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blood glucose control during exercise by increasing glyco-
gen stores and up-regulating enzymes involved in gluconeo-
genesis and carbohydrate metabolism. Resistance to oxidant 
stress is generally increased by training. Lipogenic enzymes 
are down-regulated, and lipid metabolism is augmented. 
Modulations of insulin, insulin-like growth factor, gluca-
gon and interleukin-6 may trigger the adaptive responses to 
training. Cross-sectional and longitudinal studies show that 
regular exercise can reduce hepatic fat, but the effect on cir-
culating aminotransferases is unclear and the modality and 
dose of physical activity optimizing health benefits need 
clarification.
Conclusions Regular moderate physical activity enhances 
liver health. Adverse functional changes can develop if 
habitual activity is inadequate, and extremely prolonged 
competitive exercise may also be harmful, particularly 
under harsh environmental conditions.

Keywords Diabetes mellitus · Fatty liver ·  
Hepatic blood flow · Hepatic clearance · Metabolic 
syndrome · Obesity · Oxidative stress · Steatosis ·  
Steato-hepatitis · Ultra-marathons

Abbreviations
ACC  Acetyl-coa carboxylase
ADP  Adenosine diphosphate
AKT  Protein kinase B
ALT  Alanine transaminase
AMP  Adenosine monophosphate
AMPK  Adenosine monophosphate kinase
ARFRP1  ADP-ribosylation factor-related protein 1
AST  Aspartate transaminase
ATP  Adenosine triphosphate
BCKDH  Branched-chain alpha-ketoacid 

dehydrogenase

Abstract 
Purpose To review the responses of the liver to acute and 
chronic physical activity and to summarize relationships 
between physical activity and liver health.
Methods A systematic search of HealthStar/Ovid from 
1975 through June of 2013, supplemented by articles from 
other sources.
Results 351 of 8,010 articles identified by HealthStar/Ovid 
were supplemented by 92 other papers; after focussing, 
the review was reduced to 435 citations. Prolonged acute 
exercise reduces hepatic blood flow, stimulating hepatic 
glycogenolysis, gluconeogenesis and synthesis of some 
proteins; however, lipid metabolism shows little change. 
Glutathione depletion suggests oxidative stress. Enzymes 
affecting carbohydrate metabolism are up-regulated, and 
lipogenic enzymes are down-regulated. The main triggers 
are humoral, but hepatic afferent nerves, cytokines, reactive 
oxygen species, and changes in hepatic blood flow may all 
play some role. Regular aerobic exercise training improves 
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cAMP  Cyclic adenosine monophosphate
CK  Cytokeratin
CoA  Coenzyme A
CT  Computerized tomography
DNA  Desoxyribonucleic acid
eIF2  Eukaryotic initiation factor 2
ERK  Extracellular signal-regulated kinase
FFA  Free fatty acid
GGT  Gamma glutamyl transferase
GLUT-2  Glucose-transporter-2
G protein  Guanine-nucleotide binding protein
GTP  Guanosine triphosphate
HAD  Β-hydroxyacyl-dehydrogenase
HDL-c  High-density lipoprotein cholesterol
HISS  Hepatic insulin sensitizing substance
HMG-CoA  Hydroxymethylglutaryl-CoA
HSP  Heat shock protein
IGF-1  Insulin-like growth factor-1
IGFBP  Insulin-like growth factor binding protein
IL  Interleukin
IMTG  Intramyocellular triglyceride
JAK  Janus kinase
JNK  c-jun N-terminal kinase
LDH  Lactate dehydrogenase
MAPK  Mitogen-activated protein kinase
MDA  Malondialdehyde
mRNA  Messenger ribonucleic acid
NAFLD  Non-alcoholic fatty liver disease
NF-κB  Nuclear factor kappa-B
NOx  Mononitrogen oxides
PECPK  Phosphoenolpyruvate carboxykinase
PERK  Protein-kinase like endoplasmic reticular 

kinase
SCD-1  Stearoyl-CoA desaturase-1
sFasL  Soluble Fas ligand
SREBP-1c  Regulatory element-binding protein-1c
STAT  Signal transducer and activator of 

transcription
TRB3  Tribbles-related protein 3
VLDL  Very low density lipoprotein triglycerides
V̇O2max  Maximal oxygen intake

Introduction

The liver is a major body organ that plays a central role in 
the regulation of carbohydrate and lipid stores, and ensures 
an adequate supply of metabolites for both vigorous physi-
cal activity and the synthesis of muscle and brain tissue 
(Wasserman and Cherrington 1991; Kjaer 1998; Wah-
ren and Ekberg 2007; Fritsche et al. 2008). It also plays a 
vital role in metabolizing and/or excreting many unwanted 

substances from the circulation. However, until recently 
there has been a relative dearth of literature describing the 
effects of physical activity upon the liver.

Interest in this question has arisen from the understand-
ing that hepatic fatty infiltration (fatty liver) is indepen-
dently associated with the metabolic syndrome, cardio-
vascular disease and type 2 diabetes mellitus, and from 
emerging evidence of an inverse association between 
physical activity and the risk of developing fatty liver. The 
latter topic has been the subject of other reviews, although 
with five exceptions (Eslami et al. 2009; Socha et al. 2009; 
Thoma et al. 2012; Keating et al. 2012; Musso et al. 2012), 
these have been unstructured. The contribution of physi-
cal inactivity to the development of fatty liver has been 
commonly acknowledged, and many authors have rec-
ommended exercise programmes or an increase of habit-
ual activity as one element in therapy for this pathology 
(Table 1). Historically, this reflected a widespread view 
that lifestyle therapy, including regular exercise, could 
moderate fatty liver by assisting in weight loss, but more 
recently there has been a growing perception that regular 
physical activity in itself can exert beneficial effects upon 
the liver.

Much less is known about the homeostatic role of the 
liver during acute and chronic physical activity, even in 
healthy individuals. Available human studies have generally 
documented positive effects of acute and chronic exercise 
on liver glucose homeostasis and overall benefits of exercise 
training upon lipids and lipoprotein metabolism, including a 
reduction in hepatic fat infiltration (steatosis). These tissue-
level observations have been amplified by rodent investiga-
tions showing an association between inadequate habitual 
physical activity and a down-regulation of the key hepatic 
enzymes associated with glucose and fat metabolism.

The present review examines gross and cellular 
responses of the liver to both acute and chronic physical 
activity, spanning the spectrum from physical inactivity to 
large volumes of vigorous exercise. The primary intention 
is to compile the collective research (from rodent to human, 
and tissue-level to molecular) concerning the acute and 
chronic effects of physical activity upon the healthy liver, 
in order to characterize the typical physiological responses 
of the liver to exercise. The review includes exercise-
induced effects on hepatic blood flow and lipid and protein 
metabolism, with particular emphasis upon the interactions 
between exercise and glucose homeostasis, the molecular 
changes underlying these interactions, and their poten-
tial triggers. Secondary goals are to examine the patterns 
of regular physical activity associated with maintenance 
of normal hepatic function, and to document relationships 
between inadequate habitual physical activity and abnor-
malities of hepatic function.
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Search techniques and classification of physical activity

The data base of HealthStar/Ovid was scanned from 1975 
through June of 2013, using the terms exercise, exer-
cise therapy, exercise training, activity, motor activity and 
physical activity vs. liver, liver cirrhosis, liver disease, fatty 
liver, liver failure, liver neoplasms, liver regeneration and 
liver transplants. This search yielded 8,010 hits. All arti-
cles that included a full abstract were examined, and 351 
items that were specifically designed to examine the effects 
of acute or chronic physical activity upon the liver were 
included. This initial database was supplemented with 92 
articles gleaned from reference lists and the authors’ own 
extensive personal files; 8 reports were eliminated with a 
subsequent focusing of the review to exclude studies of the 
gall bladder and biliary tract, thus yielding a total of 435 
citations.

For the purpose of this review, we have adopted 
the international consensus definitions (Bouchard and 
Shephard 1994) of physical activity (any bodily move-
ment produced by the skeletal muscles and resulting in sig-
nificant energy expenditure) and exercise (physical activ-
ity undertaken purposefully, with the intent of developing 
physical or physiological condition (e.g. cycling, treadmill 
running or athletic competition in humans and wheel/tread-
mill running in rodents)). Semantic descriptions have arbi-
trarily classed the intensity of effort as: low (30–50 % of 
V̇O2max), moderate (50–65 % of V̇O2max), vigorous or stren-
uous (>65 % of V̇O2max), and exhausting (exercise pursued 
to exhaustion), based on the ranges previously described 
(Thompson 2010). Prolonged exercise is arbitrarily defined 
as bouts of 30 min or longer.

Acute effects of moderate endurance exercise

Hepatic blood flow

An acute bout of exercise transiently reduces blood flow 
to the liver. Estimates of hepatic blood flow in humans 
are commonly based upon indocyanine clearance. Studies 
using this technique have shown that blood flow to the liver 
and viscera decreases by up to 20 % during a brief period of 
vigorous effort, and even more if exercise is prolonged or is 
undertaken in a hot environment (Lundbergh and Strandell 
1974; Rowell et al. 1964; Rowell 1974; Rowell 1986; van 
Wijck et al. 2011). There appears to be a dose–response 
relationship, with hepatic blood flow decreasing progres-
sively as exercise intensity increases towards V̇O2max.

Elimination of indocyanine depends upon both hepatic 
blood flow and cellular function (Daemen et al. 1989). 
Thus, it has been argued that this method of measuring 
hepatic blood flow may be confounded by altered hepatic Ta
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metabolism during heavy exercise. Nevertheless, the trends 
indicated by the indocyanine method have been corrobo-
rated by studies based on sorbitol clearance; the latter tech-
nique has shown blood flow reductions of ~40 % at 40 % 
of V̇O2max (Busse et al. 2004), of 60–70 % at 60–70 % of 
V̇O2max (Kemme et al. 2000), and of 83 % during near-
maximal exercise (Schoemaker et al. 1998). Although the 
magnitude of the immediate decrease in hepatic blood 
flow remains contentious (Froelich et al. 1988; Flamm 
et al. 1990), observations on human subjects have been 
confirmed by animal studies, where para-aminohippuric 
acid and sulfobromthalein were injected into a mesenteric 
vein, and samples drawn from both portal and hepatic veins 
(Katz and Bergman 1969; Yano et al. 1996).

On cessation of acute exercise, recovery of the resting 
hepatic blood flow appears to be rapid and indeed there is 
some evidence from ultrasound studies of human hepatic 
portal blood flow that hepatic blood flow exceeds normal 
resting levels for a few hours following physical activity 
(Hurren et al. 2011). This may reflect inflammation; argu-
ably, it also serves to replenish glycogen reserves and speed 
the clearance of triacylglycerol from the circulation (Hur-
ren et al. 2011).

We may thus conclude that although vigorous exercise 
induces a substantial immediate reduction of hepatic blood 
flow, this is rapidly reversed during recovery, and there is 
no evidence of subsequent harm to the liver.

Carbohydrate metabolism

Human experimental studies using the stable isotope 
technique have demonstrated that liver glucose output 
is increased during exercise (Ahlborg et al. 1974). This 
serves to maintain blood glucose levels and contributes to 
the overall increase in the rate of glucose oxidation that is 
observed using indirect calorimetry. The rate of glucose 
oxidation is closely matched to work rate, (Bergstrom et al. 
1967; Romijn et al. 1993), although even when exercising 
at ~50–85 % of V̇O2max, liver-derived glucose contributes 
considerably less to the total energy requirement than the 
oxidation of skeletal muscle glycogen (Romijn et al. 1993).

The increased liver glucose output is partly a result of 
glycogenolysis, particularly during the first hour or more of 
sustained exercise (Kjaer 1998). However, the relative con-
tribution of hepatic gluconeogenesis to total glucose output 
increases progressively as work duration is increased, and it 
accounts for some 50 % of glucose production during physi-
cal activity that is prolonged for more than one hour (Suh 
et al. 2007). Lactate (Shephard 1982; Wasserman and Cher-
rington 1991; Nielsen et al. 2007), amino acids (released 
from skeletal muscle through the action of cortisol), and 
glycerol all contribute to gluconeogenesis during exer-
cise (Rowell 1971). As hepatic glycogen reserves become 

depleted, the rate of gluconeogenesis is usually insufficient 
to sustain vigorous exercise, and a decline in the blood glu-
cose concentration can therefore occur unless the work rate 
is reduced (Ahlborg et al. 1974). Depending upon an indi-
vidual’s training status and diet, both liver and muscle gly-
cogen reserves can be almost completely exhausted over 90–
180 min of vigorous aerobic exercise (Terjung et al. 1971).

In conclusion, exercise significantly increases liver glu-
cose output by way of hepatic glycolysis and gluconeogen-
esis, making an important contribution to blood glucose 
control and oxidation during sustained endurance activity. 
These mechanisms can become exhausted during exer-
cise such as a marathon run that continues for more than 
90 min.

Lipid metabolism

Under resting, fasted conditions, the liver accounts for a 
significant proportion (~40 %) of circulating fatty acid 
uptake, substantially exceeding the uptake of skeletal mus-
cle (~15 %) (Jensen 1995; Meek et al. 1999). A portion of 
these fatty acids are converted to ketones or oxidized by the 
liver and other tissues in the splanchnic vascular bed (Havel 
et al. 1970; Wolfe et al. 1976). There is also a significant 
re-esterification of fatty acids to triglycerides in the liver 
(Klein et al. 1989); the triglycerides can then be secreted as 
very low density lipoprotein triglycerides (VLDLs).

The liver’s dominant role in disposing of circulating 
(included ingested) fatty acids is suspended during exer-
cise. Hormonal responses to exercise increase the net avail-
ability of circulating FFA during physical activity (Wolfe 
et al. 1990), but with the ensuing changes in blood flow 
distribution, the majority of these FFAs are directed to 
the contracting muscle; their oxidation accounts for most 
of the whole-body fat that is metabolized during exercise, 
although there is also a small contribution from intramyo-
cellular triglyceride (IMTG)-derived fatty acids (Romijn 
et al. 1993). The splanchnic vascular bed accounts for 
less than 20 % of whole-body FFA uptake during exer-
cise (Wolfe et al. 1990), but the relative partitioning of this 
uptake between hepatic oxidation and triglyceride synthesis 
remains unknown. Whilst it is believed that hepatic VLDL-
derived fatty acids can be oxidized by skeletal muscle 
(Kiens 1993), the hepatic release of triglyceride in the form 
of VLDL remains unchanged during exercise (BØrsheim 
et al. 1999). The current consensus is thus that VLDL 
makes a trivial contribution to whole-body fat metabolism 
during exercise (Helge et al. 2001).

Even a sustained bout of physical activity appears to 
have little immediate effect upon hepatic lipid metabolism. 
For instance, endurance-trained men showed no change 
in proton magnetic resonance spectroscopy estimates of 
hepatic triglycerides following 90 min of cycle ergometry at 
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65 % of V̇O2peak (Johnson et al. 2012). Likewise, a 60-min 
bout of cycle ergometry at 60 % of V̇O2max had no influ-
ence upon hepatic lipid metabolism in sedentary women 
(Magkos et al. 2009). One review also concluded that exer-
cise had no effect upon the hepatic concentrations of total 
lipids, phospholipids and cholesterol in normally fed rats 
(Gorski et al. 1990). However, the high levels of circulat-
ing fatty acids induced by 60–90 min bouts of exercise led 
to an increase of hepatic triglycerides 3–4 h post-exercise 
in both mice (Hu et al. 2010) and human (Johnson et al. 
2012) studies. A single 4-h bout of swimming also up-reg-
ulated hepatic stearyl CoA desaturase in rats and increased 
hepatic triglyceride content (Ochiai and Matsuo 2012). 
Further, exercise to exhaustion increased the hepatic con-
tent of the bound form of alpha-lipoic acid (lipoyl–lysine), 
an important co-factor for many mitochondrial proteins that 
are active in metabolism (Khanna et al. 1998). On the other 
hand, a single 3-h bout of exercise to exhaustion decreased 
the hepatic fatty acid synthase mRNA and enzyme activ-
ity induced by a high carbohydrate diet in both normal and 
diabetic (streptozotocin-treated) rats (Fiebig et al. 2001).

In conclusion, in contrast to its effects on glucose and 
protein metabolism, an acute bout of exercise has lit-
tle immediate effect upon hepatic lipid metabolism and it 
may actually slightly increase hepatic triglyceride content. 
However, evidence (detailed later) showing up-regulation 
of hepatic enzymes and an overall reduction in hepatic fat 
levels with chronic exercise suggests that this is a transient 
response, with no detrimental effect upon the liver, and 
that a positive adaptation leading to a reduction of hepatic 
triglycerides occurs post-exercise and/or with chronic 
exercise.

Protein metabolism

Sustained exercise can augment the hepatic synthesis of 
a number of proteins, including albumin and insulin-like 
growth factor binding protein (IGFBP). The latter binds 
IGF-1, allowing the growth hormone to act continuously 
upon the liver in paracrine fashion, producing more IGF-1.

Isotope infusion studies in humans have demonstrated 
increases in both the fractional (6 %) and the absolute syn-
thesis (16 %) of albumin 6 h after completing a session of 
vigorous interval exercise (Yang et al. 1998). In rats, an 
increase in hepatic IGFBP-1 mRNA expression was also 
observed for up to 12 h following vigorous treadmill run-
ning; this response may serve to curtail an excessive mus-
cle glucose uptake immediately post-exercise, thus prevent-
ing hypoglycemia (Anthony et al. 2001).

There is also evidence from the determination of arte-
rial–hepatic venous differences in human subjects that the 
splanchnic uptake of alanine, synthesized and released by 

the peripheral muscles, is increased 15–20 % during mild 
and moderate exercise (Felig and Wahren 1971). Presum-
ably, this then serves for gluconeogenesis, a view that is 
supported by an increase of sweat nitrogen during exercise 
(Lemon and Nagle 1981).

In conclusion, a sustained acute bout of exercise can 
increase hepatic protein synthesis, but during prolonged 
activity, the liver also plays an important role in forming 
glucose from amino acids that are released from skeletal 
muscle.

Triggers of changes in hepatic glucose metabolism 
during exercise

The classical view has been that changes in hepatic glu-
cose metabolism with exercise are largely a consequence 
of the altered hormonal milieu. Thus, the exercise-induced 
increase in gluconeogensis is stimulated by an attenuated 
secretion of insulin (Kjaer et al. 1993) and rising gluca-
gon concentrations (Wasserman et al. 1989). If exercise is 
prolonged for more than one hour, these changes can be 
accentuated by declining plasma glucose concentrations 
(Trimmer et al. 2002) and depletion of hepatic glycogen 
reserves (Wahren et al. 1971; Peterson et al. 2004). Rising 
glucagon levels boost the extraction of glucose precursors 
from the blood, accelerating their conversion to glucose 
(Wasserman et al. 1989) and also stimulating glycogen-
olysis (Wasserman et al. 1995). The stimulation of gluca-
gon receptors increases concentrations of cyclic adenosine 
monophosphate (cAMP), with activation of protein kinase 
A and extracellular signal-regulated kinase (ERK) (Jiang 
et al. 2001), and it also amplifies adenosine monophosphate 
kinase (AMPK) signaling (Berglund et al. 2009).

Somewhat surprisingly, moderate exercise does not 
cause much change in peripheral glucagon levels; however, 
this may be because plasma concentrations do not neces-
sarily reflect glucagon levels in the portal vein (Wasser-
man et al. 1993). During vigorous exercise, catecholamine 
secretion may also play a regulatory role, either by provid-
ing the liver with additional substrate from adipose lipoly-
sis and increased peripheral lactate formation (Wasserman 
et al. 1991), or by activating hepatic catecholamine recep-
tors and thus mitogen-activated protein kinase (MAPK) 
(Christensen and Galbo 1983). Against this last hypothesis, 
hepatic glucose output does not seem to be affected greatly 
by adrenoreceptor blockade (Coker et al. 1997).

Some correlate of glycogen depletion, albeit changes in 
concentration of a substrate, a derivative of substrate oxida-
tion, an energy-related compound such as ATP, or an altera-
tion in cell volume, might also trigger metabolic alterations 
more directly via the hepatic afferent nerves (Lavoie 2002). 
In support of this view, if glucagon secretion is suppressed, 
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an increased activity of the hepatic sympathetic nerves can 
be detected (van Dijk et al. 1994). On the other hand, glu-
cose release is unaffected by hepatic nerve blockade (Kjaer 
et al. 1993; van Dijk et al. 1994), and hepatic denervation 
did not alter the glycemic response of rats to a brief bout of 
exercise (Lindfeldt et al. 1993).

Some of the changes seen during exercise may occur 
independently of both hormones and the autonomic nerves, 
with muscle-derived interleukin-6, for instance, playing a 
triggering role (Banzet et al. 2009). There are a number of 
pointers to an action of IL-6 upon the liver. For example, 
IL-6 stimulation of hepatoma cells increased their glucose 
production, and the injection of IL-6 into mice induced a 
small increase of hepatic phosphoenolpyruvate carboxyki-
nase (PECPK) (Fritsche et al. 2010). Exercised mice also 
showed an increase of the hepatic chemokine CXCL-1 that 
attracts neutrophils and is involved in inflammation and 
wound healing, and muscle-derived IL-6 seems the trig-
ger for this response (Pedersen et al. 2011). Finally, IL-6 
may mediate the very large increase of hepcidin, a hormone 
that inhibits iron uptake, as seen in some athletes following 
prolonged and strenuous exercise such as a marathon run 
(Roecker et al. 2005; Peeling 2010).

Exercise might also modify liver function through an 
increased generation of reactive oxygen species, much as 
in skeletal muscle (Davies et al. 1982; Koyama et al. 1999; 
Liu et al. 2000). Certainly vigorous prolonged exercise 
(particularly if performed under hot and humid conditions) 
significantly restricts visceral blood flow (Wade and Bishop 
1962; Rowell 1971), temporarily depriving the internal 
organs of an adequate oxygen supply (Shephard 2013), 
and this could favour the formation of reactive oxygen spe-
cies. The exercise-induced up-regulation of heat shock pro-
teins in rat studies seems to support this hypothesis (Salo 
et al. 1991; Kregel and Mosely 1996; Gonzalez and Manso 
2004), On the other hand, some researchers have found lit-
tle evidence of oxidative stress in the rat liver following 
acute exhausting exercise (Bejma et al. 2000; Ogonovszky 
et al. 2005), with no changes in the activity of anti-oxidant 
enzymes (Hoene and Weigert 2010).

There seems no fundamental reason why triggers should 
differ between humans and laboratory animals, but one issue 
to remember in interpreting these various findings is that much 
of the available research has been conducted on rodents, where 
hepatic glycogen reserves are relatively much larger than in 
humans (Baldwin et al. 1973; Terjung et al. 1974).

In conclusion, there remain several competing hypotheses 
concerning triggers to the hepatic adaptations of carbohy-
drate metabolism during acute exercise. It is unclear whether 
changes in hormonal milieu, substrate/metabolite concentra-
tion, cytokines, reactive oxygen species or associated changes 
in hepatic blood flow initiate these metabolic changes; further 
research is needed to decide among these possibilities.

Molecular changes

Information on the molecular changes induced in the liver 
induced by acute exercise is based almost exclusively on 
studies of normally inactive rodents (Table 2). An analysis 
of the hepatocyte transcriptome in mice following 60 min 
of moderate intensity exercise showed that 352 transcripts 
were up-regulated, and 184 were down-regulated. Many of 
these changes affected genes that are important for glycoly-
sis, gluconeogenesis and fatty acid metabolism (Hoene and 
Weigert 2010). Some of these same genes were activated 
in skeletal muscle, but the response was generally more 
marked in the liver. The effect was also transient, disap-
pearing within a few hours of ceasing exercise (Hoene and 
Weigert 2010; Hoene et al. 2010).

Exercise has consistently led to an up-regulation of 
gluconeogenic and metabolic enzymes such as glucose-
6-phosphatase, pyruvate dehydrogenase, and phospho-
enolpyruvate carboxykinase (PEPCK) (Banzet et al. 
2009; Hoene et al. 2009), reduced expression of lipogenic 
enzymes (Griffiths et al. 1996; Fiebig et al. 2001), the 
induction of metabolic regulators such as insulin receptor 
substrate (Hoene et al. 2009), and an up-regulation of the 
genes induced by energy depletion. Cortisol is normally 
implicated in the activation of hepatic PEPCK transcrip-
tion. Such an involvement is supported by the greatly atten-
uated exercise responses in adrenalectomized animals, and 
by the absence of an exercise effect in transgenic mice with 
deletion of the glucocorticoid regulatory unit (Friedman 
1994).

Another exercise-related change is activation of inter-
leukin-6 type cytokine/cytokine receptor signaling, particu-
larly the Janus kinase (JAK)/signal transducer and activa-
tor of transcription (STAT) pathway, which can transmit 
information from outside of the cell to gene promoters on 
intracellular DNA (Hoene and Weigert 2010). Exercise was 
shown to increase the activity of hepatic AMP-activated 
protein kinase activity several fold in rats and this response 
was diminished in IL-6 knock-out animals (Kelly et al. 
2004); however, it is not yet quite clear how this particular 
cytokine is involved, since IL-6 deficiency did not impair 
the induction of metabolic genes by moderate exercise 
(Fritsche et al. 2010). An acute exercise bout also induced 
a marked activation of the mitogen-activated protein kinase 
(MAPK) signaling pathway, which transmits information 
from receptors on the cell surface to nuclear DNA (Hoene 
et al. 2010).

There is an up-regulation of the hepatic p53 tumour-
suppressing pathway that guards against genome muta-
tion (Hoene and Weigert 2010; Hoene et al. 2010), much 
as seen in skeletal muscle, particularly following eccentric 
exercise (Chen et al. 2002; Hoene and Weigert 2010). Exer-
cise also stimulates an increased synthesis of heat shock 
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protein (HSP-72, HSP-73 and of the glucose-regulated pro-
teins 75 and 78) in rat liver (Gonzalez and Manso 2004) 
with a marked up-regulation of genes associated with a 
stress response, such as transcription factors of the Fos/Jun-
family (Hoene et al. 2010). The only human study available 
to date confirmed that HSP72 from the hepato-splanchnic 
viscera increased in the first 2 h following prolonged mod-
erate intensity exercise (Febbraio et al. 2002).

Finally, increased production of the transforming growth 
factor follistatin has been demonstrated in mouse liver 
during exercise (Hansen et al. 2011). Follistatin inhibits 
myostatin, thus encouraging muscle hypertrophy, and it 
also acts as a growth promoter for hepatocytes (Fuwii et al. 
2005). Observations on human subjects during cycling 
have confirmed that liver is the source of the follistatin dur-
ing exercise; active muscles do not liberate this substance 
into the circulation (Hansen et al. 2011).

In conclusion, information on the molecular changes 
during acute exercise generally conforms with expecta-
tions based on the gross biochemical changes, including 
the up-regulation of metabolic enzymes and a decreased 
expression of lipogenic enzymes. There is also an up-regu-
lation of systems protecting against gene mutation and heat 
shock, and an increased formation of transforming growth 
factors such as follistatin.

Adverse responses to acute exercise

Whilst moderate exercise appears to have little effect upon 
either the morphological characteristics of hepatic tissue 
(Latour et al. 1999) or liver function and oxidative stress, 
histological changes, impaired pharmokinetics, markers of 
oxidative stress and altered blood levels of hepatic enzymes 
have been observed after heavy and prolonged exercise 
(Table 3, particularly if there is associated heat stress (Berg 
and Keul 1982; Hassanein et al. 1992; Giercksky et al. 
1999; Eran et al. 2004; Miura et al. 2010). Such findings 
all point to adverse changes of hepatic function, which 
could have negative implications for those participating 
in prolonged endurance events such as marathon running, 
distance cycling, and long-distance triathlons. However, 
information to date suggests that normal liver function is 
regained, at most within a few days of ceasing exercise.

Histological changes

The histological changes associated with vigorous and/or 
exhausting exercise have been examined mainly in animals. 
A very heavy bout of exercise has been shown to cause an 
inflammatory response, with an increase in peripheral leu-
cocyte count (Kayashima et al. 1995). Exercise that results 
in hepatic hypoxia can also predispose to central lobular 

necrosis (Rowell 1971; Praphatsorn et al. 2010). Prolonged 
exercise to exhaustion has further been shown to induce 
mitochondrial swelling in hepatocytes surrounding hepatic 
venules, and oncotic and/or apoptotic necrosis of the hepat-
ocytes in rodents (Yano et al. 1997; Huang et al. 2013).

Impaired pharmacokinetics

The study of pharmacokinetic changes induced by exer-
cise provides further insight into possible disturbances of 
liver function and health. Most pharmacokinetic investiga-
tions have been conducted in human subjects. The elimina-
tion of “low clearance” drugs such as acetaminophen, anti-
pyrine, diazepam, amylobarbitone and verapamil is affected 
primarily by changes in hepatic enzyme activity and biliary 
excretion (Khazaeinia et al. 2000). Their clearance is largely 
unaffected by either moderate exercise (Balasubramian et al. 
1970; Swartz et al. 1974; Klotz and Lucke 1978; Mooy et al. 
1986; Loniewski et al. 2001) or very prolonged low to mod-
erate intensity activity such as 6–9 h of marching (Theilade 
et al. 1979; Fabbri et al. 1991). In contrast, bouts of vigorous 
and/or prolonged exercise reduce the elimination of such sub-
stances as indocyanine, bromsulphthalein, sorbitol and lido-
caine (Mooy et al. 1986; van Griensven et al. 1995), whose 
clearance rate mainly reflects hepatic blood flow (Rowell 
et al. 1964; Døssing 1985). There remains a need to exam-
ine the effects of vigorous and very prolonged events such as 
ultra-marathon runs or long course triathlon on hepatic clear-
ance function, particular with respect to low clearance drugs.

Oxidant stress

As with the gross changes observed in lipid and lipoprotein 
concentrations, significant changes in oxidant status may 
develop after, rather than during an exercise bout (Koyama 
et al. 1999). It is therefore important that research stud-
ies continue observations sufficiently far into the recovery 
period to detect such changes. Importantly, as in skeletal 
muscle, these changes are not necessarily ‘adverse’ per se, 
as they may be important factors in inducing adaptations to 
regular exercise (Hoene and Weigert 2010).

Some (Neubauer et al. 2008; Pinho et al. 2010; Turner 
et al. 2011) but not all studies (Margaritis et al. 1997) in 
humans have demonstrated a transient increase of oxidant 
stress following prolonged and/or vigorous exercise. How-
ever, none of these studies have examined changes within the 
liver itself.

Animal studies (Table 4) provide more direct evidence 
that exhausting exercise causes oxidative stress in the 
liver. For instance, the hepatic glutathione levels have 
been shown to fall in rats following exhausting exercise, 
reflecting a large increase in oxidative metabolism, and 
a reduced ability to buffer reactive oxygen species (Sen 
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et al. 1992). Increased blood levels of malondialdehyde 
(MDA, a marker of lipid peroxidation), NOx, and xan-
thine oxidase have also been shown in mice, accompanied 
by large increases in serum aminotransferases and lactate 
dehydrogenase (LDH) (Kayatekin et al. 2002). Relative 
to control animals, liver samples showed increased neu-
trophil infiltration and reductions in levels of superoxide 
dismutase, catalase and glutathione peroxidase (Huang 
et al. 2008). Other studies of rats have found significant 
increases in measures of hepatic lipid peroxidation follow-
ing exhaustive exercise (Turgut et al. 2003; Aydin et al. 
2005). There is also a substantial rise in the temperature of 
hepatic tissue during exhausting exercise, and rodent stud-
ies have demonstrated an associated increase in concentra-
tions of 70 and 72 kDa HSPs (Salo et al. 1991; Gonzalez 
and Manso 2004).

Thus, animal studies support the human inference of 
increased oxidant stress and increased hepatic concentra-
tions of HSP following heavy exercise, but further research 
is needed to determine how far such changes are an inher-
ent part of the adaptive response to physical activity.

Serum hepatic enzyme levels

Clinicians frequently evaluate human hepatic function in 
terms of serum levels of hepatic enzymes. Short periods of 
acute exercise usually have little or no effect upon such indi-
ces (Takahashi et al. 2007; Hammouda et al. 2012). How-
ever, in the hours following vigorous and very prolonged 
exercise such as marathon or triathlon competition, many 
investigators have found increased concentrations of serum 
aminotransferases, often accompanied by increased bili-
rubin concentrations and markers of inflammation such as 
IL-6 and C-reactive protein, similar to the findings in labo-
ratory animals after prolonged vigorous exercise (Moses 
1990; Praphatsorn et al. 2010) (Table 3). The cause of these 
changes (recent physical activity, hepatic injury, haemolysis, 
or muscle injury) remains unclear (Kindermann et al. 1983; 
Koutedakis et al. 1993; Rosales et al. 2008). Confirmation of 
sustained hepatic malfunction has been sought in decreased 
plasma levels of albumin, globulin and cholinesterase (Nagel 
et al. 1990; Wu et al. 2004), although reduced concentra-
tions of these substances could also reflect the influence of 
increased serum concentrations of interleukin-1 (Nagel et al. 
1990). Further information is thus required before we can 
interpret exercise-induced changes in clinical liver function 
tests as evidence of hepatic damage.

Summary of responses to acute exercise

Hepatic responses to acute exercise include a decrease 
in regional blood flow, and an increase of glucose output 

by way of glycogenolysis and glucogeneogenesis. These 
changes are exacerbated as the intensity and duration of 
exercise is increased, and they contribute to maintenance of 
a stable blood glucose concentration. At rest, the liver is a 
major site for fatty acid uptake, much of which is re-pack-
aged and secreted as VLDLs. However, during an acute 
bout of physical activity, possibly as a consequence of 
reduced hepatic blood flow and increased fatty acid uptake 
by muscle, the liver adopts a more ‘passive’ role, with no 
measurable change in liver triglyceride concentrations. 
Albumin and IGF-1 levels are increased after an acute bout 
of exercise; they likely have growth-promoting effects and 
contribute to euglycaemia. Although glucagon and insu-
lin have some regulatory influence, the precise stimuli 
triggering the changes in hepatic function that maintain 
blood glucose during exercise remain unclear, as do the 
underlying molecular adaptations. Changes in catechola-
mines, intracellular high-energy phosphate concentrations 
related to substrate availability, reactive oxygen species, 
cytokines and tissue hypoxia have all been suggested as 
playing a regulatory role. Understanding these stimuli and 
the molecular effects of acute exercise is made difficult by 
a lack of direct human evidence, and potential difficulties 
in translating rodent findings to an interpretation of human 
responses. Whilst moderate exercise appears well tolerated 
by the liver, vigorous and/or prolonged or exhaustive activ-
ity may result in inflammation, altered pharmacokinetics, 
oxidative stress and increases in concentrations of HSPs 
and serum amino-transferases. Vigorous and/or prolonged 
exercise can cause a slowing in the elimination of mark-
ers dependent upon hepatic blood flow, signs of oxidative 
stress in both humans and animals, and a transient appear-
ance of hepatic enzymes in the serum. However, there is 
little evidence of permanent hepatic damage; such distur-
bances seem transient and possibly contribute to exercise 
adaptations.

Chronic effects of moderate endurance exercise

As with the acute effects of exercise, we will consider 
changes in the metabolism of carbohydrates, lipids and pro-
tein, and triggers for these changes. We will focus particu-
larly upon the role of oxidant stress, and implications for 
hepatic function.

Carbohydrate metabolism

It is well known that regular exercise training increases a 
person’s ability to sustain a higher work-rate during pro-
longed activity, and to exercise for longer before the onset 
of fatigue. One component of this change is an enhanced 
resistance to hypoglycemia during exercise. This is partly a 
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consequence of an increased capacity for skeletal muscle to 
store glycogen and to oxidize fat at the expense of glucose. 
Although there is relatively little human data, further ‘glu-
cose sparing’ adaptations likely include an increased rest-
ing liver glycogen concentration and a reduced rate of both 
glycogenolysis and gluconeogenesis at any given intensity 
of exercise (Coggan et al. 1995; Murakami et al. 1997). 
Other changes associated with exercise training include a 
reduced availability of gluconeogenic precursors (lactate 
and glycerol) at a given volume of exercise, and altered 
hormonal responses (a higher insulin, and lower glucagon 
and catecholamine concentrations).

Rodent investigations generally agree with human obser-
vations in showing that the glyconeogenic and the gluco-
neogenic responses to glucagon are enhanced with training 
(Podolin et al. 2001; Drouin et al. 2004). However, there are 
some differences in the responses of rats, probably related 
to the fact that gluconeogenesis accounts for some 20 % of 
glucose production when humans undertake moderate exer-
cise, whereas in rats the figure ranges from 40 to 70 %. In 
particular, training increases exercise hepatic glucose clear-
ance in humans, but not in rats (Coggan et al. 1995).

Underlying mechanisms apparently include a normaliz-
ing of the ratio of inhibitory to stimulatory guanine-nucleo-
tide binding protein (G protein), and a resultant increase in 
activity of the “second messenger” adenyl cyclase (Podo-
lin et al. 2001). The increased capacity for glucose output 
contributes to the ability of trained individuals to sustain 
higher work-rates and to maintain euglycaemia during 
exercise (Donovan and Sumida 1990). Moreover, the liver 
of a trained person has an increased absolute capacity for 
lactate (Donovan and Pagliassotti 1990) and alanine (Sum-
ida and Donovan 1995) clearance, and associated glucone-
ogenesis (Sumida and Donovan 1993).

Most, but not all (James and Kraegen 1984), rodent 
studies have shown increases in activity of the enzymes 
and signaling molecules involved in both carbohydrate 
and lipid metabolism following aerobic training (Colombo 
et al. 2005; Aoi et al. 2011).

In conclusion, aerobic training induces metabolic adap-
tations in both humans and laboratory animals that help to 
conserve glucose homeostasis during prolonged exercise, 
including greater glycogen storage in both liver and mus-
cle, and the sparing of carbohydrate through greater fat 
metabolism.

Lipid metabolism

The enhanced ability to utilize fat during exercise following 
regular training is largely a function of adaptations in skel-
etal muscle (and associated hormonal changes); there is lit-
tle evidence that the liver contributes to this response. This 
is perhaps understandable, given the apparently trivial role 

of the liver in contributing to fat oxidation (via VLDLs) 
(Helge et al. 2001). Moreover, exercise training blunts the 
lipolytic hormone response to exercise, so that after train-
ing circulating concentrations of insulin and insulin-like 
growth factor binding protein-1 tend to be higher (Prior 
et al. 2012), and blood glycerol and FFA concentrations are 
lower at a given absolute exercise intensity (Martin et al. 
1993). These changes further reduce the liver’s role, includ-
ing its exposure to FFAs. Nevertheless, regular exercise is 
associated with alterations in lipid/lipoprotein metabolism, 
and it appears to reduce the amount of triglyceride stored in 
the liver.

Several studies have examined the effect of regular exer-
cise upon liver fat content (discussed later), and the associ-
ated liver mass in rats and mice (Table 8). Most investigators 
have observed a reduction in liver mass with regular exer-
cise training, although such findings have not been universal 
(James and Kraegen 1984; Murakami et al. 1997). A limi-
tation of many animal studies is that control animals have 
lived unnatural lives of physical inactivity and over-eating 
relative to their natural state, and in consequence differences 
in hepatic tissue mass between sedentary and exercised ani-
mals have varied between investigations. For example, in 
the study of Yiamouyiannis et al. (1992), rats that were fed 
ad libitum and given free access to a running wheel also ate 
more, thus presenting with increased values for total, mito-
chondrial and cytosolic protein (Yiamouyiannis et al. 1992). 
The total activity of several enzymes was also increased, 
although the activity per g of liver or per g of hepatic protein 
remained unchanged (Yiamouyiannis et al. 1992).

The cardio-protective benefit of regular exercise in modi-
fying circulating lipids and lipoproteins is well documented 
in both human subjects and experimental animals. Cross-
sectional research shows that high-density lipoprotein cho-
lesterol (HDL-c) levels are higher in regular exercisers ver-
sus their inactive counterparts (Williams et al. 1981), and 
HDL-c increases with exercise training interventions (Kel-
ley et al. 2005, 2006; Dressendorfer et al. 1982; Terao et al. 
1989). Similarly, exercise training may reduce circulating 
triglycerides and VLDL secretion (Tsekouras et al. 2008). 
These benefits are associated with a decreased activity of 
hepatic lipase (Thompson et al. 1991) and alterations in the 
levels of other hepatic enzymes involved in HDL-c remod-
elling (including cholesteryl ester transfer protein and leci-
thin cholesteryl acyl transferase) (Kraus et al. 2002; Hal-
verstadt et al. 2007).

Inter-individual human differences in lipid responses to 
training programmes have been traced to a polymorphism 
in the hepatic lipase gene LIPC -514C-T (Brinkley et al. 
2011). However, the relative contribution of acute versus 
chronic responses to these exercise-induced improvements 
in lipids and lipoproteins remains unclear (Cullinane et al. 
1982; Thompson et al. 2001; Magkos et al. 2007).
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Rodent investigations have provided insights into the 
molecular changes underlying the effects of regular physi-
cal activity upon lipid/lipoprotein metabolism. Training ses-
sions reduced hepatic acetyl-coenzyme A carboxylase and 
fatty acid synthase activity and mRNA (Askew et al. 1975; 
Fiebig et al. 1998, 2001, 2002; Lavoie and Gauthier 2006). 
Regular exercise also down-regulated the hepatic gene and 
protein content of stearoyl-CoA desaturase-1 (SCD-1), the 
rate limiting enzyme in the biosynthesis of saturated-derived 
monounsaturated fats that are a major constituent of VLDLs. 
Further, there was a down-regulation of the microsomal tri-
glyceride transfer protein that plays a key role in the assem-
bly and secretion of VLDL lipoprotein (Chapados et al. 
2009), and training increased levels of hepatic mRNA for the 
ATP-binding cassette transporter A-1 that plays a vital role 
in membrane transport and plasma HDL cholesterol remod-
eling (Ghanbari-Niaki et al. 2007). Changes in the composi-
tion of hepatic phospholipids following training likely have 
implications for membrane properties, cell signalling and 
gene expression (Petridou et al. 2005).

In conclusion, exercise training increases muscular oxi-
dation of fat and leads to molecular changes of hepatic 
function that reduce liver fat content and enhance the blood 
lipid profile.

Protein metabolism

An expansion of plasma volume is a well-recognized adap-
tation to regular exercise; expression of the hepatic albumin 
gene mRNA facilitates this response by increasing serum 
albumin concentrations, and rodent studies indicate that 
such an adaptation can occur within days of the initiation 
of training (Bexfield et al. 2009).

Endurance training also increases the hepatic production 
of heat shock proteins and decreases the secretion of orixo-
genic proteins. Thus, endurance training in mice increased 
hepatic 70 kDa HSP (Mikami et al. 2004) and HSP72 (Ata-
lay et al. 2004) expression in both the liver and other tissues, 
and the expression of hepatic orixogenic Agouti-related pro-
tein was reduced in rats after training (Ghanbari-Niaki et al. 
2009); the latter change likely reduces the animals’ appetite.

Triggers of hepatic responses

Both changes in the concentrations of hormones (insulin, 
glucagon and oestrogen) and cytokines (IL-1-β, IL-6, IL-10 
and IGF-1) and altered tissue sensitivity to these agents 
may contribute to the changes of hepatic metabolism 
observed following aerobic training.

Hepatic insulin sensitivity was increased in some ani-
mal studies. Regular exercise reduced the hepatic mRNA 
level and protein content of hepatic PEPCK, thus contribut-
ing to the improved insulin sensitivity (Chang et al. 2006). Ta
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However, training has not enhanced hepatic insulin sensi-
tivity in all human studies (Hickman et al. 2004).

A week of repeated bouts of swimming reduced the liver 
fat content of male rats (Hu et al. 2000; Peijie et al. 2004). 
Regular training also increased the hepatic glucagon recep-
tor density and glucocorticoid receptor count in exercise-
trained rats (Légaré et al. 2001); an increased availability of 
glucagon may be important to this effect of exercise train-
ing, since liver fat was not reduced in animals that lacked 
glucagon receptors (Berglund et al. 2011).

Hepatic oestrogen receptors appear to influence the 
effects of exercise training on hepatic lipid metabolism 
(Paquette et al. 2007). Ovariectomy predisposes rats to 
hepatic steatosis, an increase of inflammatory biomarkers 
(e.g. inhibitor-κB kinase β and interleukin-6), an increased 
activity of hepatic lipogenic enzymes (e.g. sterol regula-
tory element-binding protein-1c, acetyl-CoA carboxylase 
(ACC) and stearoyl CoA desaturase), and a decreased 
expression of enzymes related to fat oxidation (e.g. car-
nitine palmitoyltransferase and hydroxyacyl-CoA-dehy-
drogenase). With the exception of increases in ACC, these 
adverse changes could be reversed, at least in rats and mice, 
through regular exercise (Jackson et al. 2011; Pighon et al. 
2011; Domingos et al. 2012). Carnitine is an important co-
factor for the oxidation of both long-chained fatty acids 
and carbohydrate, and may itself play an important role in 
the hepatic response; regular exercise attenuates the high-
fat diet-induced reduction in carnitine palmitoyltransferase 
I activity (Cha et al. 2003), and up-regulates the genes 
involved in hepatic carnitine synthesis and uptake (Ring-
seis et al. 2011). Training also increased gene expression of 
microsomal triglyceride transfer protein and diacylglycerol 
acyltransferase-2 in ovariectomized rats, with a reduction 
in hepatic triglyceride content (Barsalani et al. 2010).

Some studies have observed greater serum levels of free 
IGF following aerobic training, either via increased hepatic 
IGF production (Prior et al. 2012), or because of increased 
hydrolysis of the corresponding binding factor (Schwarz 
et al. 1996). Resistance training likely has a similar effect 
(Bermon et al. 1999). On the other hand, a combination 
of regular exercise and a low fat diet increased serum con-
centrations of IGF-1 binding protein, thus decreasing cir-
culating levels of free IGF-1, both in rats and in humans 
(Nishida et al. 2010; Wieczorek-Baranowska et al. 2011).

Rodent studies have suggested that regular aerobic exer-
cise training may decrease tissue levels of the inflammatory 
cytokines IL-6 (Moon et al. 2012b) and IL-1β (de Araújo 
et al. 2012), and increase levels of the anti-inflammatory 
cytokine IL-10 (with an associated decrease in hepatic apop-
tosis) (de Araújo et al. 2012). Whilst there is some evidence 
from human investigations demonstrating a net hepato-
splanchnic uptake of IL-6 during moderate intensity exercise 
(Febbraio et al. 2003), it remains to be determined whether 

the liver is merely clearing this cytokine from the circulation, 
or whether it has a specific role in glucose homeostasis.

In conclusion, a variety of triggers have been suggested 
for the adaptations of hepatic metabolism associated with 
exercise training, including alterations in concentrations 
of and sensitivity to hormones (glucagon, insulin, oes-
trogen and IGF) and cytokines (IL-1β, IL-6 and IL-10); 
further research is needed to determine which are impor-
tant factors, and which are incidental consequences of the 
observed adaptations.

Role of oxidant stress

Oxidant stress reflects a disequilibrium between the pro-
tein load and the ability of the hepatocyte endoplasmic 
reticulum to fold and assemble proteins correctly. It can 
be caused either by aging or by severe exercise, with an 
increased production of superoxides, a decrease of buffer-
ing agents, and/or a decrease of peroxidases. In rats, pro-
longed bouts of vigorous exercise (2 h swimming/day for 
3 months) led to a down-regulation of cytosolic aconitase, 
a key factor in cellular iron homeostasis (Ho et al. 2001), 
possibly because of an increased production of NO and 
oxidative stress.

Most studies of mice, rats and dogs (Table 4) have 
shown moderate aerobic training as minimizing oxidative 
stress. Markers of oxidative stress are decreased (Nav-
arro et al. 2003), and the activities of hepatic antioxidant 
enzymes such as superoxide dismutase (Gore et al. 1998; 
Burneiko et al. 2006; da Silva et al. 2009) and the cor-
responding signaling molecules (Huang et al. 2010) are 
increased. Further, hepatic glutathione transferase S activ-
ity and concentrations of reduced glutathione are increased 
(Sen et al. 1992; Radak et al. 2004), and the gene expres-
sion of unfolded protein response markers is enhanced 
(Chapados and Lavoie 2010).

Nevertheless, a few investigators have found no change 
or even a decrease of anti-oxidant enzyme activity follow-
ing heavy endurance training (Hong and Johnson 1995), 
with a decreased hepatic superoxide dismutase mRNA, but 
an increase of catalase mRNA (Wilson and Johnson 2000), 
and [contrary to early observations on isolated hepatocytes 
(Eklöw et al. 1984)], little relationship between anti-oxi-
dant enzyme levels and local oxidant stress (Ji et al. 1990; 
Godin and Garnett 1992).

Thus, we may conclude that moderate exercise training 
reduces hepatic oxidant stress, but very heavy training may 
have adverse effects upon oxidant status.

Functional activity

It is unclear from human studies of serum enzyme levels 
and pharmacokinetics how far liver function is influenced 
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either by habitual physical activity or by regular low to 
moderate intensities of exercise training. Nevertheless, the 
traditional clinical markers of hepatic function (serum ALT 
and GGT levels) do show a negative correlation with habit-
ual physical activity (Robinson and Whitehead 1989; Nils-
sen et al. 1990; Pintus and Mascia 1996), probably because 
a sedentary lifestyle predisposes to steatosis (Whitfield 
2001). Whether there is a more direct relationship between 
physical activity level, fitness and serum aminotransferase 
levels is discussed below.

In terms of pharmacokinetics, exercise training did not 
alter creatinine clearance in boxers (Saengsirisuwan et al. 
1998), or the pharmacodynamics of propranolol in sedentary 
subjects (Frank et al. 1990; Panton et al. 1995). Likewise, 
cross-sectional research showed no significant differences in 
aminopyrine metabolism, galactose elimination, or indocya-
nine green clearance between endurance runners and rela-
tively sedentary medical students (Ducry et al. 1979).

However, other reports suggest that hepatic function 
may be enhanced by vigorous (but not exhausting) training 
(Døssing 1985). Thus, the clearance of antipyrine (which 
depends almost exclusively upon hepatic metabolism) 
was faster in athletes than in controls, with no difference 
between sprinters and endurance competitors (Orioli et al. 
1990). Likewise, endurance runners had a faster clearance 
of antipyrine than sedentary but otherwise healthy men 
(Villa et al. 1998). Longitudinal evidence supports these 
cross-sectional inferences. Three months of exercise train-
ing increased the clearance of antipyrine and aminopy-
rine in previously inactive students; moreover, individual 
improvements in these indices correlated highly with gains 
in V̇O2max, which averaged 6 % (Boel et al. 1984). Three 
months of moderate intensity exercise (combined aerobic 
and resistance training) also increased antipyrine clearance 
in elderly women (Mauriz et al. 2000).

Animal experiments generally confirm the beneficial 
effects of regular exercise on liver function seen in human 
subjects. Five weeks of training increased antipyrine clear-
ance in mares (Dyke et al. 1998), and the livers of regu-
larly exercised rats had a greater ability to metabolize 
and excrete certain chemicals not normally found in the 
body, such as naphthol and styrene products (Yiamouy-
iannis et al. 1992) and halothane (Daggan et al. 2000). In 
the study of halothane toxicity, hepatic glutathione levels 
were unchanged by 10 weeks of treadmill exercise, and it 
remained unclear whether benefit was due to enhanced anti-
oxidant defence mechanisms or the associated decrease in 
hepatic fat (Daggan et al. 2000).

A further factor increasing the liver’s ability to eliminate 
some substances is an increased secretion of biliary trans-
porters. Chronic exercise such as swimming or running 
augments the hepatic production of bile acids (Frenkl et al. 
1980) and increases the availability of bile acid transporters 

(Yiamouyiannis et al. 1993). These changes may accelerate 
biliary clearance (but not necessarily blood stream clear-
ance) of substances such as indocyanine green (Yiamouy-
iannis et al. 1993) acetaminophen and antipyrine (Frenkl 
et al. 1980).

Thus, the general impression from studies of pharma-
cokinetics is that regular moderate exercise enhances the 
functional clearance capacity of the liver.

Summary of responses to chronic exercise training

Regular exercise training increases liver glycogen storage 
and the hepatic capacity for glucose output. On the other 
hand, glycogenolysis and gluconeogensis are reduced at a 
given work-rate after training, with a reduced availability 
of gluconogenic precursors. The net effect is an improved 
ability to maintain euglycaemia, probably triggered by 
changes in hormone concentrations and sensitivity. Regu-
lar exercise training appears to reduce overall liver mass 
and associated fat mass, with an increase in HDL-c levels. 
Hepatic albumin and HSPs increase, and orixogenic pro-
teins decrease with regular exercise training. The precise 
triggers for these changes of hepatic function are conten-
tious, although hormones (insulin, glucagon and oestrogen) 
and a number of cytokines appear to be involved. Most 
(but not all) studies suggest that regular exercise training 
reduces markers of oxidative stress and increases antioxi-
dant enzyme levels in the liver. Evidence for the overall 
effect of exercise training in terms of serum aminotrans-
ferase levels is conflicting, but most cross-sectional and 
longitudinal research indicates an improvement of hepatic 
clearance function with regular exercise.

The role of physical activity in liver disease

In the final section of this review, we will examine inter-
actions between physical activity and certain chronic liver 
conditions, including non-alcoholic fatty liver disease 
(NAFLD), hepatic inflammation and cirrhosis, and hepatic 
carcinoma, considering specifically the roles of inadequate 
habitual physical activity and co-pathologies in the gen-
esis of these syndromes. We will also examine the impact 
of exercise training upon liver fat, as seen in both cross-
sectional and longitudinal studies, and will finally consider 
appropriate exercise dose recommendations for the treat-
ment of these disorders.

Non-alcoholic fatty liver disease (NAFLD)

NAFLD is characterized by the accumulation of fat 
in hepatocytes in the absence of excessive alcohol 
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consumption. The liver normally contains some fat (the tri-
glycerides stored in hepatocytes), but NAFLD is commonly 
diagnosed when fat stores exceed ~5 % of hepatic mass. 
NAFLD accounts for the majority of liver disease world-
wide; the condition is thought to affect up to one-third of 
adults (Browning et al. 2004; Szczepaniak et al. 2005) and 
it is found in most individuals who are obese (Bellentani 
et al. 2000). Even in children, the prevalence of NAFLD 
ranges from 2.6 to 9.6 %, depending upon age, sex, ethnic 
group and habitual physical activity (Takahashi and Fuku-
sato 2010; Tsuruta et al. 2010). Liver biopsy and histologi-
cal assessment provides the gold standard for the diagnosis 
of NAFLD, but in human research studies the liver fat con-
tent has more commonly been inferred from proton mag-
netic resonance spectroscopy or CT scan, and in animal 
experimentation the usual approach has been tissue analy-
sis at sacrifice.

Hepatic fat accumulation is commonly associated with 
obesity, cardiovascular disease and diabetes. The build-up 
of triglycerides in the liver could reflect an increased deliv-
ery of fatty acids either from adipose tissue or directly from 
the diet, increased de novo hepatic lipogenesis, decreased 
hepatic fatty acid oxidation, or a decreased exit of fatty 
acids from the liver. The first of these mechanisms is prob-
ably the most important (Katsanos 2004); it accounts for 
the major fraction of fatty acids incorporated into liver fat 
in obese individuals under fasting conditions (Donnelly 
et al. 2005). The increase in hepatic fat may impair the 
insulin sensitivity of the hepatocytes (above), and insulin 
resistance is also manifest in adipose tissue (Kotronen et al. 
2008), so that any given secretion of insulin is less effective 
in reducing lipolysis (Korenblat et al. 2008).

NAFLD can progress from a simple accumulation of fat 
through inflammation (steato-hepatitis) to fibrosis, cirrho-
sis and liver failure and even hepatic carcinoma (Angulo 
2002). It is not entirely clear why the condition remains a 
simple steatosis in some individuals, but shows a progres-
sion of pathology in others. Inter-individual differences in 
reactions to reactive oxygen species, cytotoxic dicarbo-
xylic acids, and hormonal balance, as well as mitochon-
drial abnormalities may be involved (Angulo 2002). Pro-
gression from simple steatosis to steatohepatitis probably 
reflects the combined effects of hepatic fat accumulation 
and oxidative stress, possibly exacerbated by endoplasmic 
reticulum stress (Malhi and Kaufman 2011) and gut barrier 
dysfunction (Rao 2009); anti-oxidant therapy is not nec-
essarily helpful in preventing disease progression (Nobili 
et al. 2008).

Hepatic inflammation and cirrhosis

There is relatively little research evidence concerning inter-
actions between physical activity and the more advanced 

stages in the spectrum of NAFLD. From available infor-
mation, it could be suggested that physical activity has 
some direct positive influence on hepatic pathology beyond 
simply modifying liver fat levels. For instance, as fibrosis 
develops, markers of hepatic apoptosis [plasma cytokeratin 
18 (CK18) fragments, soluble Fas (sFas), and sFas ligand 
(sFasL)] increase (Fealy et al. 2012), and these changes 
have been positively associated with physical inactivity 
(Lee et al. 2008).

The situation can become a vicious cycle, since any 
form of hepatitis may discourage physical activity. Individ-
uals affected by chronic hepatitis C infection were found to 
be less active than their peers, and to engage in less vigor-
ous activity (Moon et al. 2012a). The intensity of physical 
activity seems important in preventing disease progression, 
since in a large adult cohort with biopsy-proven steatosis, 
neither total reported exercise per week nor the duration of 
moderate physical activity was associated with either the 
risk of steatohepatitis or the histological stage of fibrosis. 
On the other hand, meeting the weekly vigorous physical 
activity recommendation reduced the odds of steato-hepati-
tis to 0.65, and spending double the recommended time in 
vigorous activity also reduced the odds of advanced fibrosis 
to 0.53 (Kistler et al. 2011).

Three months of moderate intensity exercise therapy 
(5 days/week) lowered serum amino-transferases (ALT and 
AST) in patients with cirrhosis (Baba et al. 2006), and as 
little as a week of vigorous exercise training was sufficient 
to decrease ALT and CK-18 fragments (Fealy et al. 2012). 
Nevertheless, the primary rationale for advocating exercise 
therapy in patients with advanced liver disease is arguably 
for the multiplicity of other benefits of chronic exercise, 
especially those relating to physical weakness and co-
morbidities. Thirteen studies of patients with hepatic cir-
rhosis noted substantial decreases in aerobic capacity and 
muscular strength relative to healthy controls (Jones et al. 
2012). Low levels of aerobic fitness and exercise tolerance 
(Wiesinger et al. 2001; Pieber et al. 2006; Dharancy et al. 
2008) have been confirmed in other studies (Ritland et al. 
1982, 1983; Campillo et al. 1990a, b; DeLissio et al. 1991; 
Terziyski et al. 2008), particularly in individuals with asso-
ciated ascites (Campillo et al. 1990b; Wong et al. 2001). 
There is also evidence of muscular weakness (Tarter et al. 
1997; Andersen et al. 1998), proportional to the severity 
of disease, but independent of its etiology (Campillo et al. 
1990b; Wiesinger et al. 2001; Terziyski et al. 2008).

Thus, exercise that includes an element of resistance train-
ing is arguably a useful therapy for improving fitness and 
functional capacity in this population, but it remains unclear 
whether exercise can restore liver health (and if so, the dose 
that is needed). One major obstacle to implementing and sus-
taining a programme of exercise training in advanced liver 
disease is initial fatigue; this has an adverse effect upon the 
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individual’s quality of life (Stanca et al. 2005), and by dis-
couraging physical activity, it progressively exacerbates the 
initial loss of muscular strength (Wu et al. 2012). Neverthe-
less, a programme of regular progressive exercise can coun-
ter fatigue, even in people with advanced fibrosis (Zucker 
2004). Moreover, given adequate motivation, patients with 
cirrhosis can tolerate quite vigorous exercise, maintaining 
oxygenation of the brain and muscles (Bay Nielsen et al. 
2005) and showing no evidence of hypoglycemia while they 
are active (DeLissio et al. 1991). The one major concern in 
this condition is the potential to develop oesophageal bleed-
ing. The hepatic venous pressure gradient is increased even 
at low levels of physical activity (30 % of peak work-rate) 
(Garcia-Pagan et al. 1996), and in patients with oesophageal 
varices, portal hypertension induced by over-vigorous exer-
cise could cause such bleeding.

There have been few investigations of the effect of aero-
bic training in hepatic cirrhosis. One investigation reported 
a 29 % gain of predicted V̇O2max over 10–12 weeks of 
training (Ritland et al. 1983), and a second trial with only 
four subjects found an increase of V̇O2max in two of the 
four individuals, with an 18–20 % improvement of muscle 
strength in these two individuals (Campillo et al. 1990b).

Animal studies of exercise and liver pathologies

Animal studies have underlined the potential of exercise 
to have direct beneficial effects upon the diseased liver. 
In one such study, mice were fed a high-fat diet; however, 
those animals that subsequently underwent a progressive 
16-week aerobic exercise intervention showed an eleva-
tion of hepatic tumor necrosis factor levels, together with a 
reduction or abolition of macrophage infiltration and signs 
of fibrosis (Sirius red and -smooth muscle actin staining 
and tissue inhibitor of matrix metalloproteinase-1 mRNA) 
(Kawanishi et al. 2012). A second investigation noted signs 
of inflammation and steatohepatitis (macro-vesicular stea-
tosis and lymphocytosis) in sedentary rats that were fed a 
high-fat diet, but such findings were greatly attenuated in 
their peers who exercised daily; ALT but not AST levels 
were also reduced in exercised animals (He et al. 2008).

We may thus conclude that exercise programmes have 
favourable effects in advanced hepatic disease, provided 
that patients can be motivated to sustain such activity.

Hepatocellular carcinoma

There has been a paucity of research into interactions 
between physical activity and hepato-cellular carcinoma. 
A 10-year follow-up of study of 507,897 retired Americans 
found a significantly reduced risk of hepatic carcinoma in 
those who were regularly active (>5 times a week) vs. those 
who reported exercising never or rarely (odds ratio 0.64) 

(Behrens et al. 2013). A moderate exercise programme 
may be beneficial, even if the hepatic carcinoma is quite 
advanced. One case report noted an increase in aerobic 
capacity after 6 weeks of supervised aerobic exercise ther-
apy (Crevenna et al. 2003).

The influence of other pathologies associated 
with inadequate habitual physical activity

The vast majority of research concerning physical activ-
ity in the aetiology and management of liver disease has 
focused on simple hepatic steatosis (detailed below). How-
ever, NAFLD is commonly associated with other markers of 
inadequate habitual physical activity, including cardiovascu-
lar disease, metabolic syndrome and type 2 diabetes mellitus. 
In terms of associated insulin sensitivity, univariate corre-
lations suggest that although body fatness is a prime deter-
minant of whole-body insulin sensitivity, the main determi-
nant of hepatic insulin sensitivity may be the individual’s 
active energy expenditure (Holt et al. 2007). A follow-up of 
6,003 patients with non-alcoholic fatty liver disease found 
411 developed type 2 diabetes over a follow-up averaging 
4.9 years; a Cox proportional hazards analysis demonstrated 
that a gamma glutamyl transferase (GGT) >109 IU/L and an 
exercise level of less than 60 min per week were significant 
predictors of diabetes, both with hazard ratios averaging 1.60 
(Arase et al. 2009). GGT facilitates the intracellular transport 
of glutathione, and increases in levels of this enzyme are a 
possible indicator of oxidative stress, which in turn can pre-
dispose to diabetes (Nannipierri et al. 2005).

Whilst it has been thoroughly documented that low lev-
els of habitual physical activity predispose to the obesity, 
dyslipidaemia, impaired glucose tolerance and high blood 
pressure that characterize cardiovascular disease, the met-
abolic syndrome and diabetes, and that a physical activ-
ity intervention is effective in their management (Winnick 
et al. 2008), fat reduction in the liver is also an important 
component of both prevention and treatment. A decrease 
of hepatic fat content has been thought to avert type 2 dia-
betes mellitus, particularly in older individuals (Tamura 
et al. 2005; Thamer et al. 2007). Similarly, a normalizing of 
liver fat content in patients with type 2 diabetes improves 
the insulin-induced suppression of hepatic glucose output 
and restores normal fasting blood glucose concentration 
(Petersen et al. 2005). Recent research interest has thus 
centred on the role of NAFLD in these pathologies, and the 
effect of physical activity on liver fat levels.

The association between habitual physical activity/fitness 
and liver fat (cross-sectional studies)

A possible role for exercise therapy in the manage-
ment of NAFLD is supported by many cross-sectional 
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investigations that show an association between low levels 
of habitual physical activity and/or fitness and the preva-
lence of NAFLD. Sixteen such studies of human subjects 
have made cross-sectional assessments of habitual physi-
cal activity (Table 5); 12 used physical activity question-
naires, three used objective activity monitors (Newton 
et al. 2008; Fintini et al. 2012; Gerber et al. 2012), and 
one classified subjects based upon their obesity (Viitasalo 
et al. 2012). Sample size ranged from small groups to pop-
ulations >30,000, and one analysis was based upon twins 
with dissimilar activity patterns (Leskinen et al. 2009). In 
one instance, objective monitoring suggested an effect of 
physical activity, but (probably because of lesser reliabil-
ity and validity) subjective questionnaires completed by 
the same individuals did not (Fintini et al. 2012). Collec-
tively, these studies showed that habitual physical activity 
was an important correlate of hepatic fat in most compari-
sons, with a possible exercise volume-response relationship 
(Hsieh et al. 1998), although two reports found no relation-
ship between the severity of histological abnormalities and 
physical activity (Kang et al. 2006; Kistler et al. 2011).

Eleven reports [including the one twin study (Leski-
nen et al. 2009)] related cycle ergometer or treadmill 
assessments of aerobic fitness to hepatic fat accumulation 
(Table 6). With two exceptions (Seppala-Lindroos et al. 
2007; Krasnoff et al. 2008), an inverse relationship was 
seen. However, in some studies the negative association 
was relatively weak (Nguyen-Duy et al. 2003; McMillan 
et al. 2007), particularly if data were co-varied for inter-
individual differences in obesity.

Physical activity interventions and liver fat (longitudinal 
trials in humans)

Forty-six longitudinal human trials were identified 
(Table 7). Often, sample sizes were small; 19 trials 
included some form of non-exercise control group, often 
“usual treatment” or a dietary regimen. Interventions 
ranged from general lifestyle recommendations to specific 
programmes with careful control of both exercise and diet. 
Programmes typically yielded consistent reductions in liver 
fat, and this was usually associated with decreased insu-
lin resistance. One report noted an improvement of histo-
pathology in response to a combined exercise and weight 
loss programme (Goodpaster et al. 2010), but there is little 
evidence in this regard. Effects on serum aminotransferase 
levels have also been unclear, possibly confounded by nor-
mal or near-normal levels in the studied cohorts prior to 
interventions (Keating et al. 2012; Thoma et al. 2012).

It seems likely that benefits such as a reduction of 
hepatic fat and a possible normalization of serum ami-
notransferases will be maximized by a combination of 
physical activity and dieting which results in significant 

weight loss, but the respective contributions of diet, physi-
cal activity and weight loss to improvements in hepatic 
function remain to be defined (Thoma et al. 2012). Exer-
cise has traditionally been employed with the goal of 
weight loss, but some investigators have found benefits 
from exercise in the absence of dieting (Larson-Meyer 
et al. 2008) or any change in body mass (Johnson et al. 
2009). Further, benefits have persisted after statistical 
adjustment of data for changes of body mass (Bonekamp 
et al. 2008). Moreover, at least one study found that die-
tary manipulation did not enhance the effects of exercise 
(Eckard et al. 2013).

Nevertheless, much of the current evidence suggests that 
exercise training may, at best, enhance the hepatic effects 
of dieting (Goodpaster et al. 2010), and may (Coker et al. 
2009) or may not (Tamura et al. 2005; Shah et al. 2009) 
further increase the insulin sensitization induced by dieting. 
Significant weight loss (10 %) seems the most effective 
means to lower liver fat content and aminotransferase lev-
els; lesser effects are seen in studies where the decrease in 
body mass was 5 % or less (Chen et al. 2008), or if exercise 
did not induce weight loss. Several reports have found that 
although exercise has other benefits, such as insulin sensi-
tization, it does not enhance the hepatic response to diet-
ing (Tamura et al. 2005; Shojaee-Moradie et al. 2007; Shah 
et al. 2009; van der Heijden et al. 2009, 2010b; Jenkins and 
Hagberg 2011; Straznicky et al. 2012).

Most investigations have evaluated aerobic train-
ing programmes. A few reports have also noted favour-
able responses to resistance exercise training, although its 
effectiveness in NAFLD is less clearly established. Two of 
three comparisons between aerobic and resistance train-
ing (Lee et al. 2012; Bacchi and Moghetti 2013) found 
similar decreases of hepatic fat with both types of exercise. 
However, the third and largest study found no benefit from 
resistance training alone, and the response to aerobic train-
ing was not enhanced by adding resistance activity (Slentz 
et al. 2012). Another study of a resistance exercise pro-
gramme found no reduction of inflammatory markers (Lev-
inger et al. 2009), and one 12-week trial of resistance exer-
cise found a decrease of insulin resistance without a change 
of hepatic fat content (van der Heijden et al. 2010a). In 
contrast, a controlled 3-month trial in obese adolescent 
boys found that thrice weekly 60-min sessions of either 
aerobic exercise or resistance exercise reduced liver fat, but 
only resistance exercise was effective in increasing insulin 
sensitivity (Lee et al. 2012). It is plainly as yet unclear and 
important to resolve how effective resistance training is 
for decreasing steatosis and associated comorbidities, par-
ticularly as it has been suggested that resistance exercise is 
important to correct the muscular weakness and autonomic 
dysfunction that is often associated with this condition 
(Jakovljevic et al. 2013).
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Physical activity interventions and liver fat (longitudinal 
trials in animals)

Some 21 animal studies of exercise and hepatic steatosis 
generally confirm the findings of human longitudinal inves-
tigations (Table 8). They provide growing empirical evi-
dence that fat accumulation has direct adverse effects upon 
hepatic function, and that these changes can be reversed by 
exercise; further, they add helpful information on cellular 
mechanisms underlying the adverse effect of hepatic fat 
upon glucose homeostasis (Table 9).

In mice fed a high-fat diet, regular exercise reduced the 
accumulation of fat in the liver, improved insulin resist-
ance and reduced circulating cholesterol, triglycerides, and 
AST and ALT levels (Marques et al. 2010). Dietary restric-
tion, voluntary wheel running and imposed swimming or 
treadmill running all seem effective in preventing steatosis 
(see Table 8 for references), and in one report hepatic ben-
efits were elicited more readily by intermittent swim train-
ing than by continuous bouts of swimming (Sene-Fiorese 
et al. 2009). Yasari et al. (2006) found that after 6 weeks 
of detraining, rats trained on a treadmill for 4 weeks had 
regained a similar body fat to sedentary animals, although 
liver lipid infiltration was not increased with cessation 
of training. In contrast, Linden et al. (2013) found that 
4 weeks of inactivity following 16 weeks of wheel running 
caused the development of hepatic steatosis in obese rats, 
although liver triglycerides were still 60 % lower than in 
animals that had remained sedentary throughout.

Among mechanisms underlying the adverse effect of 
hepatic fat upon glucose homeostasis, lipid accumulation 
appears to down-regulate phosphatidylinositol 3-kinase, 
an enzyme that has a central role in mediating the action 
of insulin in hepatocytes (Katsanos 2004). Rats fed an 
obesity-inducing diet not only developed peripheral insu-
lin resistance, but also demonstrated endoplasmic reticular 
stress in both hepatic and adipose tissues, with activation 
of the proinflammatory molecules c-jun N-terminal kinase 
(JNK) and nuclear factor kappa-B (NF-κB).

Cellular adaptations associated with the benefits of 
enhanced activity have included increased hepatic mito-
chondrial fatty acid oxidation, enhanced oxidative enzyme 
function and protein content, and suppression of de novo 
lipogenesis (Rector et al. 2011). Specific molecular mech-
anisms identified as contributing to attenuation of fat 
accumulation and/or reversal of steatosis have included 
increased hepatic mitochondrial activity (citrate synthase, 
β-hydroxyacyl-dehydrogenase [HAD] and cytochrome 
c oxidase) and subsequent beta-oxidation (Rector et al. 
2011), a decrease of regulatory element-binding protein-1c 
(SREBP-1c, one of a group of transcription factors regu-
lating the genes involved in cholesterol and fatty acid syn-
thesis) (Cintra et al. 2012), down-regulation of the hepatic 

SCD-1 gene, and thus of SCD-1, a rate-limiting enzyme 
in the biosynthesis of monounsaturated fats (Yasari et al. 
2010), and a decreased activity of the hepatic ketone syn-
thesis pathway seen in streptozotocin-diabetic rats, with 
a decreased activity of the corresponding rate-limiting 
enzyme HMG-CoA (El Midaoui et al. 2006). Whereas 
streptozotocin diabetic rats showed a greatly increased 
activity of the branched-chain alpha-ketoacid dehydroge-
nase (BCKDH) complex, the rate-limiting enzyme in the 
catabolism of branched-chain amino acids, such activity 
was normalized by regular exercise (Li et al. 2001). Regu-
lar exercise also attenuated the reduction in hepatic IGF-1 
seen in alloxan-diabetic rats (Leme et al. 2009).

Exercise training also reduced hepatic JNK and NF-
κB, and lessened endoplasmic reticular stress as shown 
by decreasing phosphorylation of the two major metabolic 
markers of this condition (protein-kinase like endoplasmic 
reticular kinase, PERK and eukaryotic initiation factor 2, 
eIF2 phosphorylation) (da Luz et al. 2011). Moreover, the 
glucose stimulation of insulin secretion was decreased in 
rats that were given access to an exercise wheel, without 
any deterioration in glucose homeostasis; activity of the 
insulin-inducible enzyme hepatic glucose kinase (the first 
stage in glucose utilization) was decreased, possibly due to 
the lesser output of insulin (Zawalich et al. 1982). Seven 
days of voluntary wheel running increased the release of 
the hormone-like hepatic insulin sensitizing substance 
(HISS), thus decreasing the peripheral insulin resistance of 
rats (Chowdhury et al. 2013). Aging decreases the hepatic 
output of HISS, but again this could be countered by allow-
ing the rat free access to a running wheel (Chowdhury et al. 
2011). Exercise partially reversed attenuated insulin and 
leptin signalling in chlorpromazine-induced diabetes in rats 
by increasing concentrations of insulin-receptor substrate-2 
protein (Park et al. 2007). In exercised mice, the enhanced 
insulin sensitivity was associated with an increased hepatic 
expression of endosomal adaptor protein APPL1, which 
blocks the association of protein kinase AKT with its 
endogenous inhibitor tribbles-related protein 3 (TRB3), 
and there was a decreased expression of TRB3 (Marinho 
et al. 2012).

In contrast, several metabolic precursors of steatosis 
were seen in hyperphagic obese rats following a sudden 
1-week cessation of exercise. Changes included a decrease 
in hepatic mitochondrial oxidative capacity, an increased 
hepatic expression of lipogenetic proteins, and increased 
levels of hepatic malonyl CoA (Rector et al. 2008).

Additional effects of exercise training upon insulin sen-
sitivity arise outside the liver, from an increase in muscle 
mass, an alteration in muscle quality, the greater energy 
demands of skeletal muscle, and the reduction of vis-
ceral fat stores (with a lesser incorporation of fatty acids 
into the liver). Exercise programmes may also influence 
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hepatic function by modulating myostatin output. Myosta-
tin inhibits muscle growth, thus predisposing to obe-
sity, hepatic insulin resistance and diabetes; it may also 
have more direct effects upon hepatocytes (Allen et al. 
2011). Inactivation of the myostatin gene in mice caused 
hepatic steatosis in the absence of any change in muscle 
mass (Mukherjee et al. 2007), and injection of recombi-
nant myostatin slowed overall growth through a decrease 
in IGF-1 induced AKT phosphorylation, again without 
change of muscle mass (Hittel et al. 2010). Finally, both 
mouse and human liver cell cultures developed apoptosis 
when incubated with recombinant activin, which binds to 
the same receptors as myostatin (Woodruff et al. 1993; 
Chen et al. 2000).

Exercise dose recommendations in hepatic disease

From the investigations discussed above, we may conclude 
that regular aerobic exercise can reduce liver fat levels and 
this benefit can occur, albeit probably to a lesser extent, 
without weight loss. In humans, the majority of therapeutic 
programmes have prescribed exercise at moderate to vigor-
ous intensities for 3–5 days per week (Table 7). However, 
clearer information is needed on the efficacy of resistance 
versus aerobic exercise, the minimum dose of physical 
activity required for benefit, the exercise tolerance of indi-
viduals with NAFLD, and doses of exercise that may lead 
to hepatic injury.

Whilst it appears that regular aerobic exercise of moder-
ate or vigorous intensity is effective in decreasing hepatic 
fat content, vigorous exercise may not always be practical. 
Fatigue (probably centrally mediated) is a frequent con-
comitant of hepatic steatosis (Bergasa et al. 2004), and this 
may reduce a patient’s motivation, or even preclude par-
ticipation in sustained aerobic activity, especially if this is 
vigorous. Moreover, co-morbid obesity can in itself reduce 
functional capacity and discourage involvement in exercise 
programmes, especially if vigorous activity is required. 
In this context, the only study to date that has examined 
predictors of physical activity adoption and adherence in 
a NAFLD cohort concluded that initial confidence in the 
ability to exercise was often low, in part because of a fear 
of falling (Frith et al. 2010). Whilst participation in a super-
vised exercise programme with individuals similar to one-
self is well known to improve self-efficacy and reduce fears 
of falling, in patients where such an approach is found to 
be ineffective, more unconventional tactics may be needed 
to increase daily energy expenditures. One investigation 
demonstrated that a significant reduction of ALT could be 
achieved by regular voluntary and electrical stimulation of 
the quadriceps and hamstring muscles in individuals who 
were resistant to lifestyle intervention (Kawaguchi et al. 
2011).Ta
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Conclusions

Like many body systems, the liver seems well adapted 
to meet the demands of regular moderate physical activ-
ity. However, function becomes impaired with prolonged 
periods of inadequate physical activity, and extremely 
prolonged vigorous exercise can also have adverse conse-
quences, particularly under harsh environmental conditions.

Acute exercise stimulates hepatic glycogenolysis and 
gluconeogenesis, increases the synthesis of some proteins, 
and may cause oxidative stress. Enzymes involved in car-
bohydrate metabolism are up-regulated, and lipogenic 
enzymes are down-regulated. Humoral changes seem the 
primary triggers for these changes, but the possible roles of 
hepatic afferent nerves, cytokines, reactive oxygen species, 
and reduced hepatic blood flow remain to be clarified.

Regular moderate exercise appears to build upon the 
changes induced by a single session of vigorous physical 
activity, although further studies are needed in individu-
als who began training with a low hepatic fat content. In 
obese subjects, hepatic fat content is reduced, hypertrophy 
of hepatic tissue is stimulated, and clearance functions are 
enhanced by exercise training. Blood glucose homeostasis 
is also improved because of increased glycogen storage 
and an up-regulation of enzymes involved in carbohydrate 
metabolism. Fat storage is decreased by a down-regulation 
of lipogenic enzymes and increased lipid metabolism. 
Production of heat shock proteins is increased and the 
secretion of orixogenic proteins is decreased. Increases 
of antioxidant enzymes and stores of reduced glutathione 
enhance resistance to oxidant stress. Triggers of metabolic 
responses to chronic exercise seem modulations of insulin, 
insulin-like growth factor, glucagon and interleukin-6.

Inadequate physical activity predisposes to steatosis and 
associated disorders, including the metabolic syndrome, 
cardiovascular disease and diabetes mellitus. Simple steato-
sis can progress to hepatitis, cirrhosis and even hepatic car-
cinoma. Therapeutic exercise programmes restore insulin 
sensitivity, counteract diabetes and steatosis, and may facil-
itate recovery from hepatitis. However, the optimal exercise 
prescription remains to be defined in terms of efficacy and 
patient acceptance.

In summary, regular moderate physical activity makes 
an important contribution to the maintenance of optimal 
liver function, and this seems one more good reason to 
commend daily exercise as an important part of a healthy 
lifestyle.

References

Ahlborg G, Felig P, Hagenfel L, Hendler R, Wahren J (1974) Sub-
strate turnover during prolonged exercise in man. Splanchnic 

and leg metabolism of glucose, free fatty-acids, and amino-
acids. J Clin Invest 53(4):1080–1090

Albu JB, Hellbronn LK, Kelley DE, Smith SR, Azuma K, Berk 
ES, Pi-Sunyer FX, Ravussin E, Look Ahead Research Group 
(2010) Metabolic changes following a 1-year diet and exer-
cise intervention in patients with type 2 diabetes. Diabetes 
59:627–633

Alisi A, Locatelli M, Nobili V (2010) Nonalcoholic fatty liver disease 
in children. Curr Opin Clin Nutr Metab Care 13(4):397–402

Allen DL, Hittel DS, McPherron AC (2011) Expression and function 
of myostatin in obesity, diabetes, and exercise adaptation. Med 
Sci Sports Exerc 43(10):1828–1835

Andersen H, Borre M, Jakobsen J, Andersen PH, Vilstrup H (1998) 
Decreased muscle strength in patients with alcoholic liver cir-
rhosis in relation to nutritional status, alcohol abstinence, liver 
function, and neuropathy. Hepatology 27(5):1200–1206

Angulo P (2002) Non-alcoholic fatty liver disease. New Engl J Med 
346:1221–1231

Anthony TG, Anthony JC, Lewitt MS, Donovan SM, Layman 
DK (2001) Time course changes in IGFBP-1 after treadmill 
exercise and postexercise food intake in rats. Am J Physiol 
280:E650–E656

Aoi W, Naito Y, Hang LP, Uchiyama K, Akagiri S, Mizushima K, 
Yoshikawa T (2011) Regular exercise prevents high-sucrose 
diet-induced fatty liver via improvement of hepatic lipid metab-
olism. Biochem Biophys Res Comm 413(2):330–335

Apple FS, McGue MK (1983) Serum enzyme changes during mara-
thon training. Am J Clin Pathol 79(6):716–719

Arase Y, Suzuki F, Ikeda K, Kumada H, Tsuji H, Kobayashi T (2009) 
Multivariate analysis of risk factors for the development of type 
2 diabetes in nonalcoholic fatty liver disease. J Gastroenterol 
44(10):1064–1070

Askew EW, Barakat H, Kuhl GL, Dohm GL (1975) Response of 
lipogenesis and fatty acid synthetase to physical training and 
exhaustive exercise in rats. Lipids Health Dis 10(8):491–496

Atalay M, Oksala NKJ, Laaksonen DE, Khanna S, Nakao C, Lappa-
lainen J, Roy S, Hanninen O, Sen CK (2004) Exercise training 
modulates heat shock protein response in diabetic rats. J Appl 
Physiol 97:805–811

Aydin C, Ince E, Koiparan S, Cangul IT, Naziroglu M, Ak F (2005) 
Protective effects of long term dietary restriction on swimming 
exercise-induced oxidative stress in the liver, heart and kidney 
of rat. Cell Bioch Funct 25(2):129–137

Baba CS, Alexander G, Kalyani B, Pandey R, Rastogi S, Pandey A, 
Gourdas C (2006) Effect of exercise and dietary modification 
on serum aminotransferase levels in patients with nonalcoholic 
steatohepatitis. J Gastroenterol Hepatol 21(1 Pt 1):191–198

Bacchi N, Moghetti P (2013) Exercise for hepatic fat accumulation in 
type 2 diabetic subjects. Int J Endocrinol ID 309191:1–5

Bacchi E, Negri C, Targher G, Faccioli N, Lanza M, Zoppini G, Zano-
lin E, Schena F, Bonora E, Moghetti P (2013) Both resistance 
training and aerobic training reduce hepatic fat content in type 
2 diabetic subjects with nonalcoholic fatty liver disease (the 
RAED2 randomized trial). Hepatol 58(4):1287–1295

Bae JC, Suh S, Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Kim 
SW, Hur KY, Kim JH, Lee M-S, Lee MK, Kim K-W, Lee W-Y 
(2012) Regular exercise is associated with a reduction in the 
risk of NAFLD and decreased liver enzymes in individuals with 
NAFLD independent of obesity in Korean adults. PLoS One 
7(10):e46819

Balasubramian K, Mawer GE, Simons PJ (1970) The influence of 
dose on the distribution and elimination of amylobarbitone in 
healthy subjects. Br J Pharmacol 40(3):578–579

Baldwin KM, Reitman JS, Terjung RL, Winder WW, Holloszy JO 
(1973) Substrate depletion in different types of muscle and liver 
during prolonged running. Am J Physiol 225(5):1045–1050



35Eur J Appl Physiol (2015) 115:1–46 

1 3

Banzet S, Koulmann N, Simler N, Chapot R, Serrurier B, Peinne-
quin A, Bigard X (2009) Control of gluconeogenic genes dur-
ing intense/prolonged exercise: hormone independent effect of 
muscle-derived IL-6 on hepatic tissue and PEPCk mRNA. J 
Appl Physiol 107(6):1830–1839

Barsalani R, Chapados NA, Lavoie J-M (2010) Hepatic VLDL-TG 
production and MTP gene expression are decreased in ovariec-
tomized rats: effects of exercise training. Hormone Metabol Res 
42(12):860–867

Barsalani R, Riesco E, Lavoie JM, Dionne IJ (2013) Effect of exercise 
training and isoflavones on hepatic steatosis in overweight post-
menopausal women. Climacteric 16(1):88–95

Bay Nielsen H, Secher NH, Clemmesen O, Ott P (2005) Maintained 
cerebral and skeletal muscle oxygenation during maximal exer-
cise in patients with liver cirrhosis. J Hepatol 43(2):266–271

Beard ME, Hamer JW, Hamilton G, Maslowski AH (1979) Jogger’s 
heat stroke. NZ Med J 89(631):159–161

Behrens G, Matthews CE, Moore SC, Freedman ND, McGlynn KA, 
Everhart JE, Hollenbeck AR, Leitzmann MF (2013) The asso-
ciation between frequency of vigorous physical activity and 
hepatobiliary cancers in the NIH-AARP diet and health study. 
Eur J Epidemiol 28(1):55–66

Bejma J, Ramires P, Ji LL (2000) Free radical generation and oxida-
tive stress with ageing and exercise: differential effects in the 
myocardium and liver. Acta Physiol Scand 169(4):343–351

Bellentani S, Saccoccio G, Masutti F, Croce LS, Brandi G, Sasso 
F, Cristanini G, Tiribelli C (2000) Prevalence of and risk fac-
tors for hepatic steatosis in Northern Italy. Ann Intern Med 
132(2):112–117

Berg A, Keul J (1982) Serum enzymkinetik während und nach inten-
siver Langzeitbelastung (Serum enzyme kinetics during and 
after endurance exercise). Dtsch Z fur Sportmed 33:12–17

Bergasa NV, Mehlman J, Bir K (2004) Aerobic exercise: a potential 
therapeutic intervention for patients with liver disease. Med 
Hypoth 62(6):935–941

Berglund ED, Lee-Young RS, Lustig DG, Lynes SE, Donahue 
EP, Camacho RC, Meredith ME, Magnuson MA, Char-
ron MJ, Wasserman DH (2009) Hepatic energy state is regu-
lated by glucagon receptor signaling in mice. J Clin Invest 
119(8):2412–2422

Berglund ED, Lustig DG, Baheza RA, Hasenour CM, Lee-Young 
RS, Donahue EP, Lynes SE, Swift LL, Charron MJ, Damon 
BM, Wasserman DH (2011) Hepatic glucagon action is essen-
tial for exercise-induced reversal of mouse fatty liver. Diabetes 
60(11):2720–2729

Bergstrom J, Hermansen L, Hultman E, Saltin B (1967) Diet, mus-
cle glycogen and physical performance. Acta Physiol Scand 
71(2):140–150

Bermon S, Ferrari P, Bernard P, Altare S, Dolisi C (1999) Responses 
of total and free insulin-like growth factor-I and insulin-like 
growth factor binding protein-3 after resistance exercise and 
training in elderly subjects. Acta Physiol Scand 165(1):51–56

Bexfield NA, Parcell AC, Nelson WB, Foote KM, Mack GW (2009) 
Adaptations to high-intensity intermittent exercise in rodents. J 
Appl Physiol 107(3):749–754

Boel J, Andersen LB, Hansen SH, Dossing M (1984) Hepatic drug 
metabolism and physical fitness. Clin Pharmacol Therap 
36(1):121–126

Bonekamp S, Barone B, Clark JM, Stewarts KJ (2008) The effect 
of exercise training intervention on hepatic steatosis. Hepatol 
48(S1):806A

BØrsheim E, Knardahl DS, HØstmark AT (1999) Short-term effects of 
exercise on plasma very low density lipoproteins (VLDL) and 
fatty acids. Med Sci Sports Exerc 31(4):522–530

Botezelli JD, Mora RF, Dalia RA, Moura LP, Cambri LT, Ghezzi 
AC, Voltarelli FA, Mello MA (2010) Exercise counteracts fatty 

liver disease in rats fed on fructose- rich diet. Lipids Health Dis 
9:116 (0n-line publication)

Bouchard C, Shephard RJ (1994) Physical activity, fitness and health: 
the model and key concepts. In: Bouchard C, Shephard RJ, 
Stephens T (eds) Physical activity, fitness and health. Human 
Kinetics, Champaign, pp 77–88

Bozzetto L, Prinster A, Annuzzi G, Costagilola L, Mangione A, Vitelli 
A, Mazzarella R, Longobardo M, Mancini M, Vigorito C, Ric-
cardi G, Rivellese AA (2012) Liver fat is reduced by isoener-
getic MUFA diet in a controlled random study in type 2 diabetic 
patients. Diabetes Care 35(7):1429–1435

Brinkley TE, Halverstadt A, Phares DA, Ferrell RE, Prigeon RL, 
Hagberg JM, Goldberg AP (2011) Hepatic lipase gene 
-514CT variant is associated with exercise training-induced 
changes in VLDL and HDL by lipoprotein. J Appl Physiol 
111(6):1871–1876

Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, 
Cohen JC, Grundy SM, Hobbs HH (2004) Prevalence of hepatic 
steatosis in an urban population in the United States: impact of 
ethnicity. Hepatol 40(6):1387–1395

Bunch TW (1980) Blood test abnormalities in runners. Mayo Clin 
Proc 55(2):113–117
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