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Abstract
Completion of high-intensity interval training (HIIT) leads to significant increases in maximal oxygen uptake (VO2max) and 
oxidative capacity. However, individual responses to HIIT have been identified as approximately 20–40% of individuals 
show no change in VO2max, which may be due to the relatively homogeneous approach to implementing HIIT. Purpose: This 
study tested the effects of HIIT prescribed using ventilatory threshold (VT) on changes in VO2max and cycling performance. 
Methods: Fourteen active men and women (age and VO2max = 27 ± 8 year and 38 ± 4 mL/kg/min) underwent nine sessions of 
HIIT, and 14 additional men and women (age and VO2max = 22 ± 3 year and 40 ± 5 mL/kg/min) served as controls. Training 
was performed on a cycle ergometer at a work rate equal to 130%VT and consisted of eight to ten 1 min bouts interspersed 
with 75 s of recovery. At baseline and post-testing, they completed progressive cycling to exhaustion to determine VO2max, 
and on a separate day, a 5 mile cycling time trial. Results: Compared to the control group, HIIT led to significant increases 
in VO2max (6%, p = 0.007), cycling performance (2.5%, p = 0.003), and absolute VT (9 W, p = 0.005). However, only 57% 
of participants revealed meaningful increases in VO2max and cycling performance in response to training, and two showed 
no change in either outcome. Conclusions: A greater volume of HIIT may be needed to maximize the training response for 
all individuals.
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Abbreviations
BLa	� Blood lactate concentration
CON	� Control group
HIIT	� High-intensity interval training
MICT	� Moderate-intensity continuous training
PPO	� Peak power output
SIT	� Sprint interval training
TE	� Typical error

VT	� Ventilatory threshold
VO2max	� Maximal oxygen uptake

Introduction

Current physical activity guidelines for all adults (Garber 
et al. 2011) recommend 150 min/week of moderate-intensity 
continuous training (MICT) to enhance cardiorespiratory fit-
ness (VO2max), which benefits physical function and health 
status. However, regular participation in physical activity is 
low in most adults (< 25%, CDC 2014). Primary barriers to 
physical activity include lack of enjoyment and time (Trost 
et al. 2002). In the last decade, there has been extensive 
interest in the efficacy of high-intensity interval training 
(HIIT) to increase cardiometabolic health in various popu-
lations including healthy young adults as well as those with 
chronic disease (Weston et al. 2014a, b). HIIT and its more 
intense form, sprint interval training (SIT), are character-
ized by brief, intense efforts of near-maximal to supramaxi-
mal effort separated by active recovery, and require lower 
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exercise duration than MICT (Gibala et al. 2014). Data show 
similar (Burgomaster et al. 2008) and in some cases superior 
adaptations with HIIT or SIT versus MICT (Milanovic et al. 
2015), emphasizing its efficacy in various populations.

However, the optimal regime of HIIT remains to be 
identified. Typically, HIIT is prescribed based on a specific 
fraction of maximal heart rate or peak power output (e.g., 
80–100% of maximal heart rate or power output) determined 
from ramp exercise on the cycle ergometer. In the case of 
SIT, exercise is typically performed at specific power outputs 
relative to body mass (5.0–8.5%). Nevertheless, basing train-
ing on an absolute intensity fails to account for individual 
metabolic responses to exercise (Katch et al. 1978), as par-
ticipants train at different relative intensities based on their 
ventilatory threshold (VT) (Scharhag-Rosenberger et al. 
2010),which results in inhomogeneous metabolic strain. A 
previous study demonstrated that blood lactate (BLa) con-
centration at different %VO2max significantly varies across 
individuals of similar fitness level (Scharhag-Rosenberger 
et al. 2010), which suggests a disparate level of metabolic 
strain and fatigue at identical relative intensities in homo-
geneous populations. And, it is the magnitude of this acute 
response which is thought to elicit various chronic adap-
tations to exercise training (Coffey and Hawley 2007). In 
one study (Wolpern et al. 2015), completion of 12 weeks of 
MICT prescribed according to VT led to greater increases 
in VO2max compared to when intensity was based on HR. In 
sedentary adults, similar results were shown in response to 
13 weeks of standardized or individualized MICT (Dalleck 
et al. 2016). Nevertheless, the intensity of training based on 
VT was higher than that based on heart rate, so it is unclear 
if the greater magnitude of adaptation is due to this factor or 
the individualized regime. To our knowledge, only one study 
has prescribed HIIT using VT. In persons with cardiovas-
cular disease, Tamburus et al. (2016) prescribed 16 weeks 
of HIIT according to VT, and results showed significant 
increases in VO2 and workload at VT. However, this study 
did not measure changes in VO2max, and some of the training 
was performed at relatively moderate intensities which may 
not represent HIIT, so the overall efficacy of this approach 
is poorly understood. Overall, these two studies have meth-
odological flaws which somewhat hamper their examination 
of potential superiority of threshold-based exercise training.

Although HIIT-derived increases in outcomes includ-
ing VO2max, oxidative capacity, and glycemic control are 
consistently reported (Gibala et al. 2014; Jelleyman et al. 
2015; Milanovic et al. 2015), it is apparent that individual 
responses to HIIT do occur. Two studies (Astorino and 
Schubert 2014; Gurd et al. 2016) documented that approxi-
mately 20–50% of participants undergoing various HIIT and 
SIT protocols show non-response in at least one outcome 
measure including VO2max, fat oxidation, heart rate, or, lac-
tate threshold. This is concerning especially when physical 

activity is used to combat the enhanced health risks conse-
quent with sedentarism and chronic disease. The reasons for 
this non-response are poorly understood, although it may 
be related to participants’ baseline status, habitual physi-
cal activity, dietary practices, genetics, and the traits of the 
exercise regime (Mann et al. 2014). Common practice when 
implementing HIIT is to use a “one size fits all” approach, 
in which the clinician or scientist employs an identical HIIT 
regime in each participant. However, this approach does not 
follow recent recommendations (Buford et al. 2013) con-
cerning personalizing exercise training to maximize the 
training response.

In this feasibility study, we tested the effects of short-term 
HIIT prescribed according to VT on changes in VO2max and 
time trial performance. Previous studies in our lab (Wood 
et al. 2016; Green et al. 2017) demonstrate near-maximal 
values of oxygen uptake and BLa in response to acute bouts 
of interval training based on fractions of peak power output, 
yet the magnitude of these responses varies across individu-
als. Prescribing HIIT based on VT puts participants at an 
equivalent level of metabolic strain versus training at an 
absolute intensity based on heart rate or peak power output. 
It was hypothesized that this regime will elicit significant 
changes in our outcomes versus non-exercising controls, and 
lower incidence of non-response than rates equal to 20–50% 
reported in previous HIIT studies (Astorino and Schubert 
2014; Gurd et al. 2016) in which peak power output was 
used to set training intensity.

Materials and methods

Participants

Healthy, physically active men and women who performed 
more than 150 min per week of exercise in the last year 
including resistance training, CrossFit,™ aerobic exercise, 
and non-competitive sport were recruited to participate in 
this study. Participants were non-obese, did not smoke, 
were not taking any medications or supplements, and had 
no physical condition which may alter their responses. Par-
ticipants who served as controls (CON) were not randomized 
to this group, but were individuals who desired to complete 
the testing yet lacked the time to undergo training. Their 
physical characteristics are shown in Table 1. Their aggre-
gate VO2max is classified as “fair” to “average” according 
to norms for adults aged 20–49 years old (ACSM 2018). 
There was no difference (p > 0.05) in any variable at base-
line between individuals who completed training and CON 
except for body mass index. They provided written informed 
consent before participating in the study, and the protocol 
was approved by the CSU—San Marcos Institutional Review 
Board.



1813European Journal of Applied Physiology (2018) 118:1811–1820	

1 3

Study design

Participants undergoing HIIT performed 3 days per week of 
training for 3 weeks, whereas CON completed pre- and post-
testing which were separated by 3 weeks. For all sessions, 
participants arrived well-rested and hydrated, and followed 
a 3 h fast and 24 h abstention from intense physical activ-
ity, which were confirmed with a written log. In addition, 
participants completed a 24 h food log at baseline which was 
replicated for all subsequent assessments. All sessions were 
held at the same time of day ± 60 min within subjects. Par-
ticipants were instructed to maintain their habitual physical 
activity and dietary patterns during the study, which were 
confirmed using written logs submitted at the end of the 
study. Temperature and relative humidity of the lab were 
maintained at 18–21 °C and 40–60%, respectively. Strong 
verbal encouragement was provided during all sessions.

Baseline testing

Initially, participant height and body mass were determined 
using a calibrated scale. After 5 min of seated rest, a finger-
tip blood sample was taken to assess blood lactate concentra-
tion (BLa) using a lancet (Owen Mumford, Inc., Marietta, 
GA) and portable monitor (Lactate Plus, Nova Biomedical, 
Waltham, MA). Then, they were prepared for incremental 
exercise to exhaustion on an electrically braked cycle ergom-
eter (Velotron Dynafit Pro, RacerMate, Seattle, WA). After 
a 2 min warm-up at 40–70 W, work rate was increased in a 
ramp-like manner by 20–35 W/min until volitional exhaus-
tion. Maximal BLa was also determined through acquisition 
of another fingertip sample 3 min post-exercise.

After 10 min of light pedaling at 10%PPO, participants 
pedaled “all-out” at a supramaximal work rate equal to 
105%PPO to verify attainment of VO2max. This constant load 
test performed at a work rate above that eliciting VO2max 
has been identified as a robust approach to confirm VO2max 

attainment in many populations (Poole and Jones 2017). 
They underwent a 25 min passive recovery, then initiated 
5 min of pedaling at 20%PPO, followed by a 5 mile cycling 
time trial on the same cycle ergometer using the flat course 
(Velotron 3D software). This was used to familiarize par-
ticipants with a cycling time trial. This program displays 
the participant on the computer screen competing against 
an avatar. Participants were instructed to use the gears to go 
as fast as they could during the bout. No information was 
given to participants other than gearing, distance covered, 
and distance remaining, which were continuously shown 
on the computer screen. Settings for seat/bar height of the 
cycle ergometer were recorded and used for all subsequent 
sessions. On the following two sessions, participants fol-
lowed the aforementioned pre-test guidelines, then warmed 
up for 3 min at each of 10 and 20%PPO prior to repeating 
the 5 mile time trial. The fastest time from any of these three 
sessions was selected as their measure of baseline cycling 
performance.

High‑intensity interval training

Training was supervised and consisted of nine sessions of 
low-volume HIIT. Before each session, participants com-
pleted a 5 min warm-up at 10%PPO. During sessions 1–3, 
4–6, and 7–9, participants completed 8, 9, and 10 60  s 
bouts of HIIT, with each bout separated by a 75 s recovery 
at 10%PPO. Intensity was set at 130% of the power out-
put associated with each individual’s VT. On day 1 and 9 
of HIIT, BLa was determined via fingertip blood samples 
taken pre-exercise and after bout 4 and 8. Also on these 
days, enjoyment of training was determined using the Physi-
cal Activity Enjoyment Scale (PACES, Kendzierski and 
DeCarlo 1991). This 18-item survey was completed 10 min 
post-exercise and consists of various questions on a 1–7 Lik-
ert scale.

Table 1   Baseline participant 
characteristics (mean ± SD)

HIIT high-intensity interval training, CON control; p  significance value describing difference in each vari-
able at baseline between groups, M male, F female, PPO peak power output from progressive exercise test, 
PA habitual physical activity
*p < 0.05 between HIIT and CON

Parameter HIIT (n = 14) Range CON (n = 14) Range p

Age (year) 27 ± 8 18–45 23 ± 3 19–27 0.07
Gender (n = M/F) 3/11 NA 8/6 NA
Height (cm) 171 ± 8 160–185 169 ± 10 156–192 0.61
Mass (kg) 66 ± 10 52–94 71 ± 8 55–82 0.15
Body mass index (kg/m2) 22 ± 2 19–28 24 ± 2 21–27 0.02*
VO2max (mL/kg/min) 38.0 ± 4.3 31.0–44.2 40.5 ± 4.7 28.0–51.8 0.17
PPO (W) 253 ± 51 187–371 288 ± 64 174–387 0.13
PA (h/week) 5.5 ± 1.7 3.0–8.0 6.0 ± 2.0 3.5–10.0 0.51
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Post‑testing

Following procedures outlined above, measures of VO2max 
and TT performance were repeated at the same time of 
day a minimum of 48 h after the last training session. At 
least 48 h was allotted between these sessions in all par-
ticipants. Participants in the control group completed these 
sessions 3 weeks after the last baseline session.

Measures

During ramp exercise, gas exchange data were acquired 
every 30 s using a metabolic cart (ParvoMedics True One, 
Sandy, UT) which was calibrated before exercise accord-
ing to the manufacturer. VO2max was identified as the mean 
of two highest 30 s values taken from the last 60 s of pro-
gressive exercise. Peak power output was identified as that 
work rate (in Watt) coincident with volitional exhaustion. 
During all sessions, heart rate (HR) was assessed using 
telemetry (Polar Electro, Woodbury, NY). Oxygen pulse 
was calculated as the quotient of VO2 (mL/min) and HR. 
To assess the ventilatory threshold, two experimenters 
independently examined plots of change in the ventila-
tory equivalents of oxygen and carbon dioxide (VEVO2 
and VEVCO2) versus time, using the criterion developed 
by Caiozzo et  al. (1982) of “the time at which VEVO2 
exhibited a systematic increase without a concomitant 
increase in VEVCO2.” If disagreement occurred between 
these individuals, a third researcher was consulted. This 
value was expressed in Watt as well as a percentage of 
PPO and HRmax. To estimate changes in time trial per-
formance, cycling time (seconds) and mean power output 
(in Watt) were recorded. A 3-day food log including one 
weekend day was completed before and at the end of the 
study. Participants were requested to list specific names, 
volumes, and preparation of various foods. This informa-
tion was analyzed using commercially available software 
(http://ndb.nal.usda.gov/ndb/foods​/list) to determine total 
energy (in kilocalories) as well as macronutrient intake 
(in grams).

Determination of typical error

As used in a prior study (Raleigh et al. 2016), typical error 
(TE) was computed using data from our control participants 
using the following equation: TE = SDdiff/√2. In this equa-
tion, SDdiff is the standard deviation of the change scores 
between the two repeated tests. A nonresponder for each 
outcome was defined as an individual who failed to dem-
onstrate a change greater than 2 × TE (0.12 L/min, 21.2 s, 
and 19.4 W for VO2max, time trial performance, and VT, 

respectively). This approach was used as it represents a 
threshold past which the odds of a real change are 12:1 
(Hopkins 2000).

Data analyses

Data are expressed as mean ± SD and were analyzed using 
SPSS Version 24.0 (Chicago, IL). The Shapiro–Wilks test 
was used to assess normality. Independent t test was per-
formed to identify differences in demographic and physi-
ological variables between groups at baseline as well as the 
change in VO2max, time trial performance, and VT. Repeated 
two-way ANOVA (time = pre versus post, group = HIIT ver-
sus CON) with repeated measures was performed to iden-
tify differences in VO2max, gas exchange variables, time 
trial performance, and BLa. The Greenhouse–Geisser cor-
rection was used to account for the sphericity assumption 
of unequal variances across groups. If a significant F ratio 
occurred, Tukey’s post hoc test was used to identify differ-
ences between means. Cohen’s d was used as an estimate 
of effect size, and 95% confidence intervals (95% CI) were 
used as appropriate. Pearson pairwise correlation was used 
to determine relationships between variables. Statistical sig-
nificance was set as p < 0.05.

Results

There was 100% compliance to HIIT. The average inten-
sity of training was equal to 89.8 ± 5.4%PPO (range 
79.2–96.0%PPO). Figure 1 shows that heart rate gradually 
increased (p = 0.02) during training, and that participants 
trained at workloads surpassing 90%HRmax. Enjoyment as 
measured with PACES did not change from session 1 to 9 
(104.4 ± 14.8 versus 101.8 ± 19.4, p = 0.34).

Fig. 1   Heart rate response to low-volume high-intensity interval 
training. *p < 0.05 compared to day 3 of training

http://ndb.nal.usda.gov/ndb/foods/list
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Change in VO2max and gas exchange data

Data showed a significant time × group interaction for rela-
tive (p = 0.002) and absolute VO2max (p = 0.007), as it was 
increased by 0.16 ± 0.13 L/min (95% CI − 0.08 to 0.23 L/
min) with HIIT which was higher (p = 0.005) than the 
change seen in CON (0.008 ± 0.12 L/min, 95% CI − 0.06 to 
0.08 L/min). Post hoc analyses showed that the post-train-
ing value was higher than at baseline. In CON, only two 
participants showed changes in VO2max (0.15 and 0.29 L/
min, respectively) which were greater than TE. Similar 
time × group interactions were revealed for PPO (p = 0.016), 
VCO2 (p = 0.002), and O2 pulse (p = 0.018). There was no 
time × group interaction for VE (p = 0.14), HR (p = 0.53), 
RER (p = 0.95), or BLa (p = 0.36). Our results from the ramp 
and verification test are shown in Table 2.

Change in time trial performance

There was a significant time × group interaction (p = 0.003) 
for cycling performance as it was improved with HIIT 
(936 ± 80  s versus 913 ± 78  s, d = 1.13) versus CON 
(915 ± 99 s versus 928 ± 88 s, d = 0.68). The mean change 
was different (p = 0.003) between HIIT (− 23 ± 20 s, 95% CI 
− 35 to − 11 s) and CON (14 ± 27 s, 95% CI − 8 to 35 s). 

Eight of 14 individuals in CON showed slower time trial 
performance at the post-test versus baseline, although one 
exhibited improved performance by 57 s. A similar interac-
tion (p = 0.004) was shown for mean power output which 
was significantly increased in HIIT (171 ± 42 W versus 
184 ± 41 W, d = 1.04) compared to CON (187 ± 45 W versus 
180 ± 40 W, d = 0.70).

Change in ventilatory threshold

Compared to CON, absolute VT (p = 0.005) and VT 
expressed as %HRmax increased (p = 0.014) in response 
to HIIT. However, VT relative to %VO2max did not change 
(p = 0.30). The change in VT (p = 0.005 versus CON) 
was equal to 9 ± 12 W (95% CI 2 to 16 W) with HIIT and 
− 6 ± 14 W (95% CI − 14 to 2 W) in CON, respectively. No 
participant in CON showed a meaningful change in absolute 
VT between pre- and post-testing.

Individual responses

Table 3 shows individual changes in our outcomes for all 
14 participants in both the HIIT and CON groups. Of those 
who performed HIIT, the frequency of participants showing 
a change in VO2max, time trial performance, and VT that was 

Table 2   Changes in gas 
exchange data, power output, 
heart rate, and blood lactate 
concentration in response to 
low-volume HIIT (mean ± SD)

HIIT = participants who completed high-intensity interval training; ES = effect size determined using 
Cohen’s d; CON = control participants; RAMP = incremental exercise test; W = Watt; * = p < 0.05 versus 
pre-testing within group; VER = verification test

Variable HIIT CON

Pre Post ES (d) Pre Post ES (d)

RAMP
 VO2max (mL/kg/min) 38.0 ± 4.3 40.4 ± 4.6* 1.98 40.2 ± 4.7 40.5 ± 6.4 0.06
 VO2max (L/min) 2.51 ± 0.62 2.66 ± 0.67* 1.86 2.94 ± 0.72 2.97 ± 0.74 0.21
 VCO2max (L/min) 3.1 ± 0.7 3.2 ± 0.8* 0.89 3.7 ± 0.9 3.6 ± 0.9* 0.87
 RER 1.24 ± 0.05 1.23 ± 0.06 0.15 1.28 ± 0.07 1.23 ± 0.07 0.73
 VE (L/min) 102 ± 15 108 ± 24 0.55 131 ± 24 129 ± 27 0.19
 HRmax (b/min) 183.2 ± 12.1 182.5 ± 11.8 0.20 184.6 ± 5.5 182.7 ± 7.2 0.56
 O2 pulse (mL/beat) 14.1 ± 4.2 15.0 ± 4.3* 1.84 16.0 ± 4.2 16.3 ± 4.0 0.21
 PPO (W) 253 ± 51 267 ± 57* 1.81 288 ± 64 287 ± 60 0.11
 BLa (mM) 10.6 ± 1.6 11.2 ± 2.3 0.69 11.3 ± 1.2 11.2 ± 2.0 0.02
 VT (W) 175 ± 40 184 ± 40* 1.05 186 ± 48 180 ± 45 0.67
 VT (%VO2max) 74 ± 5 75 ± 6 0.38 69 ± 5 68 ± 7 0.21
 VT (%HRmax) 85 ± 6 87 ± 5* 1.37 82 ± 5 81 ± 4 0.10

VER
 VO2max (mL/kg/min) 38.3 ± 4.1 40.5 ± 4.4* 1.98 40.1 ± 4.2 40.4 ± 6.2 0.06
 VO2max (L/min) 2.50 ± 0.61 2.60 ± 0.64* 1.86 2.87 ± 0.71 2.84 ± 0.69 0.21
 VCO2max (L/min) 3.1 ± 0.7 3.2 ± 0.8* 0.89 3.7 ± 0.9 3.6 ± 0.9* 0.87
 RER 1.20 ± 0.09 1.14 ± 0.09* 0.88 1.14 ± 0.10 1.12 ± 0.08 0.29
 VE (L/min) 108 ± 15 112 ± 24 0.38 125 ± 26 126 ± 27 0.09
 HRmax (b/min) 182.1 ± 12.2 181.6 ± 12.0 0.20 180.6 ± 4.5 179.5 ± 6.5 0.56
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greater than 2 × TE was 8/14, 8/14, and 5/14, respectively. 
One participant showed a change in all outcomes, and 50% 
of participants showed a meaningful change in 2 of 3 out-
comes. In contrast, two participants showed no change in all 
outcome measures.

Change in blood lactate concentration

Results showed a significant increase in BLa dur-
ing HIIT (p < 0.001), yet there was no change in exer-
cise BLa (p = 0.91) from session 1 (1.4 ± 0.5, 9.6 ± 2.6, 
11.9 ± 2.2 mM) to session 9 of HIIT (1.3 ± 0.5, 9.5 ± 2.4, 
11.6 ± 2.3 mM).

Correlation analyses

There was no correlation between the %PPO attained during 
HIIT and the absolute change in VO2max (r = 0.07, p = 0.82), 
VT (r = 0.19, p = 0.52), or time trial performance (r = 0.38, 
p = 0.18). Similar lack of relationships were shown between 
peak HR attained during HIIT and change in VT (r = − 0.35, 
p = 0.21) and time trial performance (r = 0.02, p = 0.96), 
although there was an association for change in VO2max 
(r = 0.61, p = 0.02). No correlation was shown (r = 0.33, 
p = 0.25) between baseline VO2max and the absolute change 
observed in response to HIIT.

Change in habitual physical activity and dietary 
intake

Physical activity decreased (p = 0.03) from baseline to post-
testing, yet there was no group × time interaction (p = 0.07). 
Post hoc analyses showed a maintenance of physical activity 
in HIIT (5.6 ± 1.7 h/week versus 5.3 ± 1.8 h/week, d = 0.16), 
yet a decline in physical activity in CON (5.8 ± 2.0 h/week 
versus 4.8 ± 1.9 h/week, d = 0.55). There was no change in 

overall energy or macronutrient intake (p = 0.39–0.69) or 
group × time interaction (p = 0.57–0.95). Calorie intake as 
well as carbohydrate, fat, and protein intake were not dif-
ferent from pre- to post-testing in HIIT (2,050 ± 686 kcal 
and 251 ± 103, 69 ± 26, 109 ± 49 g to 2074 ± 639 kcal and 
248 ± 96, 71 ± 26, 119 ± 55 g) or CON (2,333 ± 587 kcal and 
308 ± 91, 72 ± 23, and 117 ± 42 g to 2,358 ± 557 kcal and 
305 ± 93, 74 ± 24, 122 ± 44 g).

Discussion

In the present study, we examined changes in cardiorespi-
ratory fitness and cycling performance in response to nine 
sessions of HIIT which was personalized for each participant 
based on their ventilatory threshold. This approach opposes 
how HIIT is traditionally implemented using a specific per-
centage of PPO or HRmax, which may elicit a dissimilar 
metabolic stimulus to training. Our aggregate results demon-
strate significant increases in VO2max, cycling performance, 
and VT in response to our regime, which elicited intensities 
characteristic of HIIT (85–100%HRmax, Gibala et al. 2014), 
versus a non-exercising control group. However, some par-
ticipants showed no change in each variable, which cor-
roborates existing findings denoting individual responses to 
HIIT. It is plausible that a greater volume of HIIT should be 
implemented to elicit responses in all participants.

Results from a recent systematic review of 32 stud-
ies (Weston et al. 2014b) report a mean improvement in 
VO2max equal to 6.2% in response to low-volume HIIT rang-
ing in duration from 2 to 10 weeks. Our data exhibited a 
6% increase in VO2max, which is similar to that reported in 
two recent studies (Boyd et al. 2013; Raleigh et al. 2016) 
in which 9 and 12 sessions of HIIT were performed over 
a 3 week period. Although we did not measure stroke vol-
ume or cardiac output, the significant increase in O2 pulse, 

Table 3   Individual differences 
in VO2max, cycling performance, 
and ventilatory threshold from 
pre- to post-testing in response 
to low-volume HIIT and in the 
control group

R responder, NR nonresponder, TT time trial performance, VT ventilatory threshold; note that the columns 
refer to individual participants
+ = participant who showed an improvement greater than 2 × TE; − = participant who showed a change 
lower than 2 × TE; blank square = a change between greater than and less than 2 × TE

Participants 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Response 
frequency 
(%)

HIIT
 VO2max R NR NR NR NR R R R NR R R NR R R 57
 TT R NR R R NR NR R NR R R NR NR R R 57
 VT NR NR R R R NR NR NR NR R R NR NR NR 36

CON
 VO2max + − + 14
 TT + − − − 7
 VT − − − 0
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which has been shown to be associated with stroke volume 
(Bhambhani et al. 1994), suggests that oxygen delivery was 
increased in response to HIIT, leading to the increases in 
VO2max. This contention is supported by data from studies 
(Warburton et al. 2004; Astorino et al. 2017) in active men 
and women showing significant increases in stroke volume 
and cardiac output in response to chronic low-volume HIIT.

Despite the overall increase in VO2max demonstrated, 6 
of 14 participants showed no meaningful change in VO2max 
in response to HIIT (Table 3). This finding is corroborated 
by previous studies showing that many participants do not 
exhibit increases in VO2max in response to HIIT (Boyd et al. 
2013; Astorino and Schubert 2014) or SIT (Gurd et al. 
2016). In sedentary men (Boyd et al. 2013), 9 sessions of 
HIIT at 100%PPO led to a greater increase in VO2max as 
well as lower frequency of non-response (0%) than HIIT 
conducted at 70%PPO (44%). Gurd et al. (2016) reported 
VO2max non-response rates ranging from 30 to 50% in 
response to SIT regimes performed 3 days per week for 
4 weeks, which is similar to the frequency reported in the 
present study. However, when SIT was performed 4 days 
per week (Ma et al. 2013; Scribbans et al. 2014), there was 
no incidence of non-response in VO2max. Exercise intensity 
(Ross et al. 2015) and volume (Sisson et al. 2009) have been 
shown to be key mediators of the magnitude of response to 
MICT, although it is unclear if this relationship also exists 
for HIIT. For example, Raleigh et al. (2016) showed that 3 
weeks of lower-intensity interval training (83%PPO) led to 
a lower increase in VO2max than more intense regimes com-
pleted at 112 and 130%PPO, although these data are refuted 
by other studies (Astorino et al. 2013; Matsuo et al. 2014) 
in which no differences in VO2max response were shown 
between HIIT regimes differing in intensity. However, the 
latter two studies were 8 and 12 weeks in duration, and it 
is possible that the greater volume of training led to these 
discrepant results. We encourage scientists to initiate studies 
attempting to identify whether modifying training intensity 
or volume is key to minimizing non-response. Overall, these 
results suggest that an adequate volume of HIIT or SIT must 
be attained to ameliorate non-response to a small dose of 
training, and it is likely that every individual has a different 
sensitivity to training.

Our results show a 2.5% improvement in cycling per-
formance in response to HIIT. Fifty-seven percent of par-
ticipants reported a meaningful increase in this outcome, 
ranging from a 23–59 s improvement in performance post-
training. Of those individuals who did not show improve-
ment for this variable, only two exhibited no absolute 
increase in performance, and in fact, those two participants 
showed no change in all outcome measures. Nevertheless, 
our aggregate data corroborate previous studies showing 
improved cycling performance with various HIIT regimes. 
In active men and women (Perry et  al. 2008), time to 

exhaustion at 90%VO2max was increased by 111% in response 
to 18 sessions of high-volume HIIT. Increased cycling per-
formance was also shown in response to low-volume SIT 
(Hazell et al. 2010) and low-volume HIIT (Little et al. 2010). 
Measures obtained in the present study do not explain why 
cycling performance was improved, although it is likely that 
oxidative capacity was enhanced in our participants as previ-
ously shown (Little et al. 2010). In addition, increased buff-
ering capacity has been repeatedly shown in men and women 
undergoing 2 weeks of SIT (Gibala et al. 2006) as well as 
in cyclists undergoing HIIT (Weston et al. 1997), which is 
related to greater tolerance of high-intensity exercise and in 
turn, enhanced exercise performance (Weston et al. 1997).

Over 30 years ago, Poole and Gaesser (1985) showed 
that 8 weeks of high-volume HIIT performed by untrained 
men led to significant increases in VT which were supe-
rior to the change shown with MICT. In active women, 7 
weeks of high-volume HIIT also enhanced VT by a similar 
magnitude (Burke et al. 1994). Similarly, only 4 sessions of 
high-volume HIIT increased VT in trained cyclists (Laursen 
et al. 2002). The mechanisms explaining the increase in VT 
reported in the current study are beyond the scope of this 
paper, yet are likely due to improvements in oxidative capac-
ity demonstrated with HIIT (Henriksson and Reitman 1976). 
Despite our aggregate increase in absolute VT, only 5/14 
participants exhibited a meaningful change in this meas-
ure. Part of this result is likely due to the large typical error 
seen in this variable (11% of the pre-training value), which 
meant that our participants needed to exhibit a more substan-
tial change for this response to be meaningful. In fact, five 
participants showed increases in VT between 6 and 12 W 
in response to HIIT. Poole and Gaesser (1985) reported an 
ICC = 0.96 for repeated determinations of VT using the 
ventilatory equivalents method (Caiozzo et al. 1982) which 
was similar to our value (ICC = 0.95) obtained in the control 
group. Further study is merited to measure HIIT-derived 
changes in VT based on the relationship between VT and 
exercise tolerance (Rusko et al. 1980).

The current study has some limitations. Our data were 
acquired in a young and active population, so our results 
cannot be applied to older or inactive individuals. We chose 
a training intensity equal to 130%VT, which represented 
approximately 90%PPO in our sample. Preliminary test-
ing demonstrated that this intensity would be challeng-
ing for our habitually active population, yet will not elicit 
extreme fatigue which may decrease their tolerance to 
training. Whether a slightly lower or higher intensity will 
elicit the same effects is unknown. The HIIT group was 
comprised of more women than men; however, the effect 
of gender on magnitude of response to interval training is 
likely small, considering that short- and long-term training 
studies conducted in healthy adults as well as clinical popu-
lations (Astorino et al. 2011, 2017; Metcalfe et al. 2016; 
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Phillips et al. 2017; Storen et al. 2017) show no difference in 
response between men and women. In addition, Skelly et al. 
(2017) showed that men and women exhibit significant albeit 
similar increases in various genes encoding mitochondrial 
biogenesis, metabolic control, and structural remodeling in 
response to a single bout of SIT. We chose not to recruit a 
comparator group of persons completing HIIT at a specific 
%PPO or %HRmax, as individual responses have repeatedly 
been shown in previous studies in active adults (Astorino 
and Schubert 2014; Gurd et al. 2016). Lastly, this was a fea-
sibility study testing the utility of HIIT based on ventilatory 
threshold, and additional long-term studies are needed to 
clarify efficacy of personalized HIIT prescription using this 
approach. Despite these limitations, our study is strength-
ened by the use of best practices (Hopkins 2000; Poole and 
Jones 2017) for assessment of time trial performance and 
VO2max, which enhances reliability of these measures. In 
addition, we monitored habitual physical activity and dietary 
patterns during the study which may alter training respon-
siveness (Mann et al. 2014). Following previous recommen-
dations (Atkinson and Batterham 2015), typical error was 
computed from repeated testing of individuals of similar 
fitness and age versus the intervention group, and this value 
was computed from data obtained in our lab versus using 
typical error values acquired by other authors who use dif-
ferent methodologies. Moreover, it was determined over the 
same time frame as those who performed HIIT (Atkinson 
and Nevill 1998), which should lead to a similar degree of 
random variation in our measures. Nevertheless, standard 
deviation of the change scores for VT and time trial perfor-
mance in the control group were slightly greater than values 
in the intervention group, which is likely attributed to the 
gender disparity between groups. We recommend that scien-
tists repeat baseline testing in the intervention group, which 
would allow examination of training responsiveness based 
on individual variability rather than that of a comparator 
(control) group.

Conclusion

Our results demonstrate the feasibility of short-term HIIT 
prescribed using ventilatory threshold, which led to signifi-
cant improvements in VO2max and cycling performance in 
young adults compared to a control group. Nevertheless, this 
personalized approach to HIIT led to individual response 
in select variables, in that some participants showed mean-
ingful increases in our measures; whereas, others showed a 
maintenance of their values, which supports recent findings 
and is likely due to an inadequate quantity of training. Com-
pared to previous studies showing significant increases in 
VO2max and cycling performance in response to similar albeit 
standardized HIIT regimes, our results do not demonstrate 

a superior effect of personalized HIIT based on ventilatory 
threshold.
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