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Introduction

The energy cost of physical activity, as determined by body 
movement, is the most variable component of daily energy 
expenditure (Starling 2002). Habitual physical activity 
shows large variations from day to day due to day-to-day 
variations in activity behaviour of a subject. Additionally, 
activity behaviour can be affected by exercise training, for 
instance by compensatory activities (Melanson et al. 2013). 
Longer-term variations in physical activity within subjects 
and differences in activity patterns between subjects are 
affected by body mass. Body mass determines the energy 
costs of performing a physical task and therefore the ques-
tion is whether body mass is a determinant of the activity 
pattern of a subject. Similarly, energy availability is a deter-
minant of physical performance and therefore energy bal-
ance may be a potential determinant of the activity pattern as 
well. Underfeeding has been shown to have an unfavourable 
effect on free-living physical activity (Martin et  al. 2011). 
Finally, activity behaviour changes as a function of develop-
ment, during growth from childhood to adulthood, and with 
the general functional decline with subsequent ageing.

Insight into the effects of age, body mass and energy 
balance on daily physical activity facilitates the design 
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of intervention studies where body mass and energy bal-
ance are determinants of health and optimal perfor-
mance. To approach these research questions, analyses of 
daily physical activity in relation to age, body mass and 
energy balance are performed for studies where activity 
energy expenditure is derived from doubly labelled water-
assessed daily energy expenditure (Speakman 1997) and 
body movement is measured with accelerometers (Wester-
terp 2009).

The doubly labelled water method is considered the gold 
standard for measuring daily energy expenditure under 
field conditions (Shephard and Aoyagi 2012). It allows 
measuring energy expenditure in unrestrained individuals 
over a time interval of 1–4 weeks. Accelerometers provide 
additional information on body movement with regard to 
the amount and intensity over much shorter intervals, usu-
ally minutes, to assess activity patterns throughout days 
and weeks.

Methods of measuring daily physical activity

The indicated method for the measurement of activity 
energy expenditure is the doubly labelled water method 
for the measurement of daily energy expenditure in com-
bination with a measurement of resting energy expendi-
ture. Daily energy expenditure consists of three com-
ponents, resting energy expenditure, the energy cost of 
food processing or diet-induced thermogenesis and the 
energy cost of physical activity. Resting energy expendi-
ture is usually the largest component of daily energy 
expenditure and is mainly a function of body composition 
(Starling 2002). Diet-induced thermogenesis, depend-
ing on what and how much one eats, amounts to a fixed 
fraction of about 10 % of daily energy expenditure for a 
mixed diet consumed according to energy requirement 
(Westerterp 2004). Activity energy expenditure is calcu-
lated as 0.9 × daily energy expenditure − resting energy 
expenditure, where diet-induced energy expenditure is 
estimated as 10  % of daily energy expenditure. Alterna-
tively, the physical activity level is calculated as daily 
energy expenditure divided by resting energy expenditure: 
physical activity level  =  daily energy expenditure/rest-
ing energy expenditure (FAO/WHO/UNU 2004). Daily 
energy expenditure divided by resting energy expenditure 
adjusts for subject characteristics, resulting in a dimen-
sionless figure allowing for comparison of activity levels 
between subjects differing in body size and body compo-
sition. Analysis of measurements of 529 adult subjects 
shows that the intercept of the regression of daily energy 
expenditure on resting energy expenditure is not differ-
ent from zero (Fig. 1), confirming the utility of physical 

activity level for comparisons of physical activity (Speak-
man and Westerterp 2010).

The doubly labelled water method is the gold standard 
for the validation of field methods of assessing physical 
activity. The indicated method for the assessment of body 
movement in daily life is a doubly labelled water-validated 
accelerometer (Westerterp 2014). Accelerometers provide 
information on the total amount, the frequency, the inten-
sity and the duration of physical activity. Accelerometer-
assessed body movement allows further insight into these 
aspects of physical activity as determined by age, body 
mass and energy balance. Data included in the analyses are 
from studies in healthy subjects observed under daily living 
conditions over intervals of one or more weeks.

Effects of age and body mass on daily physical activity

Age and body mass are determinants of variation in activ-
ity-induced energy expenditure. Physical activity level is 
analysed in relation to growth and age by comparing young 
children and adults. Physical activity level in adults is ana-
lysed in relation to being underweight or overweight. Sub-
sequently, physical activity level is combined with data on 
accelerometer-assessed body movement, illustrating inter-
action between physical activity and body mass.

Body mass increases from 3 to 4  kg at birth to adult 
value of 60–70  kg. Doubly labelled water data on physi-
cal activity level in 1- to 18-year-olds were analysed by an 
FAO/WHO/UNU expert group (FAO/WHO/UNU 2004). 
Data from adult humans between 18 and 96  years of age 

0

5

10

15

20

25

D
ai

ly
 e

ne
rg

y 
ex

pe
nd

itu
re

 (M
J)

0 5 10 15

Resting energy expenditure (MJ/d)

Fig. 1   Daily energy expenditure plotted as a function of resting 
energy expenditure for 529 adult subjects with the extrapolated linear 
regression line (Speakman and Westerterp 2010)
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were recently compiled as well (Speakman and West-
erterp 2010). The physical activity level increased from 
an average of 1.4 at age 1 to 1.75 at age 15 (Fig.  2). On 
average, the physical activity level between ages of 18 and 
50–55  years averaged 1.75 in women and 1.84 in men. 
Above age 50–55 years, physical activity level was gener-
ally lower and declined to a value around 1.3 for both sexes 
in subjects aged 90–100 years. Thus, it seems that physical 
activity level is highest when adult body mass and muscle 
mass are reached. The decline after age 50 might be asso-
ciated with the age-related fat-free mass loss and fat mass 
gain, where at the same body mass one gets relatively fat-
ter and less muscular. Similarly, men with a lower body 
fat percentage have slightly higher physical activity level 
values than women with a higher body fat percentage. The 
data as compiled in Fig. 2 present the development of phys-
ical activity level with age for healthy subjects observed 
under daily living conditions, with a focus on growth and 
ageing. The development of physical activity level shows 

that physical activity is the highest in adults at the repro-
ductive age.

Most data for analysing physical activity level in relation 
to body mass are available for adults. Physical activity level 
can be compared between weight categories by adjusting 
weight for height with the body mass index (BMI), where 
body mass is divided by height squared: BMI = body mass/
height2 (kg/m2). Analysis of 319 measurements of physi-
cal activity level in adults aged 18–64  years showed that 
physical activity level was quite similar at different levels 
of BMI (Prentice et  al. 1996). A more recent analysis of 
366 measurements of physical activity level in adults aged 
18–50 years gave similar results (Westerterp and Speakman 
2008). The average physical activity level is around 1.80 
for all body mass index categories except the very highest 
(Fig. 3). The average physical activity level value for sub-
jects with a body mass index higher than 40 kg/m2, i.e., for 
subjects with morbid obesity, was 1.65 ± 0.24.

Daily energy expenditure increases with body mass as a 
function of fat-free mass (Webb 1981; Schoeller and Fjeld 
1991). Similarity of physical activity level values for sub-
jects in different weight categories implies that activity 
energy expenditure is a function of fat-free mass as well. 
Thus, activity energy expenditure/kg body mass is nega-
tively related to body fat percentage with consequences 
for body movement. In a comparative study in obese 
subjects and non-obese controls with the same fat-free 
mass-adjusted activity energy expenditure, accelerometer-
assessed body movement was lower in obese subjects than 
in non-obese controls (Ekelund et al. 2002). Fatter subjects 
generally move less, because daily energy expenditure is 
not higher in proportion to the higher fat percentage and to 
the higher cost for weight-bearing activities.

For the same physical activity level, lean subjects can 
move more than fat subjects. Obese subjects walk slower 
than lean subjects (Kim et al. 2013). Obese subjects have 
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Fig. 2   Physical activity level for women and men with increasing 
age (FAO/WHO/UNU 2004; Speakman and Westerterp 2010)

Fig. 3   Physical activity level 
and body mass index (Wester-
terp and Speakman 2008)
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increased muscular strength, but reduced muscular endur-
ance. The 6-min walking distance decreases nearly linearly 
with increasing BMI (Pataky et al. 2014). Physical perfor-
mance seems to be already limited in subjects at the higher 
end of the normal range of BMI. In a study to prepare sub-
jects to run a half-marathon, 9 out of 32 subjects withdrew 
on being unable to keep up with the training programme 
(Westerterp et al. 1992). All dropouts had a BMI between 
23 and 26  kg/m2, i.e., above the group average, but not 
yet indicating that they were overweight (Fig. 4). A lower 
BMI facilitates physical capacity combined with the advan-
tage of a low body mass during weight-bearing activities. 
Extremely thin subjects, especially subjects with anorexia 
nervosa, tend to be excessively physically active (Kron 
et al. 1978; Falke et al. 1985). However, there seems to be a 
lower limit for physical performance and BMI as well. At a 
BMI below 17 kg/m2, subjects showed relatively low dura-
tion of moderate and high-intensity activities indicating a 
declining physical capacity (Bouten et al. 1996).

Energy balance and physical activity

There is day-to-day variation in energy balance through 
variation in food intake and physical activity. On a daily 
basis, food intake and energy expenditure do not correlate. 
However, the correlation between intake and expenditure 
improves considerably on a weekly basis (Edholm et  al. 
1955). Generally, days with a high physical activity are fol-
lowed by an increased intake with a lag time of 3–6 days 
(Champagne et al. 2013), resulting in energy balance on a 
weekly basis. Active subjects seem to compensate quicker 
for an activity-induced energy deficit than inactive individ-
uals (Rocha et  al. 2013). The effect of energy balance on 
physical activity can be derived from studies on overeating 
and energy restriction over intervals of one or more weeks.

Several studies estimated the effect of overfeeding on 
physical activity level (Westerterp 2010). Subjects were 
overfed with 20–100  % over 2–10  weeks. There does 
not seem to be an effect of a positive energy balance, as 
induced by overfeeding, on physical activity. Only mas-
sive overfeeding, doubling intake over 9  weeks, affected 
physical activity (Pasquet et  al. 1992). Then, physical 
activity level went down from 1.87 ± 0.12 to 1.45 ± 0.09 
(p < 0.001), activity energy expenditure decreased by 30 % 
and accelerometer-assessed body movement decreased by 
40 %.

Studies on energy restriction, generally in overweight 
and obese subjects, show little or no effect of underfeed-
ing on physical activity level (Westerterp 2013). However, 
a classical underfeeding study in normal weight subjects, 
the so-called Minnesota Experiment, showed a reduc-
tion of physical activity during long-term semi-starvation 

(Keys et al. 1950). The weight maintenance diet of young 
men was reduced to 50 % during 24 weeks. At the end of 
the 24-week interval, subjects reached a new energy bal-
ance where energy expenditure equalled energy intake. The 
largest reduction of energy expenditure could be attributed 
to decreased activity energy expenditure, mainly through 
a reduction of body movement (Fig. 5). A recent study on 
weight loss in overweight and obese subjects showed a 
weight loss-induced reduction in physical activity, recov-
ering during weight maintenance (Camps et  al. 2013a). 
The physical activity level and accelerometer-assessed 
body movement decreased in a period of energy restric-
tion and returned to baseline levels when energy balance 
was reached again during weight maintenance. Physical 
activity is affected by energy availability, where a negative 
energy balance induces a reduction of activity expenditure. 
Thus, optimal performance requires maintenance of energy 
balance.

Exercise training and energy balance

It has been suggested that modern inactive lifestyles are the 
predominant factor in the increasing prevalence of over-
weight and obesity (Prentice and Jebb 1995). They suggest, 
the physical activity level and thus energy needs should 
have declined faster than energy intake as encouraged by 
the increasing availability of highly palatable foods. How-
ever, analysis of doubly labelled water-assessed physi-
cal activity level for trends over time showed that activity 
energy expenditure did not decline over the same period 
that obesity rates increased, and daily energy expenditure 
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(Westerterp et al. 1992)
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of modern man is in line with energy expenditure in wild 
mammals (Westerterp and Speakman 2008). Additionally, 
a recent study showed that daily energy expenditure was 
similar for subjects with Western lifestyles and tradition-
ally living Hazda hunter–gatherers in a savannah-woodland 
environment in Northern Tanzania (Pontzer et  al. 2012). 
Therefore, it is unlikely that decreased expenditure has 
fuelled the obesity epidemic. Experimental studies on the 
effect of exercise on energy balance as reviewed below 
indicate that exercise hardly contributes to a diet-induced 
negative energy balance.

Weight loss achieved with exercise training appears to 
be modest and is typically less than 3 % of the initial body 
mass (Jakicic 2009). There is resistance to exercise-induced 
weight loss through compensatory behavioural adaptations 
like reduced non-training activity and increased energy 
intake (Melanson et al. 2013). Long-term studies on exer-
cise training show that the less-than-predicted weight loss 
mainly results from a compensatory increase in energy 
intake (Thomas et al. 2012). Regular exercise in previously 
sedentary subjects does not result in a negative compensa-
tory reduction in nonprescribed physical activity, regard-
less of the type of exercise (Turner et  al. 2010; Rangan 
et al. 2011). Exercise-induced reductions of nonprescribed 
physical activity is restricted to subjects at a higher age 
(Westerterp and Plasqui 2004), where initial physical activ-
ity level is already low as well (Fig. 2). Despite moderate 
exercise-induced weight loss, there are favourable exercise-
induced changes in body composition, especially in fatter 
subjects. In the study preparing subjects to run a half-mar-
athon, subjects with the highest BMI dropped out (Fig. 4). 
In the completers, women lost on average 2 kg body fat and 
gained 2 kg fat-free mass. The 12 men completing the train-
ing lost on average 4 kg body fat and gained 3 kg fat-free 
mass, where the loss of body fat was positively correlated 
with the initial percentage body fat (Westerterp et al. 1992). 
Aerobic training seems to be the optimal exercise mode 
for reducing body fat and resistance training for increasing 

fat-free mass. Thus, resistance training might even result 
in an increase in body mass (Willes et  al. 2012). Higher 
exercise doses do not necessarily imply a larger change in 
body mass or body composition. In overweight and obese 
subjects, a moderate dose of exercise induced a markedly 
greater negative energy balance than a higher dose (Rosen-
kilde et al. 2012).

Early reviews on the effect of exercise in combination 
with energy restriction on energy balance showed an exer-
cise programme in addition to an energy-restricted diet 
does not result in additional weight loss. Diet-only and 
diet-plus-exercise groups did not differ with respect to 
the amount of body mass lost or fat mass lost (Ballor and 
Poehlman 1994). Exercise provides some conservation of 
fat-free mass during weight loss by dieting, probably by 
maintaining glycogen and water (Garrow and Summer-
bell 1995). In a study randomizing overweight subjects to 
diet only, diet and endurance training or diet and resist-
ance training until BMI was less than 25 kg/m2, all groups 
had similar weight loss and length of time to reach target 
BMI (Del Corral et al. 2009). Diet adherence was a func-
tion of weight loss and adversely affected by severity of 
the negative energy balance. Another study showed non-
compliance to prescribed physical activity masking the 
effect of physical activity to further increase a diet-induced 
negative energy balance (DeLany et  al. 2014). Addition-
ally, weight loss induces metabolic adaptations including a 
decline in resting energy expenditure below the predicted 
values, based on the new body composition reached after 
weight loss (Camps et al. 2013b). Adding resistance train-
ing to an energy-restricted diet did not alter resting energy 
expenditure differently from a diet-only group (St-Onge 
et  al. 2013). Even vigorous exercise did not prevent the 
weight loss-induced decline in resting energy expenditure 
despite relative preservation of fat-free mass (Johannsen 
et al. 2012). In the long term, both diet-only and diet-plus-
exercise interventions are associated with weight regain. 
A meta-analysis of seven studies lasting 2 years or longer 

Fig. 5   The components of daily 
energy expenditure in MJ/d 
(left) and in per cent of daily 
energy expenditure (right), at 
baseline and after 24 weeks 
of semi-starvation (Keys et al. 
1950)
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showed a weight loss averaging 1.6 kg after a combination 
of energy restriction and increased physical activity, 1.1 kg 
greater than for diet only (Wu et al. 2009). It seems difficult 
to successfully lose weight after becoming overweight.

Physical activity and long‑term maintenance of energy 
balance

The body mass of adults is regulated at a constant level. 
One of the earliest longitudinal studies providing infor-
mation on the constancy of body mass is the Framing-
ham Study. A group of 5209 adults, 30–59  years of age 
and living in the town of Framingham at the start of the 
study in 1948, underwent every 2 years a medical exami-
nation including measurement of body mass for at least 
20  years unless prevented by illness or death. Nearly no 
one retained a constant body mass, but most people gained 
or lost between 5 and 10 kg over any part of the 20-year 
period in adult life (James 1985). A weight change of 1 kg/
year represents an energy balance within 30 MJ/year (Wes-
terterp 1995). Knowing that an adult has a daily energy 
turnover of 8–12 MJ under normal living conditions (Black 
et al. 1996), i.e., a mean energy turnover of 10 MJ/day or 
3650 MJ/year, the discrepancy is less than 1 %. In the last 
decades, the prevalence of being overweight and obesity 
has increased worldwide. Analysis of doubly labelled water 
measurements of daily energy expenditure as available 
over the last decades suggests that physical activity level 
did not decline over the time obesity rates went up (Wes-
terterp and Speakman 2008). The relation between daily 
energy expenditure and body mass suggests that increase in 
energy intake has driven the increase in body mass (Swin-
burn et al. 2009).

A neutral or slightly positive energy balance results in 
the maintenance of fat-free mass during midlife. As stated 
in the section on body mass and physical activity, physi-
cal activity level is highest when adult body mass and 
muscle mass are reached. The decline in physical activity 
level after age 50 does not seem to cause the age-related 
decline in fat-free mass loss and fat mass gain, whereas at 
the same body mass one gets relatively fatter and less mus-
cular. Ageing is associated with the loss of fat-free mass, 
even in weight-stable subjects remaining physically active 
(Hughes et  al. 2002). There is no relation between age-
adjusted physical activity level and fat-free mass (Speak-
man and Westerterp 2010), and physical activity does not 
seem to alter the trajectory of fat-free mass change in later 
life (Manini et  al. 2009). Functional decline at later age 
seems to be inevitable.

A physically active lifestyle has consequences for the 
maintenance of energy balance as reflected in the fat store 
of the body. A physically active lifestyle inevitably results 

in a larger decrease of physical activity level at later age 
than a sedentary lifestyle. The change to a lower physi-
cal activity level does not induce an equivalent reduction 
in energy intake. Varying physical activity level from 1.8 
to 1.4 over 7  days was not associated with a change of 
energy intake and there was no tendency for energy intake 
to drop as the sedentariness progressed (Stubbs et al. 2004). 
Thus, the reduction of physical activity level resulted in a 
positive energy balance, most of which was stored as fat. 
Adults observed at an age of 27 ±  5  years with a physi-
cal activity level of 1.81 ± 0.16 showed a significant reduc-
tion of the physical activity level to 1.75  ±  0.11 when 
observed 11 ± 4 years later. There was a significant asso-
ciation between the change in physical activity level and 
the change in body fat, where a high initial activity level 
was predictive for a higher fat gain (Westerterp and Plasqui 
2009).

Discussion and conclusions

Physical activity level is highest when adult body mass and 
muscle mass is reached. The decline after age 50 might 
be associated with the age-related fat-free mass loss and 
fat mass gain, whereas at the same body mass one gets 
relatively fatter and less muscular. Fatter subjects gener-
ally move less because activity energy expenditure is not 
higher in proportion to the higher fat mass and thus the 
higher costs for weight-bearing activities. A lower fat mass, 
and thus a relatively high fat-free mass, facilitates physi-
cal capacity with the advantage of a low body mass during 
weight-bearing activities. A positive energy balance does 
not seem to affect physical activity-induced energy expend-
iture, while a negative energy balance induces a reduction 
in body movement as well as in activity energy expendi-
ture. Thus, optimal performance requires maintenance of 
energy balance. Energy balance is primarily a function of 
energy intake. Exercise programs generally do not result in 
weight loss because of a compensatory increase of intake. 
Eating less is the most effective method for preventing 
weight gain, despite the decrease in physical activity at a 
negative energy balance.

The low physical activity level in young children can 
be explained by growth. In young children, resting energy 
expenditure is relatively high while muscle mass and other 
body components are growing. Young children sleep most 
of the day, and as they grow older they sleep less and spend 
more time on physical activities, resulting in higher physi-
cal activity level. Between age 15 and 20, adult body mass 
is reached and physical activity level reaches an adult 
value as well. The increase of physical activity level dur-
ing growth was explained by the increase in body mass, 
because in children and adolescents there was no relation 
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between weight-adjusted activity energy expenditure 
(activity energy expenditure/kg) and age (Hoos et al. 2003). 
A low physical activity level value in young children does 
not necessarily imply a low body movement. A small body 
requires less energy to move around.

Normal growth is positively associated with physical 
activity level. Excess growth as body fat, resulting in over-
weight and obesity, is not associated with a change in physi-
cal activity level. Overweight and obese subjects generally 
have similar activity energy expenditure while metabolic 
costs are higher. Fatter children are already less moderate to 
vigorous physically active compared to normal weight chil-
dren (Haerens et  al. 2007). They perform less on exercise 
tests and participate less in sports activities. Overweight and 
obesity negatively affect gait through lower speed, shorter 
strides and increased step width, resulting in higher cost of 
walking (Peyrot et al. 2009). Obese adolescents showed an 
improvement of walking economy after weight loss (Peyrot 
et al. 2012). Overweight and obese subjects can do less at a 
similar activity energy expenditure, and loss of excess body 
fat is the indicated approach to improve activity behaviour.

Body fat gain and body fat loss are a function of energy 
balance, where energy balance is primarily a function of 
energy intake (Westerterp 2010). Eating less is the most 
effective method for preventing weight gain. Fatness leads 
to inactivity, but inactivity does not lead to fatness (Metcalf 
et  al. 2011). There is little evidence that more physically 
active subjects gain less excess weight than more sedentary 
subjects (Cook and Schoeller 2011). Eating less is the most 
effective method for preventing weight gain, despite the 
decrease in physical activity at a negative energy balance.

In conclusion, activity energy expenditure as a frac-
tion of daily energy expenditure is similar for lean, over-
weight and obese subjects. Fatter subjects generally move 
less, because daily energy expenditure and activity energy 
expenditure are a function of the fat-free mass and not 
higher in proportion to the higher cost for weight-bearing 
activities in subjects with a higher fat mass. Maintenance of 
physical activity and physical performance requires main-
tenance of energy balance, where energy balance deter-
mines physical activity rather than physical activity affect-
ing energy balance.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s) 
and the source are credited.
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