducted in either control or 
warm environment between SCT carriers (AS) and controls 
(AA). The secondary purpose was to compare blood rheologi-
cal, circulating muscle and cardiac damage biomarkers, and 
oxidative stress responses to exercise and environmental stress 
between the two groups.

Materials and methods

Participants

Twenty young men participated in this study after giving 
their informed consent: 9 SCT carriers (AS group, 21 ± 3 
years, 182 ± 6 cm, 76.2 ± 6.9 kg, 23.1 ± 1.9 kg/m2) and 11 
control participants (AA group, 21 ± 2 years, 181 ± 7 cm, 
73.8 ± 9.5 kg, 22.4 ± 2.4 kg/m2). All participants were accli-
mated to tropical climate. To participate in this study, they 
had to have lived in the West Indies for at least 6 months. 
They regularly practiced athletic activities (12.0 ± 2.1 h/
week). The exclusion criteria included any known chronic 
disease. They were informed of the study aims, require-
ments and risks before providing written informed consent. 
In this study, only men were selected as female and male 
hormones may be associated with differentiated skin blood 
flow responses (Charkoudian and Stachenfeld 2014; Reminy 
et al. 2020).

Protocol

Study design

All participants completed four experimental sessions in ran-
domized order with each session performed > 1 week apart. 
Experimental sessions consisted of two resting control ses-
sions and two exercise sessions. Exercise and resting ses-
sions were performed in both environmental temperatures. 
Blood samples were obtained exclusively during exercise 
sessions (warm and control). Participants were instructed to 
refrain from physical activity, alcohol, and caffeine for 24 h 
before each experimental session and were asked to replicate 
their dietary intake for 24 h before each session. We had data 
loss for some variables.

Pre‑experimental procedures

All participants completed a familiarization session to the 
equipment’s and the exercise protocol. For this session, 
they arrived in fasting state and anthropometric data were 
collected.

Exercise session

Exercise was performed on a leg cycle ergometer (Monark, 
Lc4 Stockholm, Sweden). The participants started the ses-
sion with a submaximal exercise test at 75 W for 18 min, 
followed by an incremental exercise test where power was 
increased by 25 W every minute until exhaustion. The maxi-
mal power output (Pmax) was recorded. After 15 min of 
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recovery, three 30-s sprints at 200% of Pmax and separated 
by 20 s of passive recovery were performed by each partici-
pant. Heart rate (M400, Polar Electro, Kempele, Finland) 
and gas exchanges (Metalyzer ® 3B, Cortex Biophysik 
GmbH, Germany) were measured during the exercise test. 
Hydration was controlled during the entire study (4-ml 
water/kg body mass/intake after warm-up, maximal exer-
cise and sprints).

Data on body composition and body mass were collected 
by bioelectrical impedance analysis using an InBody 720 
analyser with InBody 3.0 software (BioSpace, Seoul, South 
Korea). Tympanic temperature was measured with a digital 
ear thermometer (Omron Gentle Temp 520) in all experi-
mental sessions. Systolic and diastolic blood pressures (BP) 
were measured with a tensiometer (Omron M6, Healthcare 
Co., Ltd., Kyoto, Japan) during each experimental session. 
Blood pressure and tympanic temperature were measured 
before and after exercise protocol.

Environmental conditions

All participants completed four trials under two environ-
mental conditions in a temperature-controlled room: control 
at 21 °C and warm at 31 °C, all at > 60% relative humidity. 
Environmental conditions were controlled with the wet bulb 
globe temperature (Delta Ohm, Padova, Italia) during all 
experimental sessions.

Biochemical analysis

Plasma chlorine (Cl−), sodium (Na+) and potassium (K+) 
concentrations were measured with an ADVIA 1200/1800 
electrolyte analyzer, and the alkaline reserve by enzy-
matic method. Several markers of muscle damage were 
also followed namely creatine phosphokinase and lactate 
dehydrogenase.

Creatine phosphokinase (CPK, ng/mL) was determined 
according to the method of IFCC (1980), measured using 
the ADVIA 1800 clinical chemical analyzer. Serum lactate 
dehydrogenase (LDH, U/L) was determined using the pyru-
vate/NADH ratio measured by the ADVIA 1200/1800 (Sie-
mens Healthcare Diagnostics, Eschborn, Germany).

Biomarkers of cardiac injury were investigated: troponin 
(ng/mL), myoglobin (ng/mL), n-terminal pro-brain natriu-
retic peptide (NT-proBNP, pg/ml) and creatine phosphoki-
nase (CPK-MB) were determined by commercial chemilu-
minescence assays for ADVIA Centaur (Siemens Medical 
Solutions Diagnostics, Fernwald, Germany).

Blood lactate was drawn at rest and directly after the exer-
cise protocol from the fingertip and analyzed on the Lactate 
Pro 2 (AKRAY Europe, Amstelveen, the Netherlands), a 
handheld point-of care analyzer that operates by enzymatic 
amperometric detection.

Haemoglobin electrophoresis test

To verify AS and AA genotypes, blood samples were col-
lected in EDTA tubes at rest and screened by isoelectric 
focusing. The results were confirmed by citrate agar elec-
trophoresis. Positive test results for SCT were determined 
by the presence of HbS (< 40%) and a normal percentage of 
other haemoglobin.

Hemorheological measurements

All hemorheological measurements were carried out within 
1–2 h of the venipuncture, following the guidelines for 
international standardization in blood rheology techniques/
measurements.

Blood viscosity was determined at native hematocrit, 
25 °C and several shear rates: 11.25, 22.5, 45, 90 and 225 s−1 
using a cone/plate viscometer (Brookfield DVII + with 
CPE40 spindle, Brookfield Engineering Labs., Natick, MA, 
USA). Red blood cell (RBC) deformability was determined 
at 37 °C at two shear stresses (0.30 and 30 Pa) by laser 
diffraction (ecktacytometry), using the Laser-assisted Opti-
cal Rotational Cell Analyzer (LORCA, RR Mechatronics, 
Hoorn, The Netherlands). RBC aggregation was determined 
at 37 °C via syllectometry, i.e., laser backscatter vs. time, 
using the LORCA after adjustment of hematocrit to 40%, 
and was reported as the aggregation index AI (%). The RBC 
disaggregation threshold (γthr, in s−1), i.e., the strength/
robustness of RBC aggregates, was determined using a reit-
eration procedure.

Oxidative stress markers

Plasma pro-oxidative markers Plasma aliquots obtained 
from EDTA samples were stored at − 80 °C until analysis. 
Plasma adavanced oxidation protein products (AOPP) con-
centration was determined using a semi-automated method 
and the AOPP assay kit (OxiSelect™ AOPP Assay Kit, Cell 
Biolabs, Inc.) (Witko-Sarsat et al. 1996). Plasma malon-
dialdehyde (MDA) level was determined using a method 
based on thiobarbituric acid (TBA) reactions and forma-
tion of MDA-TBA adducts quantified fluorometrically (Ex/
Em = 532/553 nm) (ab118970 Assay Kit, Abcam®). Plasma 
myeloperoxidase (MPO) protein levels were quantified by 
ELISA technique (ab119605 Kit, Abcam®). Plasma nitroty-
rosine, evaluated through the end product of protein nitration 
induced by peroxynitrite, was measured by Elisa (av210603 
Kit, Abcam®). Plasma nitric oxide (NO) end products were 
determined after the enzymatic conversion of nitrate to 
nitrite by nitrate reductase and the colorimetric detection of 
nitrite using the Griess method (ADI-917-020 Kit, Enzo). 
Plasma heat shock protein 70 (HSP70) was measured with 
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the high-sensitivity ENZ-KIT-101 Kit (Enzo) according to 
the manufacturer’s instructions.

RBC antioxidant defence RBC pellets from citrate blood 
samples were treated with four volumes of an aqueous solu-
tion containing 5% metaphosphoric acid, and the lysates 
obtained from 50 µl of RBCs were stored at -80 °C until 
assay. The colorimetric measurement of reduced (GSH) and 
oxidized (GSSG) RBC glutathione is based on the reaction 
of the sulfhydryl group of GSH with Ellman’s reagent, giv-
ing a yellow-colored product (ADI-900-160 Kit, Enzo).

RBC pellets from EDTA blood samples were lysed in 
four volumes of ice-cold water. The lysates’ aliquots were 
stored at − 80 °C until they were used for the assessment of 
the enzymatic antioxidant defence through RBC superoxide 
dismutase (SOD) and catalase (Cat) activities. RBC SOD 
activity was determined by a colorimetric assay based on 
its ability to scavenge superoxide radicals generated by xan-
thine oxidase and hypoxanthine, which form a colorimetric 
reaction in the presence of a tetrazolium salt (Kit 706002, 
Cayman Chemical). RBC catalase activity was also deter-
mined by a colorimetric assay based on the formation of a 
colored formaldehyde induced by the reaction of catalase 
with methanol in the presence of a chromogen (707002 Kit, 
Cayman Chemical).

Skin blood flow

Skin blood flow (SkBF) and microvascular reactivity 
response to local heating protocol were measured by laser 
Doppler flowmetry using the Periflux System 5000 (Per-
imed, Järfälla, Sweden) and its associated software Perisoft, 
which enables continuous SkBF recording. A temperature-
controlled skin probe was attached to a distal finger pad with 
adhesive tape.

The skin temperature was obtained through the probe 
of the device and was raised locally to 42 °C at a rate of 
0.1 °C/s. This protocol induces a biphasic increase in SkBF: 
(1) a rapid increase with a peak (peak phase) reached within 
the first 5 min of local heating, which is related to axon 
reflex, and (2) a prolonged plateau (plateau phase), which 
appears 20–25 min after the beginning of the hyperthermic 
stimulus and is mainly induced by NO production.

For resting sessions, SkBF was measured for 45 min: 
5 min without local heating (baseline and post heating) and 
35 min during local heating. For exercise sessions, SkBF 
was measured after the exercise protocol for 10 min: 5 min 
baseline and 5 min under local heating.

Laser Doppler blood flow (perfusion unit, recorded in 
mV) was divided by the individual mean arterial pressure 
(MAP) and expressed as cutaneous vascular conductance 
(CVC, mV/mm Hg).

The signal was processed as follows: the baseline cor-
responds to the SkBF without heating for 5 min out of the 

10-min measurement). The two responses to local hyperther-
mia: (1) peak max value over the first 5 min and (2) plateau 
average over the last 10 min of local hyperthermia. SkBF 
was averaged point by point (6 Hz) over the entire recording 
for all AAs and all ASs.

Statistical analyses

Analyses of variance (ANOVA) with repeated measures 
were performed on SkBF. Resting and exercise sessions were 
analyzed separately with group (AA, AS) as the between-
subject variable. Pre-post exercise (two levels: T0 and T50), 
environmental condition (21 °C, 31 °C) and phases (base-
line, peak and plateau) were used as within-subject variables 
when required.

ANOVAs with repeated measures were performed on all 
laboratory measurements (biochemical, oxidative stress and 
hemorheological parameters), blood pressure, heart rate and 
tympanic temperature with group (AA, AS) as the between-
subjects variable, and pre-post exercise (two levels: T0 and 
T50), and environmental conditions (21 °C, 31 °C) as the 
within-subjects variable. ANOVAs were applied to oxygen 
uptake and maximal power (Pmax) with group (AA, AS) as 
the between-subjects variable, and environmental condition 
(21 °C, 31 °C) as the within-subjects variables.

Data were tested for sphericity using Mauchly’s test and 
if the assumption of sphericity was violated, the Green-
house–Geisser correction was undertaken to adjust the 
degrees of freedom. Tukey's post hoc tests were performed 
to identify mean differences among conditions when group 
x temperature x time interaction was significant.

All results were analyzed with the SPSS 23 software 
package (SPSS Inc, Chicago, IL, USA). Statistical signifi-
cance was set at P < 0.05. Unless otherwise stated, data are 
presented as mean ± SD.

Results

Physiological responses to exercise and plasma 
ion concentration did not differ between AA 
and AS and were affected in the same way by warm 
environment

As shown in Table 1, heart rate, blood pressure and skin 
temperature at rest and maximal exercise, and performance 
(Pmax) parameters did not differ between the two groups in 
response to exercise.

No complications were observed during the experimental 
sessions. During and after exercise, tympanic temperature 
was affected by environmental condition (P < 0.001) with 
higher values in a warm environment than control for all 
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group. During the resting and exercise sessions, there was 
no significant single group effect or group-related interaction 
effect (P = 0.715) with the exception of skin temperature, 
which was higher at rest at 31 °C in AS as compared with 
AA in the condition.

The plasma concentration of Cl−, Na+, and K+ and the 
alkaline reserves (Table 2) did not present significant change 
between AA and AS (P > 0.593). The plasma concentration 
of Cl−, K+ and the alkaline reserves decreased after exercise 
tests (P < 0.002), but to the same extent in the AA and AS 
groups (no significant interaction). Cl− plasma concentra-
tions were lower at 21 °C than at 31 °C for both groups.

Blood lactate concentration Fig. 2.H was affected by exer-
cise (P < 0.001) with higher values after exercise in the two 
conditions for the two groups. The environmental conditions 
did not affect blood lactate (P = 0.176). For blood lactate 
concentration, only the condition x time interaction was sig-
nificant (P = 0.007). There was no significant single group 
effect or group-related interaction effect (all P > 0.167).

Microvascular reactivity was higher 
in AS after exercise

The results are summarized in Fig. 1 at rest (A and B) and 
after exercise (C and D). At rest, SkBF was no different 
between the two groups in response to the local heating 
protocol (P = 0.452). A simple effect of phase (baseline, 
peak and plateau) was observed, characterizing the reac-
tivity to local heat (P < 0.001) for both groups. SkBF was 
higher at 31 °C than at 21 °C. The phase × environmen-
tal condition interaction was significant (P = 0.030), with 
marked variations between baseline peak and plateau at 
21 °C. These variations were independent of the group 
(no other significant interaction involving the group were 
significantly different, all P > 0.780). A similar profile is 
reported after arterial pressure normalization (CVC results 
provided in table supplement data).

After the exercise tests, SkBF was different between the 
two groups (simple group effect: P = 0.019) with greater 
values found in the AS group. The simple effect of phase 

Table 1   Haemodynamic parameters at rest and exercise in two environmental conditions (21 °C/31 °C) for AA and AS groups

Parameters AS AA Group Condition Group x condition

Heart rate (beats/min)
at rest 21 °C n = 5/9

62 (9) 60 (9) 0.385 0.230 0.210

Heart rate (beats/min)
at rest 31 °C n = 5/9

67 (10) 60 (9)

Heart rate max (beats/min)
21 °C n = 8/10

177 (17) 180 (10) 0.434 0.778 0.778

Heart rate max (beats/min)
31 °C n = 8/10

177 (11) 182 (10)

Mean arterial pressure (mmHg) at rest 
21 °C

89 (5) 88 (7) 0.521 0.417 0.289

Mean arterial pressure (mmHg) at rest 
31 °C

88 (6) 91 (6)

Mean arterial pressure (mmHg) post-
exercise 21 °C

92 (8) 92 (9) 0.890 0.531 0.807

Mean arterial pressure (mmHg) post-
exercise 31 °C

90 (7) 89 (15)

Skin temperature (°C)
at rest 21 °C

26.7 (4.9) 29.1 (3.7) 0.489  < 0.001 0.034

Skin temperature (°C)
at rest 31 °C

35.1 (1.1) 33.9 (1.9)

Skin temperature (°C) post-exercise 
21 °C

30.9 (1.8) 29.7 (3.4) 0.545  < 0.001 0.217

Skin temperature (°C) post-exercise 
31 °C

35.7 (0.3) 36.1 (0.7)

V̇O2max (ml min−1 kg−1)
21 °C

36.1 (5.7) 36.1 (7.8) 0.967 0.879 0.919

V̇O2max (ml min−1 kg−1)
31 °C

36.3 (4.4) 35.8 (5.7)

Maximal aerobic power (W) 21 °C 248 (31) 258 (53) 0.563 0.517 0.980
Maximal aerobic power (W) 31 °C 243 (29) 252 (37)
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Table 2   Biochemical 
parameters pre-exercise (T0) 
and post-exercise (T50) at 21 °C 
and at 31 °C in two groups

Values are mean ± SD

21 °C 31 °C P values

Pre-exercise Post-exercise Pre-exercise Post-exercise Condition Time Group

Sodium (mEq/L)
 AS
 n = 9

140 (2) 140 (2) 140 (1) 141 (2) 0.681 0.124 0.971

 AA
 n = 11

140 (1) 141 (2) 140 (1) 141 (2)

Potassium (mEq/L)
 AS
 n = 9

4.7 (0.5) 4.1 (0.3) 4.6 (0.3) 4.2 (0.2) 0.696  < 0.001 0.593

 AA
 n = 11

4.6 (0.5) 4.2 (0.5) 4.6 (0.3) 4.0 (0.2)

Chlorine (mEq/L)
 AS
 n = 9

103 (2) 101 (2) 104 (2) 103 (2) 0.006 0.002 0.987

 AA
 n = 11

103 (2) 102 (1) 104 (2) 103 (2)

Alkaline reserve (mmol/L)
 AS
 n = 9

30 (3) 18 (4) 29 (3) 17 (3) 0.757  < 0.001 0.699

 AA
 n = 11

30 (2) 17 (4) 30 (2) 17 (3)

Fig. 1   Average plotting of skin blood flow (PU) at rest and after exercise in AA group (black line) and AS group (gray line), SkBF at 21 °C at 
rest (A) and SkBF at 31 °C at rest (B) SkBF at 21 °C post-exercise (C) and SkBF at 31 °C post-exercise (D)
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between baseline and peak was significant (P < 0.001). The 
phase × environmental condition interaction effect was sig-
nificant (P < 0.001), with marked variations between base-
line and peak at 21 °C but not at 31 °C. No other interactions 
were significant (P > 0.229).

Exercise increased and warm environment 
decreased blood viscosity but AA and AS were 
not different

Hematocrit, blood viscosity at all shear rates, RBC aggrega-
tion, and disaggregation threshold, and deformability (EI 
0.30, 30) were not different between the groups (Table 3) 
(all P > 0.108).

For all groups, hematocrit, blood viscosity at all shear 
rates, and the aggregation index (AI) values were signifi-
cantly higher after exercise than at rest (all P < 0.011).

Blood viscosity at 45, 90 and 225 s−1 was lower at 31 °C 
for both groups compared to 21 °C (all P > 0.043). For blood 
viscosity at 90 s −1, the condition x group interaction was 
significant (P = 0.039), with higher viscosity at 90 s−1 in AS 
at 21 °C compared to 31 °C, while viscosity was unchanged 
by the environmental temperature in AA. No other interac-
tions were significant (all P > 0.099).

Markers of rhabdomyolysis and cardiac injury were 
affected by exercise but did not differ between AA 
and AS in either environment

None of the biomarkers used to identify cardiac injury 
and muscle damage (Fig. 2A–G) were significantly differ-
ent between AA and AS groups (all P = 0.187). Exercise 
increased CPK, CPK-MB and NT-proBNP (P < 0.001, 
P < 0.001, P = 0.035, respectively). CPK, LDH and myo-
globin (P = 0.042, P = 0.013, P = 0.012, respectively) were 
lower at 31 °C than at 21 °C. The time x group interaction 
effect was observed for CPK (P = 0.023), with higher CPK 
values in AA after exercise compared to before exercise, 
while CPK values remained unchanged in AS.

Markers of oxidative stress were affected 
by the group regardless of environmental 
conditions

The concentrations of the pro-oxidative markers, AOPP, 
MPO, MDA, nitrotyrosine, Hsp70, NO, (Fig. 3 and 4) were 
not different between the two groups (all P > 0.187).

For both groups, nitrotyrosine and Hsp70 (Fig. 3) concen-
tration were increased after exercise (P < 0.001, P = 0.014, 
respectively). Exercise did not affect the other parameters 
(all P > 0.101). The condition x group interaction was signif-
icant (P = 0.049) for MPO concentration. Concerning anti-
oxidant status, SOD was higher (P = 0.044) while catalase 

was lower (P = 0.024) for the AS group compared to the AA 
group (Fig. 4). The environmental conditions (21 °C/31 °C) 
did not affect any of the measured biomarkers. All other 
interactions were not significant (all P > 0.068).

Discussion

The present study investigated the microvascular function at 
rest and after maximal exercise at 21 °C and 31 °C for both 
AS and AA groups. The major results are: (1) the skin blood 
flow response was normal in AS at rest and control environ-
ment (21 °C), but increased in warm environment (31 °C); 
(2) after maximal exercise, the microvascular dilatation 
was higher in the AS group compared to the AA group; (3) 
higher superoxide dismutase and lower catalase antioxidant 
activity suggested a disorder in oxidative homeostasis for 
the AS group; and (4) the AS group was comparable to the 
AA group concerning markers of muscle damage and blood 
rheology after exercise.

AS and AA were affected in the same way 
by exercising warm environment with regards 
to cardiovascular responses, electrolytes, cardiac 
and muscle injury biomarkers

Previous studies have emphasized specific aspects of physi-
cal ability and/or physiological responses to exercise in AS 
participants. This was not the main objective here, but the 
results of the present study did not evidence any difference 
between AA and AS for exercise power or heart rate meas-
ures during exercise. Although there are some controversies, 
similarities have been demonstrated between AA and AS in 
physical fitness and cardiovascular adaptations to exercise 
by previous studies from our group (Marlin et al. 2008; Sara 
et al. 2006), as well as others (Bilé et al. 1996). In addition, 
we report that lactate was increased after exercise in the 
same way for both groups and regardless of the environ-
mental condition.

Exercise-induced rhabdomyolysis is a clinical and bio-
chemical syndrome. It may lead to acute renal failure caused 
by myoglobinuria and, ultimately, death (Zimmerman and 
Shen 2013). Numerous case reports have described this type 
of complication in SCT carriers after exercise (Buchanan 
et al. 2020; Hedreville et al. 2009; Quattrone et al. 2015; 
Saxena et al. 2016). There were no overt clinical or bio-
logical signs of rhabdomyolysis and electrolyte imbalance 
among our cohort. CPK concentration was increased nor-
mally after maximal exercise without a significant group-
related effect. The variations we reported with exercise 
are known to occur in trained and healthy individuals after 
intense exercise (Pedersen et al. 2019) and in AS athletes 
after submaximal (Messonnier et  al. 2012) or maximal 
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Table 3   Hematocrit, blood 
viscosity, red blood cell 
deformability, and aggregation 
and disaggregation parameters 
pre-and post-exercise in two 
environmental conditions in two 
groups

Values are mean ± SD, RBC (red blood cell), AI (RBC aggregation index) and Y at dISC (RBC disaggrega-
tion threshold)

21 °C 31 °C P values

Pre-exercise Post-exercise Pre-exercise Post-exercise Condition Time Group

Hematocrit (%)
 AS
 n = 9

46.7 (2.6 49.1 (3.2) 46.1 (2.3) 48.1 (2.7) 0.054 < 0.001 0.309

 AA
 n = 11

47.5 (2.8) 50.8 (2.6) 46.6 (2.8) 49.7 (3.1)

Blood viscosity (cP; 11.25 s-1)
 AS
 n = 9

15.8 (3.7) 17.0 (4.5) 13.9 (2.0) 16.6 (5.5) 0.043 0.007 0.158

 AA
 n = 11

13.6 (2.2) 16.2 (3.7) 12.8 (2.5) 14.0 (2.4)

Blood viscosity (cP; 22.5 s-1)
 AS
 n = 9

12.6 (3.3) 13.7 (4.0) 10.8 (1.6) 12.7 (2.4) 0.137 0.010 0.300

 AA
 n = 11

10.5 (2.0) 12.3 (2.5) 11.1 (2.6) 11.7 (3.0)

Blood viscosity (cP; 45 s-1)
 AS
 n = 9

10.6 (1.9) 11.6 (2.6) 9.3 (1.2) 10.6 (2.0) 0.032 0.011 0.159

 AA
 n = 11

9.1 (1.5) 10.3 (2.0) 9.1 (1.8) 9.7 (1.8)

Blood viscosity (cP; 90 s-1)
 AS
 n = 9

8.8 (1.2) 9.2 (1.6) 7.5 (1.1) 8.6 (1.4) 0.013 0.003 0.137

 AA
 n = 11

7.3 (1.1) 8.3 (1.3) 7.5 (1.0) 8.0 (1.3)

Blood viscosity (cP; 225 s-1)
 AS
 n = 9

6.8 (0.7) 7.4 (1.0) 6.2 (0.6) 7.0 (1.0) 0.011 < 0.001 0.501

 AA
 n = 11

6.3 (0.8) 7.2 (0.9) 6.2 (0.6) 6.9 (0.8)

AI (%)
 AS
 n = 9

62.7 (7.1) 64.0 (7.3) 60.8 (8.6) 62.5 (7.0) 0.282 0.005 0.782

 AA
 n = 10

60.2 (6.7) 65.3 (5.9) 59.2 (3.5) 65.3 (3.6)

RBC disaggregation thresold
 AS
 n = 9

131 (32) 121 (28) 129 (49) 122 (33) 0.338 0.802 0.108

 AA
 n = 10

106 (20) 119 (30) 101 (28) 100 (22)

RBC deformability at 0.30 Pa (a.u)
 AS
 n = 9

0.08 (0.02) 0.08 (0.02) 0.08 (0.02) 0.07 (0.01) 0.553 0.061 0.361

 AS
 n = 9

0.09 (0.02) 0.09 (0.02) 0.09 (0.02) 0.09 (0.02)

RBC deformability at 30 Pa (a.u)
 AS
 n = 9

0.60 (0.03) 0.60 (0.02) 0.60 (0.02) 0.60 (0.01) 0.771 0.583 0.934

 AS
 n = 9

0.61 (0.02) 0.60 (0.02) 0.60 (0.02) 0.59 (0.03)



193European Journal of Applied Physiology (2022) 122:185–197	

1 3

exercise (Gozal et al. 1992). Our results also showed that 
there was no cardiac injury. CPK-MB and NT-proBNP were 
higher after exercise but remained in the normal range. 
There was no difference between AA and AS for rhabdo-
myolysis or cardiac injury markers. This is the first study 
that provides information on these biomarkers after intense 
exercise in a warm environment in AS subjects.

Specific microvascular reactivity in AS and potential 
explanations

Recent studies in mice and human models of SCT support 
the presence of macrovascular and microvascular dysfunc-
tion (Diaw et al. 2015; Skinner et al. 2019, 2020). The 
microvascular function has not been deeply investigated in 
response to exercise in human with SCT. In this study, only 
measurements from glabrous skin were performed, which 
constitutes a limitation. It however provides valuable infor-
mation on overall tissular perfusion and thermoregulatory 

mechanisms due to its singular structure (anastomoses and 
volume/surface ratio of capillaries) (Walløe 2015). More-
over, contrary to the forearm measurement, often used as 
a substitute for non-glabrous skin, the reproducibility is 
strong. This is an important point for this study containing 
several experimental sessions (Roustit et al. 2010).

We showed that SkBF and microvascular reactivity 
were not different between SCT and non-SCT carriers at 
rest regardless of environmental condition. However, we 
observed a greater ability of skin microvessels to dilate in 
response to local heating after exercise in the SCT partici-
pants. While cases of fatal events reported in SCT carriers 
would suggest an involvement of the microcirculation, our 
results do not support a systematically deleterious role of 
microvascular function in the physiological adaptations to 
exercise in SCT carriers.

In the present study, the strenuous exercise was followed 
by an increase in viscosity for both groups. This adaptation 
is well described in the literature, both in healthy subjects 

Fig. 2   : Rhabdomyolysis and cardiac injury markers and lactate pre-exercise (T0) and post-exercise (T50) in AA group (solid line) and AS group 
(dashed line) at 21 °C (gray line) and at 31 °C (black line). Values are mean ± SEM. *P < 0.05 vs. T0; **P < 0.001 vs T0
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(Nader et al. 2019) and SCT carriers, and is mainly due to 
the changes in hematocrit and RBC aggregation. No sig-
nificant differences were observed between AA and AS 
participants at rest or after exercise regardless of the envi-
ronmental condition. This finding could seem surprising as 
several studies reported higher blood viscosity in AS than 
in AA both at rest (Tripette et al. 2009) and in response to 
exercise (Connes et al. 2006). One explanation might be 
that the participants in this study followed a strict hydration 
protocol, which might have corrected the hemorheological 
alterations described in SCT carriers, as previously reported 
(Diaw et al. 2014; Tripette et al. 2010a, b). In addition, RBC 
deformability, a strong contributor to blood viscosity, was 
not impacted by SCT. Enhanced oxidative stress has been 
shown to cause a decrease in RBC deformability in sickle 
cell disease (Hierso et al. 2014). The oxidative stress/anti-
oxidant profile was rather similar between AA and AS at 
rest and after exercise, and the plasma NO concentration 
remained unchanged after exercise. This could explain the 
lack of difference in RBC deformability between the two 
groups, confirming previous findings (Tripette et al. 2010a, 
b). The lack of difference in blood viscosity and other RBC 
rheological parameters between AA and AS at rest and after 
exercise in both environments, associated with the greater 
vasodilation in AS in warm environment, would have 

resulted in normal organ perfusion and oxygen delivery. This 
would explain why the AS group did not show any biological 
or clinical signs of cardiac or muscle injury. Subsequently, 
plasma NO and RBC rheological parameters were probably 
not importantly involved in the improved microvascular 
function in the AS participants after exercise.

Concerning antioxidant defences, the SOD level was 
higher in AS compared to AA. In agreement relatively with 
earlier this results (Das et al. 1993). Generally, intensive 
exercise increases SOD activity in healthy young subjects 
and regular exercise attenuates ROS production. In our 
study, SOD activity remained unchanged after exercise for 
the AA group. All subjects in this study were in accept-
able physical condition. On the other hand, the observa-
tion that SOD activity was higher in the AS subjects may 
be explained by the presence of haemoglobin S (< 39%), 
which accelerates heme autoxidation (Alayash 2018; Hebbel 
et al. 1988). This could lead to an increase in the antioxidant 
defences, particularly SOD activity prior to exercise. Indeed, 
SOD is a first-line antioxidant enzyme that can counteract 
the overproduction of intracellular ROS that can then be 
found in the extracellular environment (Ighodaro and Akin-
loye 2018; Wang et al. 2018).

These results suggest a higher oxidative stress in the AS 
RBCs has observed previous studies Das et al. 1993. Das 

Fig. 3   Responses of blood concentration of A Advanced oxidation 
protein products AOPP, B malondialdehyde MDA (uM), C myeloper-
oxidase MPO (ng/mL), and D nitrotyrosine (ng/mL) and Heat shock 
protein 70 Hsp70 (ng/mL) (E), pre-exercise (T0) and post-exercise 

(T50) in AA group (solid line) and AS group (dashed line) at 21 °C 
(gray line) and 31 °C (black line). Values are mean ± SEM. *P < 0.05 
vs. T0 **P < 0.001 vs. T0
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et al. et al. (1993) they also observed a higher SOD activity 
in AS RBCs with a reduced activity of other anti-oxidant 
enzymes such as GPx. They suggested that the increase in 
SOD was probably induced by the release of RBCs seques-
tered in the spleen, since the increase in free radicals has 
the effect of deactivating SOD and that synthesis is unlikely 
in mature erythrocytes. However, we cannot state this 
here because we did not obtain a difference in haematocrit 
between AAs and ASs. We have reason to believe that such 
a thing occurs in view of the increased capacity for auto-
oxidation of haem in the presence of haemoglobin S.

Perspectives

We observed differentiated SkBF responses to exercise. In 
AA, this response can be interpreted as a "ceiling effect" 
expressed by a healthy endothelium, as previously suggested 
(Francisco et al. 2017). Conversely, the SkBF observed in 
AS suggests a larger vasodilatatory reserve. Romero et al. 
investigated micro- and macrovascular function in elderly 
and younger subjects and found that a large reserve in vas-
cular reactivity might not be the normal response (Romero 
et al. 2017), although this may be counterintuitive. We thus 

suggest that the SkBF profile we identified is not normal. 
This profile may instead be optimized to adapt to the physi-
ological constraints specific to SCT carriers. In line with 
this view, previous studies have demonstrated vascular 
remodeling in active AS characterized by a decrease in the 
tortuosity of the vessels, which gives way to a greater den-
sity of large capillaries to the detriment of small capillaries 
(Vincent et al. 2010).

Conclusion

No evidence of severe vascular impairment, cardiac injury, 
rhabdomyolysis or occlusive events was observed in the 
sickle cell trait carriers of this study, despite conditions con-
ducive to these types of complications. A specific profile was 
identified in this population, with enhanced microvascular 
reactivity after maximal exercise in stressful environment 
and slight pro-/antioxidant imbalance. Studies concerning 
the mechanisms underlying possible microvascular adapta-
tions in trained AS are necessary. It would also be relevant 
to observe whether this increase dilatation persists in late 
recovery.

Fig. 4    Responses of antioxidants A catalase CAT (μmoles/min/gHb), 
B superoxide dismutase SOD (U/gHb), C oxide nitric NO (umol/L), 
D GSSG (nM), E GSH (nM) and F Glutathione Ratio (nM), pre-exer-

cise (T0) and post-exercise (T50) in AA group (solid line) and AS 
group (dashed line) at 21 °C (gray line) and at 31 °C (black line). Val-
ues are mean ± SEM. P < 0.05 vs. AA
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