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Abstract
Purpose  The power–duration relationship has been variously modelled, although duration must be acknowledged as the 
dependent variable and is supposed to represent the only source of experimental error. However, there are certain situations, 
namely extremely high power outputs or outdoor field conditions, in which the error in power output measurement may not 
remain negligible. The geometric mean (GM) regression method deals with the assumption that also the independent vari-
able is subject to a certain amount of experimental error, but has never been utilized in this context.
Methods  We applied the GM regression method for the two- and three-parameter critical power models and tested it against 
the usual weighted least square (WLS) procedure with our previous published data.
Results  There were no significant differences between parameter estimates of WLS and GM. Bias and limit of agreements 
between the two methods were low, while correlation coefficients were high (0.85–1.00).
Conclusions  GM provided equivalent results with respect to WLS in fitting the critical power model to experimental data 
and for its conceptual characteristics must be preferred wherever concerns on the precision of P measurement are present, 
such as for in-field power meters.

Keywords  Curve fitting · Cycling · Hyperbolic model · Model II nonlinear regression · Reduced major axis regression · 
Sport

Abbreviations
2-p	� Two-parameter critical power model
3-p	� Three-parameter critical power model
CP	� Critical power
GM	� Geometric mean regression method
k	� Time asymptote of the critical power model
P	� Mechanical power output
P0	� Power limit of the critical power model as time to 

exhaustion approaches 0 s
SEE	� Standard error of the estimate
Tlim	� Time to exhaustion
W′	� Curvature constant of the critical power model

WLS	� Weighted least square regression method
εP	� Absolute error in power output measurement
εTlim	� Absolute error in time to exhaustion measurement

Introduction

The power–duration relationship is a well-established frame-
work for modelling human performance and in its hyperbolic 
form is known also as the critical power model (Morton and 
Hodgson 1996). Although different parameterizations and 
re-arrangements of the equation are possible, duration, i.e. 
the time to exhaustion (Tlim), must be acknowledged as the 
dependent variable (Morton and Hodgson 1996; Jones et al. 
2010). This has sound (bio)logical foundations: the exter-
nal power output (P) is the major determinant of the time 
course of exhaustion-related physiological variables (Poole 
et al. 1988; Black et al. 2017; Vinetti et al. 2017) and not 
vice versa. This choice is also justified by statistical theory: 
due to the intra-individual biological variability of Tlim, the 
absolute random error in P (εP) could be judged negligible 
as compared to the absolute error in Tlim (εTlim) (Morton and 
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Hodgson 1996). Thus, the regression procedure can focus on 
minimizing the distances along the Tlim-axis only. Moreover, 
the relative error of Tlim (i.e., the ratio εTlim/Tlim) is known 
to increase with Tlim itself (Poole et al. 1988; Hinckson and 
Hopkins 2005; Faude et al. 2017), thus representing a source 
of heteroscedasticity. Therefore, the weighted least squares 
(WLS) regression has been proposed as the most appropriate 
method to fit the critical power model to experimental data 
(Morton and Hodgson 1996; Morton 1996).

However, there are situations in which sources of random 
error must be acknowledged in both Tlim and P. In the exem-
plary case of cycling, power meter technology is character-
ised by a fairly low relative random error (i.e., a low εP/P, 
good precision) up to 360 W (Maier et al. 2017), but this 
implies that εP increases with P. Moreover, it is not excluded 
that also relative error increases with higher P or due to 
environmental factors such as vibrations, external shocks, 
changing ambient temperature (Maier et al. 2017). For those 
reasons, the more intense is the cycling burst, the higher is 
the uncertainty about P. However, if such an extreme P is 
carried until exhaustion, the error in Tlim (εTlim) is very low 
(since it is proportional to Tlim itself, which is here very 
low too), thus the assumption that εTlim is disproportionally 
greater than εP is no longer valid and alternative statistical 
approaches must be adopted.

While ordinary and weighted least squares methods 
(named Model I regressions) minimize the distance in the 
dependent variable only, with an implicit assumption that the 
dependent variable is error-free, Model II regression analysis 
deals with the assumption that also the independent variable 
is subject to a certain amount of experimental error, thus 
minimizing the distance in both axes with several approaches 
(Ludbrook 2012). Among them, the geometric mean (GM, 
also known as reduced major axis regression or ordinary least 
product) regression method, minimizes the sum of the areas 
determined by the curve and the horizontal and the verti-
cal lines connecting each experimental point to the curve 
(Brace 1977; Ludbrook 2012) and it can be generalized to 
nonlinear functions (Ebert and Russell 1994). With respect 
to other Model II regression methods, GM does not need an 
arbitrary a priori estimation of the measurements’ errors. In 
fact, GM assumes that the ratio between the magnitude of 
the absolute error in the independent and the dependent vari-
able is approximately equal to the absolute local slope of the 
function (Brace 1977). Luckily, the hyperbolic nature of the 
critical power model is in line with this assumption: when 
the slope dTlim/dP is high (Fig. 1, point A), the ratio εTlim/εP 
is high, and vice versa (Fig. 1, point B). In other words in the 
GM method, when increasing Tlim and decreasing P, progres-
sively less weight is given to the minimization of the Tlim-axis 
distance (similarly to the WLS proposed by Morton 1996) 
with the addition that progressively more weight is given to 
the minimization of the P-axis distance.

With the present report, we sought to illustrate the GM 
regression method for the two- and three-parameter critical 
power models and testing its reliability against the WLS 
method on our previously published P–Tlim data (Vinetti 
et al. 2019).

Methods

Data from Vinetti et al. (2019) were retrospectively fitted by 
the hyperbolic critical power model by means of nonlinear 
regression analysis with both the WLS and the GM method. 
The general form of the model is:

where W′ is the curvature constant, CP (critical power) is the 
power asymptote, and k is the time asymptote (3-parameter 
model, 3-p). The theoretical maximal instantaneous power 
(P0) was calculated as the Tlim-axis intercept of Eq. (1). The 
two-parameter model (2-p) was obtained by removing the 
parameter k. The 2-p model was applied to six data points 
within the severe exercise intensity domain (85–120% of 
the maximal aerobic power), while the 3-p model included 
also three points in the extreme domain (150–250% of the 
maximal aerobic power). The GM method was developed 
with the same approach of Ebert and Russell (1994) (see 
Appendix for further details). Briefly, the highlighted areas 

(1)Tlim =
W

�

P − CP
+ k,

Fig. 1   Geometric mean regression minimizes the sum of the high-
lighted grey areas. The method’s assumption is that the ratio of the 
error of Tlim and P (εTlim/εP) approximately equal to the local slope 
(dTlim/dP) of the hyperbola. This assumption is met. Point A: low P 
(then low εP), high Tlim (then high εP) and high dTlim/dP, but also high 
εTlim/εP; point B high P (then high εP), low Tlim (then low εTlim) and 
low dTlim/dP, but also low εTlim/εP
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in Fig. 1 were set as the loss function to be minimized. For 
the WLS method, the loss function was set as the squared 
residuals of each ith data point multiplied by the weight-
ing factor 1/Tlim(i)

2 (Morton 1996). The standard error of the 
parameter estimates (SEE) was calculated by bootstrapping. 
SEE of P0 was calculated from the alternative parameteriza-
tion of Eq. (1) (see Appendix). Paired-sample t test, linear 
regression and Bland–Altman analysis were used to compare 
parameter estimates from GM and WLS. Slope and intercept 
of linear regressions between parameter estimates were also 
calculated with the GM method as recommended when com-
paring methods of measurements (Ludbrook 2012). The level 
of significance was set at p < 0.05. The statistical package 
SPSS (Version 23.00, IBM Corp., Armonk, NY) was used.

Results

All parameter estimates were not significantly different 
between GM and WLS (Table 1). SEEs were also non-sig-
nificantly different, except for that of CP in the 2-p model, 
which was lower with GM. Concerning 2-p model, GM 
yielded CP and W′ identical to WLS, with bias – 0.7 ± 1.6 W 
and – 0.1 ± 0.5 kJ, respectively, and 95% limits of agreement 
– 3.8 and 2.4 W, and – 1.1 and 0.9 kJ, respectively (Fig. 2). 
In 3-p model, CP was identical between GM and WLS, with 
bias – 0.2 ± 2.0 W and 95% limits of agreement – 4.0 and 
3.7 W, while W′, k and P0 present some marginal, nonsig-
nificant differences, with bias – 0.6 ± 0.9 kJ, 1.7 ± 3.0 s and 
56 ± 217 W, respectively, and 95% limits of agreement of 
– 2.4 and 1.3 kJ, – 4.2 and 7.7 s, and – 370 and 483 W, 
respectively (Fig. 3).  

Discussion

From a statistical viewpoint, the implemented hyper-
bolic GM regression method has several advantages over 
WLS: (1) it progressively accounts also for an error in the 
P variable when higher P are investigated, (2) it does not 
require further weighting procedures since it is intrinsically 
weighted both for P and Tlim and (3) it is independent of 
whether model’s equation is expressed in terms of Tlim or 
P. GM belongs to the broader context of errors-in-varia-
ble models, mostly confined in econometrics (Schennach 
2016)—where large amount of data can be collected and 
more complex assumptions and analyses are required—and 
it represents a concise method that is well suited also for the 
exercise science field.

From an experimental viewpoint, GM was successful in 
fitting the two- and three-parameter model, leading to results 
similar to the traditional WLS method. This is particularly 
evident in the 2-p model, where all parameters were per-
fectly identical (Fig. 2), conforming the theoretical predic-
tion that when all points in the steep part of the curve and 
the εTlim/εP is low (point A of Fig. 1), GM tends to mimic 
WLS. A slightly lower agreement between the two methods 
is present in the 3-p model for those parameters influencing 
the extreme exercise intensity domain (point B of Fig. 1), 
namely k and P0 (Fig. 3). Still, there are no statistically sig-
nificant differences, probably because of the relatively high 
reliability of the stationary cycle-ergometer used in the study 
also for extreme values of P (Vinetti et al. 2019). We expect 

Table 1   Average parameter estimates and standards errors obtained 
with the geometric mean (GM) and the weighted least square (WLS) 
regression methods

2-p two-parameter, 3-p three-parameter, CP critical power, k time 
asymptote constant, P0 maximal instantaneous power, SEE standard 
error of the estimate, W′ curvature constant

Model Parameter GM WLS p value

2-p CP (W) 179 ± 26 179 ± 27 0.20
SEE 5 ± 2 6 ± 3 0.01
W′ (kJ) 15.0 ± 3.6 14.9 ± 3.4 0.66
SEE 1.8 ± 0.7 2.1 ± 0.8 0.18

3-p CP (W) 178 ± 26 178 ± 27 0.85
SEE 6 ± 3 6 ± 3 0.82
W′ (kJ) 16.4 ± 4.2 15.8 ± 3.6 0.09
SEE 2.7 ± 1.1 2.7 ± 0.9 0.88
k (s) − 17.7 ± 9.1 − 16.0 ± 7.9 0.10
SEE 10.9 ± 3.3 12.3 ± 3.4 0.19
P0 (W) 1247 ± 368 1303 ± 408 0.43
SEE 844 ± 768 877 ± 696 0.68

Fig. 2   Comparison of parameter estimates of the 2-p model obtained 
with GM and WLS regression methods. Left column: regression 
(continuous) lines with identity (dashed) lines; Right column: Bland–
Altman plots including bias (dashed lines) and 95% limits of agree-
ment (dotted lines). CP critical power, W’ curvature constant
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further divergence in the two methods with less precise 
ergometers: in this case, parameter estimation with the GM 
method should be preferred.

In this context, it is noteworthy that the choice of the 
regression model and method should be an a priori deci-
sion based on the identification of the sources of experi-
mental error. Not surprisingly, studies using a systematic 
a posteriori selection based on the lowest SEE for CP and 
W′ are necessarily biased towards models that erroneously 
assume Tlim as the independent, error-free, variable (see 
for example Black et al. 2017). In fact, since data points 

mostly lie in the time window where there is both high 
dTlim/dP and εTlim/εP (2–15 min, point A of Fig. 1), a high 
distance in the Tlim-axis corresponds to a small distance 
in the other axis (either P or the total work, W); therefore, 
assuming P or W instead of Tlim as the dependent variable 
is likely to provide lower residual sum of squares (and 
SEE) and thus the perception of a better statistical fitting. 
However, this assumption is not consistent with the pro-
cess that generated the data, but just with the data itself.

In conclusion, when fitting the critical power model to 
experimental data with a low error in P, the parameters pro-
vided by GM do not differ from those provided by WLS. 
However, for its intrinsic characteristics, GM is conceptually 
preferable wherever concerns on the precision of P measure-
ment are present. Therefore, it should become the method of 
choice for statistical treatment of critical power data. Future 
testing of the GM method with more error-prone data sets, 
such as from in-field power meters, is welcome.
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Appendix

The developments detailed in this Appendix describe how to 
apply the GM method to the hyperbolic function expressed 
in Eq.  (1). The interested reader can refer to Ludbrook 
(2012) for practical considerations on linear GM regression 
and to Ebert and Russell (1994) for an example of adaptation 
of GM to nonlinear functions, as in the present study.

The assumption behind GM regression is that the ratio 
between the magnitude of the absolute error in y and in x 
is similar to the absolute slope of the fitted curve (Brace 
1977). In the case of Eq. (1) we set y = Tlim and x = P, thus 
the slope is equal to:

Is this compatible with the ratio between the magnitude 
of the absolute error in Tlim and P (εTlim/εP)? Yes, both for 
biological and technological reasons. We know in fact that 
εTlim and εP are Tlim and in P are proportional to Tlim and P, 
respectively thus:

(2)
|
|||

dTlim

dP

|
|||
=

|||
||
−

W
�

(P − CP)
2

|||
||
∼

W
�

P2

Fig. 3   Comparison of parameter estimates of the 3-p model obtained 
with GM and WLS regression methods. Left column: regression 
(continuous) lines with identity (dashed) lines; Right column: Bland–
Altman plots including bias (dashed lines) and 95% limits of agree-
ment (dotted lines). CP critical power, W’ curvature constant, k time 
asymptote constant, P0 maximal instantaneous power
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Inserting (1) into (3):

Therefore,

Thus, the assumption required for GM regression is met. 
Since GM is independent of the choice of the dependent var-
iable, the demonstration is still valid when inverting x and y.

We, therefore, define the loss function as the grey area 
of Fig. 1, that is absolute difference between the rectangles 
formed by the thin lines and the integral of the function in 
the same P interval (white area between the curve and the 
P-axis). For a generic data point with coordinates (Pi, Ti)

It is noteworthy that Eq. (6) in this formulation has always 
a positive value thus there is not the need of a modulo oper-
ator. Solving and simplifying yields to the following loss 
function:

By setting k = 0 we obtain the 2-p version of the loss func-
tion, while k = −

W
�

P0−CP
 leads to the alternative parameteriza-

tion of Eq. (1) (Morton 1996). The commands for SPSS are 
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derived from this demonstration are reported Table 2, 
although it must be remembered that equivalent results are 
granted if starting the demonstration assuming P instead of 
Tlim as the dependent variable.
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