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Results  The percentage of type I myofibers positively 
correlated with SI and negatively correlated with systolic 
blood pressure SBP, diastolic blood pressure, and mean 
arterial pressure (MAP); whereas, the percentage of type 
IIx myofibers were negatively correlated with SI and large 
artery elasticity, and positively correlated with LDL choles-
terol, SBP, and MAP.
Conclusions  These data demonstrate a potential link 
between myofiber composition and cardiometabolic health 
outcomes in a cohort of premenopausal women. Future 
research is needed to determine the precise mechanisms in 
which myofiber composition impacts the pathophysiology 
of impaired glucose and lipid metabolism, as well as vascu-
lar dysfunction.

Keywords  Myofiber · Insulin sensitivity · Arterial 
elasticity · Blood lipids · Cardiometabolic health

Abbreviations
DBP	� Diastolic blood pressure
LAE	� Large artery elasticity
LDL	� Low density lipoprotein
MAP	� Mean arterial blood pressure
SAE	� Small artery elasticity
SBP	� Systolic blood pressure
SI	� Insulin sensitivity
TVI	� Total vascular impedance

Introduction

The prevalence of cardiometabolic diseases continues to 
rise and remains the leading cause of morbidity and mor-
tality in modern societies. Insulin resistance, obesity, 
hypertension, and dyslipidemia are known to cluster as 

Abstract 
Purpose  Cardiometabolic disease remains a leading cause 
of morbidity and mortality in developed nations. Conse-
quently, identifying and understanding factors associated 
with underlying pathophysiological processes leading to 
chronic cardio metabolic conditions is critical. Metabolic 
health, arterial elasticity, and insulin sensitivity (SI) may 
impact disease risk, and may be determined in part by 
myofiber type. Therefore, the purpose of this study was to 
test the hypothesis that type I myofiber composition would 
be associated with high SI, greater arterial elasticity, lower 
blood pressure, and blood lipids; whereas, type IIx myofib-
ers would be associated with lower SI, lower arterial elas-
ticity, higher blood pressure, blood lipids.
Methods  Muscle biopsies were performed on the vas-
tus lateralis in 16 subjects (BMI =  27.62 ±  4.71  kg/m2, 
age = 32.24 ± 6.37 years, 43% African American). The dis-
tribution of type I, IIa, and IIx myofibers was determined 
via immunohistochemistry performed on frozen cross-sec-
tions. Pearson correlation analyses were performed to assess 
associations between myofiber composition, SI, arterial 
elasticity, blood pressure, and blood lipid concentrations.
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risk factors and often coexist in individuals at risk for car-
diometabolic diseases. Therefore, it is critical to understand 
and identify factors that are associated with the underlying 
pathophysiological processes that lead to chronic cardio-
metabolic conditions.

It has become increasingly clear that skeletal mus-
cle function is important for many aspects of cardio-
metabolic health, including insulin-stimulated glucose 
disposal, vascular function, and lipid metabolism (Stu-
art et  al. 2013; Laughlin et  al. 2015; Olver et  al. 2015). 
Skeletal muscle is a heterogeneous tissue consisting of 
three general phenotypes, which include oxidative type I 
myofibers (type I), oxidative/glycolytic type IIa myofib-
ers (IIa), and glycolytic type IIx myofibers (IIx), that 
differ drastically in function, mitochondrial density, and 
metabolic properties. It is well known that type I myofib-
ers have higher concentrations of mitochondria, greater 
oxidative phosphorylation capacity, and capillary density 
compared to type II myofibers that are characterized by 
low mitochondrial density, low oxidative phosphorylation 
capacity, and low capillary density (Zierath and Hawley 
2004). The role of skeletal muscle fiber type and the eti-
ology of cardiometabolic diseases have yet to be clearly 
characterized; however, several studies have shown fewer 
percentage of type I myofibers in obese and type 2 dia-
betic individuals compared to lean individuals, suggest-
ing a potential link between fiber type and metabolic 
health. Further support comes from both rodent stud-
ies, which have shown an increased insulin-stimulated 
glucose uptake in type I myofibers compared to type II 
myofibers (James et  al. 1985; Ploug et  al. 1987), and 
human studies performed in  vitro (Zierath et  al. 1996) 
and in  vivo (Stuart et  al. 2013; Oberbach et  al. 2006) 
which have shown positive correlations between type I 
myofibers and whole-body insulin sensitivity and greater 
insulin-stimulated glucose uptake in type I myofibers. 
Furthermore, Albers et  al. recently showed a greater 
capacity for glucose uptake, phosphorylation and oxida-
tion, and glycogen synthesis in human type I myofibers 
compared to type II myofibers (Albers et al. 2015). It is 
therefore conceivable that myofiber composition may 
impact the risk and development of insulin resistance and 
type 2 diabetes.

Similar to the relationship between myofiber type dis-
tribution and insulin sensitivity, previous investigations 
have also demonstrated a negative correlation between 
mean arterial blood pressure and the percentage of type I 
myofibers (Juhlin-Dannfelt et al. 1979), and a trend toward 
greater percentage of type II myofibers in individuals with 
hypertension compared to normotensive controls (Frisk-
Holmberg et al. 1983). Thus, there is considerable evidence 
that skeletal muscle myofiber composition may be linked to 
blood pressure regulation. Hypertension is considered to be 

one of the most common modifiable risk factors to reduce 
mortality; however, the etiology of hypertension is com-
plex and it has been shown that many hypertension-related 
cardiovascular diseases manifest well before clinically 
diagnosed hypertension occurs (van Bussel et  al. 2011). 
Endothelial dysfunction and reduced arterial elasticity are 
both independent predictors of coronary heart disease and 
stroke, and often present well before clinically diagnosed 
hypertension (blood pressure ≥140/90 mmHg) (van Bussel 
et al. 2011). To date, we are aware of no studies conducted 
in women and only one study in men that has examined 
associations between muscle myofiber composition and 
arterial stiffness (Rönnback et al. 2007). This study did not 
find any associations between myofiber type distribution 
with arterial stiffness or endothelial function (Groop et al. 
1991). However, several studies have shown inverse asso-
ciations between skeletal muscle mass and arterial stiffness 
and positive associations between skeletal muscle mass 
and blood pressure (Lee et al. 2014; Kim et al. 2011; Ochi 
et  al. 2010; Loenneke et  al. 2013), suggesting a potential 
link between skeletal muscle and regulation of vascular 
hemodynamics.

Skeletal muscle is a critical determinant for overall 
physical function; however, it is also associated with the 
risk of many pathological states. Therefore, the purpose 
of this study was to identify associations between skeletal 
muscle myofiber distribution with insulin sensitivity, mul-
tiple hemodynamic and arterial elasticity measures, and 
blood lipids in a cohort of healthy premenopausal women. 
Given that previous research has speculated that higher per-
centage of type II fibers may be a predisposing factor to 
cardiometabolic disease, we hypothesized that type I fibers 
would be associated with greater insulin sensitivity, more 
favorable hemodynamic and arterial elasticity measures, 
and lower blood lipids, and that type IIa and IIx myofib-
ers would be associated with lower insulin sensitivity, less 
favorable hemodynamic and arterial elasticity measures, 
and higher blood lipids.

Methods

Participants

This cross-sectional study consisted of 16 pre-
menopausal women (BMI  =  27.62  ±  4.71  kg/m2, 
age =  32.24 ±  6.37  years). Participants reported normal 
menstrual cycles and were not taking oral contraceptives 
or any medications known to influence glucose metabo-
lism, blood pressure, or lipid metabolism. Additional inclu-
sion criteria were normotensive, non-smoker, sedentary 
as defined by participating in any exercise-related activi-
ties less than one time per week, and normoglycemic as 
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evaluated by postprandial glucose response to a 75 g oral 
glucose tolerance test. All participants provided written 
informed consent prior to inclusion. All testing was con-
ducted during the follicular phase of the menstrual cycle. 
The study was approved by the Institutional Review 
Board for Human Use at the University of Alabama at 
Birmingham.

Body composition measurements

Total and regional body composition were determined 
by dual-energy X-ray absorptiometry (iDXA, GE-Lunar, 
Madison, WI, USA). Participants wore light clothing and 
remained supine in compliance with normal testing pro-
cedures. Scans were analyzed with ADULT software, 
LUNAR-DPX-L version 1,33 (GE Medical Systems 
Lunar).

Myofiber type distribution

Muscle tissue specimens were collected from the vastus 
lateralis by percutaneous needle biopsy under local anes-
thesia (1% lidocaine) with a 5-mm Bergstrom-type biopsy 
needle using established procedures (Bamman et al. 2004) 
in the Clinical Research Unit (CRU) of the UAB Center for 
Clinical and Translational Science. All visible connective 
and adipose tissues were removed from the biopsy samples 
with the aid of a dissecting microscope. Portions used for 
immunohistochemistry were mounted cross-sectionally on 
cork in optimum cutting temperature mounting medium 
mixed with tragacanth gum, frozen in liquid nitrogen-
cooled isopentane, and stored at −80 °C. The relative dis-
tribution of myofiber types I, IIa, and IIx were determined 
by myosin heavy chain immunohistochemistry using our 
well-established protocol (Kim et al. 2005).

Arterial elasticity evaluation

Hemodynamic and arterial elasticity variables; systolic 
(SBP), diastolic (DBP), and mean (MAP) arterial blood 
pressures, pulse rate, large and small artery elasticity 
(LAE) (SAE), total vascular impedance (TVI) were meas-
ured using non-invasive pulse wave analysis (HDI/Pulse 
Wave TM CR-2000, Hypertension Diagnostics, Eagan, 
MN). The arterial pulse wave analysis of the radial artery 
is based on a modified Windkessel model that allows evalu-
ation of the large conduit arteries and the small microcir-
culatory arteries (Cohn et  al. 1995). Briefly, with partici-
pants in the seated position a solid-state pressure transducer 
array (tonometer) was placed over the radial artery of the 
dominant arm to record the pulse contour. The waveform 
was calibrated by the oscillometric method. Once a stable 
measurement was achieved, a 30-s analog tracing of the 

radial waveform was digitized at 200 samples per second. 
Before, during, and after the waveform assessment, an 
automated oscillatory blood pressure measurement was 
taken on the contra-lateral arm. The first maximum wave-
form observed represents the action of the arteries follow-
ing cardiac ejection and reflects the large arteries, whereas 
the second rebound wave reflects compliance of the smaller 
arteries. TVI was determined from the modified Windkes-
sel model evaluated at the frequency of the measured heart 
rate (Hales 1964).

Hyperinsulinemic euglycemic clamp

The clamp study was performed at the UAB Clinical 
Research Unit (CRU). Subjects were admitted to the CRU 
at 8:00 AM after an overnight fast. A catheter was placed 
in the antecubital space of the right arm for repeated blood 
draws, The IV line was kept open with infusion of normal 
saline (0.9% NaCl; pH 7.4). A second catheter with ports 
for insulin and glucose was inserted into the antecubital 
space of the left arm. Continuous infusion of human regu-
lar insulin (Humulin R; Eli Lilly, Indianapolis, IN, USA) 
was started at a rate of 40 mU m−2 min−1 and continued for 
120 min. Plasma glucose was measured with a YSI glucose 
analyzer at 5-min intervals throughout the clamp. Eugly-
cemia was targeted for 90 mg/dL by variable infusion of 
20% d-glucose. Insulin-stimulated glucose disposal rates 
(M-value) were calculated as the average value during the 
final 30  min of insulin infusion. M-value is the glucose 
infusion rate per kg body weight per minute (mg/kg/min). 
The glucose clamp-derived index of insulin sensitivity 
(SI) was defined as M/(G × ∆I) corrected for body weight 
(where M is the steady-state blood glucose concentrations 
(milligrams per dL), and ∆I is the difference between basal 
and steady-state plasma insulin concentrations (microunits 
per mL).

Laboratory analyses

Assays were performed in the DRC human physiology 
core. Serum glucose, total cholesterol, high density lipo-
protein, and triglycerides were measured using an auto-
mated glucose analyzer (Sirrus analyzer; Stanbio Labora-
tory, Boerne, TX, USA), and serum insulin was measured 
using immunofluorescent methods with an AIA-600 II 
analyzer (TOSOH Bioscience, South San Francisco, CA, 
USA) as per manufacturers’ instructions. LDL was calcu-
lated using the Friedewald formula.

Statistical analyses

Descriptive characteristics are reported as means and stand-
ard deviations. All variables were evaluated for residual 
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normality and logarithmic transformations were performed 
when appropriate. Simple Pearson correlations were used 
to examine associations between myofiber types I, IIa, IIx 
with SI, arterial elasticity measures, and blood lipids. Par-
tial correlations, controlling for the confounding effects 
of percent body fat, were also performed for each vari-
able. For all analyses, a P value less than 0.05 was deemed 
statistically significant. All data were analyzed using the 
Statistical Package for the Social Sciences (SPSS, version 
23.0, Chicago, IL, USA).

Results

Descriptive statistics are presented in Table  1. Mus-
cle myofiber distribution is presented in Fig.  1. Pearson 
correlations analyses revealed a significant association 
between SI and % type I myofibers and a negative cor-
relation between SI and % type IIx myofibers (P  <  0.05) 
(Fig.  2). No significant correlation was observed between 
SI and % type IIa myofibers. Additionally, partial correla-
tion analyses revealed no differences for any of the results 
when adjusting for percent body fat (type I myofibers and 
SI, R = 0.769 and P = 0.001) (type IIx myofibers and SI, 
R = −0.608 and P = 0.021). A significant negative correla-
tion was observed between type I myofibers and SBP, DBP, 
and MAP (P  <  0.05) (Fig.  3). Additionally, a significant 
positive association was observed between type IIx myofib-
ers and SBP, MAP, and LDL cholesterol, and a significant 
negative association was found between type IIx myofib-
ers and LAE (P < 0.05) (Fig. 4). No significant associations 
were observed between type IIa myofibers and any of the 
variables measured.

Pearson correlation analyses also revealed several cor-
relations between vascular hemodynamic measures, blood 
lipids, and SI (Table  2). SI was negatively correlated 
with MAP and TVI, and positively correlated with SAE 
(P  <  0.05). LAE was negatively correlated LDL choles-
terol, SBP, MAP, and TVI (P < 0.05).

Discussion

The purpose of this study was to identify associations of 
skeletal muscle myofiber distribution with insulin sensi-
tivity, multiple hemodynamic and arterial elasticity meas-
ures, and blood lipids in a cohort of healthy premenopausal 
women. The main findings were that: (a) type I myofibers 
were associated with greater SI and lower blood pressure 
measures; (b) type IIx myofibers were associated with 
lower SI and LAE, and higher blood pressure and LDL 

cholesterol measures and (c) SI was associated with health-
ier measures of vascular hemodynamics, and greater LAE 
was associated with lower LDL cholesterol and lower MAP, 
SBP, and TVI. These observations confirm and extend pre-
vious investigations that have demonstrated a possible role 
of myofiber composition and cardiometabolic disease risk 
factors (James et al. 1985; Ploug et al. 1987; Albers et al. 
2015; Juhlin-Dannfelt et  al. 1979; Frisk-Holmberg et  al. 
1983). Our data revealed distinct differences in the poten-
tial role of skeletal muscle myofiber type and cardiometa-
bolic health. We showed that type I myofibers, character-
ized by higher oxidative capacity and capillary density, 
are associated with a healthier cardiometabolic phenotype, 
whereas type IIx myofibers were associated with a less 
healthy cardiometabolic phenotype. To our knowledge, this 
is also the first study to show an association between type 
IIx myofibers and lower LAE and higher LDL cholesterol, 
demonstrating a potential link between myofiber compo-
sition with vascular remodeling and LDL concentrations. 
These observations suggest that myofiber type composi-
tion is implicated in numerous health outcomes and may 
perform a larger role in regulating pathophysiological pro-
cesses related to health than previously considered.

Table 1   Subject characteristics (mean ± SD)

SBP systolic blood pressure, DBP diastolic blood pressure, MAP 
mean arterial pressure, LAE large artery elasticity, SAE small artery 
elasticity, TVI total vascular impedance

Age (years) 32.2 ± 6.4

Body weight (kg) 75.2 ± 12.9

BMI (kg/m2) 27.6 ± 4.7

Body fat (%) 44.1 ± 6.4

Cholesterol (mg/dL) 180.6 ± 37.3

Triglycerides (mg/dL) 100.4 ± 41.6

HDL (mg/dL) 62.9 ± 18.6

LDL (mg/dL) 97.6 ± 25

Fasting glucose (mg/dl) 89.3 ± 9.5

Fasting insulin (µIU/mL) 9.9 ± 5.9

Insulin sensitivity (10−4 dL kg−1 min−1/(µU/mL)) 8.9 ± 5.2

Type I myofiber (%) 31.6 ± 10.5

Type IIa myofiber (%) 44.2 ± 10.3

Type IIx myofiber (%) 24.3 ± 10.9

SBP (mmHg) 120.9 ± 10.5

DBP (mmHg) 72.7 ± 7.8

MAP (mmHg) 90 ± 9.7

Pulse rate (BPM) 76.7 ± 11.1

LAE (mL/mmHg × 10) 14.9 ± 5.0

SAE (mL/mmHg × 100) 6.8 ± 1.9

TVI (dyne/s/cm−5) 119.4 ± 29.8
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Type 2 diabetes and insulin resistance are associated 
with both micro- and macro-vascular complications that can 
result in coronary artery diseases, strokes, and peripheral 
vascular diseases (Laughlin et al. 2015; Olver et al. 2015). 
Elevated blood pressure is commonly observed in individu-
als with insulin resistance (Rocchini 1991; Ferrannini et al. 
1987; Pollare et al. 1990). Hypertension, insulin resistance, 
and dyslipidemia are all a part of a constellation of patho-
physiological risk factors that are linked to cardiometabolic 
diseases (Reaven 1988; Ritchie and Connell 2007). The 
clustering of these risk factors has been well described, 
such that individuals with one risk factor often present 
with at least one or more of another risk factor (Ritchie and 
Connell 2007). Thus, identifying common links between 
these risk factors is extremely important. Our data sup-
port these observations and add to the existing data as we 
found associations between insulin sensitivity, multiple 

vascular hemodynamic measures, and LDL cholesterol. In 
addition to these observations, several early investigations 
have implicated the possibility that type II fibers may be a 
predisposing risk factor for cardiovascular diseases (Juhlin-
Dannfelt et al. 1979; Henriksen et al. 1990; Bassett 1994). 
Consistent with these studies, we also found a link between 
type IIx myofibers and adverse cardiometabolic health out-
comes. These findings are important as it has been previ-
ously shown in a relatively large sample size (n = 400) that 
about 25% of North American Caucasian men and women 
has less than 35% type I myofibers and greater than 65% of 
type II myofibers (Simoneau and Bouchard 1989), demon-
strating the importance of understanding the link between 
myofiber composition and overall health. Additionally, 
some studies have shown Black males to have lower type 
I myofiber distribution compared to Caucasian males (Ama 
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Fig. 1   Relative distribution of myofibers by type (I, IIa, and IIx), and 
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et al. 1986; Nielsen and Christensen 2011), thus it is pos-
sible that the implications linking myofiber distribution 
and cardiometabolic health may be even more important in 
African Americans and may possibly explain some of the 
greater risk of developing chronic cardiometabolic diseases 
in this population. However, it is also important to note 
that not all studies have demonstrated these associations as 
Duey et al. (1997) did not find any significant differences 
between type I myofiber distribution in college-aged Black 
and White males (Duey et al. 1997). Furthermore, the study 
conducted by Ama et al. (1986) compared African Univer-
sity students from Africa to Caucasian students in Canada, 
thus genetic admixture from this study was likely signifi-
cantly different from African Americans (Ama et al. 1986). 
Thus, the discrepant findings regarding myofiber distribu-
tion between African American’s and Caucasian‘s may be 
explained by differences in gender, genetic admixture, and 
age differences between these studies.

One possible mechanism that could explain the cluster-
ing of these cardiometabolic risk factors with myofiber type 
is differences in capillary density between type I myofib-
ers and type II myofibers (Lillioja et  al. 1987). Our find-
ings are supportive of this as we demonstrate relationships 
between type IIx myofiber with arterial elasticity, SI, and 
blood pressure as well as correlations between arterial elas-
ticity with SI and blood pressure. It is possible that higher 
capillary density in type I myofibers may improve vascular 
health by reducing vascular resistance and blood pressure. 
Additionally, greater capillary density and arterial health 
have also been shown to improve transport of glucose and 
insulin to target tissues and improve insulin sensitivity (Lil-
lioja et al. 1987). Thus, it is possible that the relationship 
between insulin sensitivity, arterial elasticity and myofiber 
type observed in this study is at least in some part due to 
differences in vascularity observed within type I and IIx 
myofibers.
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Additional support for a role of myofiber distribution 
and metabolic health risk comes from studies assessing 
neurological injuries such as spinal cord injury (SCI), in 
which rapid unloading has been shown to decrease fiber 
size, increase type IIx myofibers, and lower mitochondrial 

content in the first 6 months following injury (Grimby et al. 
1976; Martin et  al. 1992; Castro et  al. 1999). This rapid 
loss of mobility, extreme muscle atrophy, and type IIx fiber 
shift leads to metabolic abnormalities and increased risk for 
development of cardiovascular diseases at an earlier age 
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in individuals with SCI compared to able bodied counter-
parts (Szlachcic et al. 2014). Furthermore, impairments in 
glucose tolerance and lower GLUT4 protein content have 
also been shown in individuals with SCI compared with 
untrained able bodied controls (Yarar-Fisher et  al. 2013). 
Thus, growing evidence demonstrates an important role of 
myofiber distribution and cardiometabolic health in both 
healthy individuals, as observed in our study, and individu-
als that have existing abnormal cardiometabolic health 
conditions.

Last, this is the first study to our knowledge demonstrat-
ing an association between type IIx myofiber content and 
concentration of LDL cholesterol. An association between 
elevated LDL cholesterol, blood pressure, and arterial dis-
ease was observed over 30 years ago (Martin et al. 1986); 
however, it is now believed that the primary factor that ini-
tiates the development of atherosclerosis is the oxidative 
modification of LDL cholesterol (Berliner and Heinecke 
1996). Furthermore, mitochondrial dysfunction has been 
shown to be one of the earliest and most prominent features 
of hypercholesterolemia (Madamanchi and Runge 2007). 
It well known that type IIx myofibers are characterized 
by fewer mitochondria, lower oxidative phosphorylation 
capacity, and lower capillary density (Zierath and Hawley 
2004). However, more recently it has also been shown that 
type II fibers (Quindry et  al. 2011) and fast-twitch fiber 
muscle groups (Chang et  al. 2014) may be more closely 
linked to oxidative stress. Thus, it is possible that the 
observed associations between myofiber type, insulin sen-
sitivity, blood pressure and arterial elasticity, and LDL cho-
lesterol are mediated by differences between mitochondria 
content, oxidative capacity, and reactive oxygen species 
production between type I and IIx myofibers. Future stud-
ies should be performed to test these hypotheses.

Strengths of this study included recruitment of a homog-
enous cohort of healthy premenopausal women with no 
known cardiovascular or metabolic complications. Further 
strengths included robust measures of hemodynamic vari-
ables in conjunction with the hyperinsulinemic euglycemic 
clamp technique to assess insulin sensitivity, and muscle 
biopsies with immunohistochemical analysis to determine 
myofiber type. Limitations in this study include the cross-
sectional study design and the fact that it only included a 
small sample of women. Thus, these results represent a 
relatively homogenous sample population and may not be 
generalized to patients with vascular disease.

Future research is needed to determine the precise 
mechanisms in which myofiber composition impacts the 
pathophysiology of impaired glucose and lipid metabo-
lism, as well as vascular dysfunction. Furthermore, studies 
utilizing interventions known to influence myofiber com-
position, such as exercise training, should be conducted to 
determine if myofiber shifts from IIx to IIa or increases in 
type I myofibers can protect against the development of 
adverse cardiometabolic health conditions.
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SBP 1 0.821 0.915 −0.511 −0.489 0.585

DBP 1 0.939 −0.380 −0.211 0.360
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