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Introduction

During the evolution of homo sapiens, selection pressures 
probably favoured individuals capable of regulating body 
temperature, and who possessed the intellectual capacity 
to develop behavioural responses that resulted in protec-
tion from, and the modification of, the thermal environment 
(Heinrich 1977; Crompton et al. 1978). One can only spec-
ulate regarding the dominant characteristics that ensured 
survival, but it is reasonable to assume that these co-existed 
with other favourable attributes, such as a sizeable endur-
ance capacity (Ruben 1995; Bennett et al. 2000). Integral 
within this natural selection was the structural and physi-
ological modifications of the hands and feet, and it is the 
roles that these appendages play in temperature regulation 
that is the focus of this review.

Hands and feet evolved through their roles in locomo-
tion, food gathering, tool use and the provision of sensory 
feedback (Lovejoy et al. 2009). Indeed, hand evolution was 
probably linked with tool use (Marzke and Marzke 2000; 
Young 2003), with hands becoming tools with which the 
brain manipulated objects (Putz and tuppek 1999; Mar-
zke 1992; van Duinen and Gandevia 2011). the continual 
refinement of the intricate neural, vascular and musculo-
skeletal structures provided appendages possessing remark-
able dexterity. Similarly, the feet evolved from grasp-
ing appendages, driven by adopting bipedal locomotion 
(Harcourt-Smith and Aiello 2004; Preuschoft 2004; wang 
and Crompton 2004). thus, from small arboreal graspers 
evolved a relatively large, bipedal, homeothermic species 
with considerable physical endurance. However, homo 
sapiens could not have survived unless they also possessed 
effective autonomic and behavioural mechanisms for heat 
conservation and dissipation. whilst much is known about 
these human capacities, detail pertaining to the roles of the 

Abstract the purpose of this review is to describe the 
unique anatomical and physiological features of the hands 
and feet that support heat conservation and dissipation, and 
in so doing, highlight the importance of these appendages 
in human thermoregulation. For instance, the surface area to 
mass ratio of each hand is 4–5 times greater than that of the 
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theoretical maximal mass flow of thermal energy of 6.0 w 
(136 w m2) to each hand for a 1 °C thermal gradient. For 
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excellent radiators, insulators and evaporators.
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hands and feet within these processes is fragmentary, and 
this review is an attempt to fill that gap as well as building 
upon existing knowledge. Also provided is a description of 
the morphological, physiological and biophysical charac-
teristics of the hands and feet as participants within an inte-
grated temperature regulatory system.

Morphological characteristics

the dry and evaporative exchanges of thermal energy 
within the body and with the thermal environment are dic-
tated by temperature and water vapour pressure gradients, 
the size of each exposed surface relative to its mass, and by 
the convective (mass flow) and conductive delivery of heat 
to the superficial tissues. thus, morphological characteris-
tics exert a powerful influence on heat exchange.

Anatomical structures

the human hand contains 27 bones, and the foot 26, which 
are arranged in three groups, of which the digits can be 
wholly exposed to the surrounding environment (Standring 
2008; for online and interactive hand and foot resources, 
see: Mahadevan et al. (2000) and McGrouther et al. 
(2000)). the bones make up ~20 % (males) and 30 % 

(females) of the hand mass, and about 28 % (males) and 
31 % (females) of the foot mass (table 1). these tissues 
behave as heat sinks.

Active skeletal muscles can liberate large amounts of 
thermal energy. However, since the principal muscles that 
control the foot reside within the leg (Standring 2008), and 
since the 11 intrinsic foot muscles are only responsible for 
fine toe movements, there is no sizeable heat source within 
the foot. thus, thermal energy for the feet comes mainly 
from other sources which, in combination with their fre-
quently intimate contact with large heat sinks, increases 
their susceptibility to cold injury (Golden et al. 2013). nev-
ertheless, this configuration supports survival, since inca-
pacitation of the foot due to protracted hypothermia does 
not result in immobilisation. this is not so for the hand. It 
has more than 30 muscles (Standring 2008), with ten con-
trolling the thumb, and the rest producing hand and finger 
movements. nineteen of these muscles are found within 
the hand, and these are responsible for precise finger move-
ments and object manipulation. these muscles represent 
20–30 % of the hand mass (female–male dimensions); 
they are relatively inactive and poorly insulated (table 1). 
Consequently, the hand also has limited heat production 
capability, and when significantly cooled, hand functions 
become adversely affected (Hunter et al. 1952; Brajkovic 
and Ducharme 2003; Zander and Morrison 2008; Daanen 

Table 1  the morphological characteristics and typical tissue compositions of one hand and one foot of an average adult man (79.1 kg, 1.72 m) 
and woman (66.2 kg, 1.60 m)

Authors’ compilation using data from 49 countries (height) and seven countries (body mass)
a Shana and Bohn (2003)
b Hand: Asian sample (N = 270; Hsu and Yu 2010) adjusted to the average male and female dimensions
c Foot: Asian sample similarly adjusted (N = 270; Yu and tu 2009)
d the volar hand surface was assumed to represent 39 % of the hand (Hsu and Yu 2010), whilst the volar foot was taken as 79 % of the total foot 
surface area (Yu et al. 2010)
e Mayrovitz et al. (2005, 2006)
f Martin (1984)
g Derived by subtraction using fractional mass (after Allwood and Burry 1954)
h Derived using appendage volumes and basal volume-specific blood flows: hand = 6.7 mL 100 mL−1 min−1; foot = 2.8 mL 100 mL−1 min−1 
(Caldwell et al. 2014)

Attributes Hand Foot

Male Female Male Female

Mass (kg)a 0.447 0.280 1.032 0.720

Surface area (m2)b, c, d 0.044 0.037 0.071 0.060

Surface area to mass ratio (m2 kg−1) 0.098 0.133 0.069 0.084

volume (mL)e 365.0 299.3 860.0 705.2

Bone mass (kg)f 0.093 0.085 0.296 0.226

Muscle mass (kg)g 0.144 0.058 0.227 0.148

Skin mass (kg)g 0.076 0.048 0.206 0.144

thermoneutral blood volume (mL)h 24.0 20.0 24.0 20.0

Other soft tissue mass (kg)g 0.089 0.062 0.268 0.187
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2009). thus, lower-limb function can be retained, albeit 
impaired, long after losing fine hand movements.

Segmental surface areas and masses

the whole-body surface area to mass ratio for an aver-
age, adult man and woman is 0.024–0.025 m2 kg−1 [male–
female: assuming 79.1 kg, 1.72 m; and 66.2 kg, 1.60 m, 
respectively (table 1; also see ISO/tR 7250-2 2010)], with 
a larger ratio associated with a greater potential for heat 
exchange. when separate body segments are analysed, one 
finds considerable variability in these ratios. For instance, 
the surface area to mass ratio of the hand, relative to the 
whole body, is 4.1–5.2 times greater (male–female), whilst 
that of the foot is 2.9–3.2 times greater (male–female; 
table 1). Yet the combined surface areas of both hands 
and both feet represent only 4.4–4.6 % (female–male) and 
7.1–7.4 % (female–male) of the body’s total surface area 
(respectively), making these appendages morphologically 
well suited for dissipating heat. Indeed, the feet, and espe-
cially the hands, are excellent radiators if sufficient heat 
can be delivered by the blood (convective delivery or mass 
heat flow).

Neural connections

A detailed description of the neurophysiology of the hands 
and feet is beyond the current scope. However, a brief over-
view of this topic provides important background informa-
tion for understanding thermal sensory feedback, and the 
control of the thermoeffectors within these appendages.

Innervation of the hands and feet

the somatosensory nerves that innervate the hands and 
feet provide common pathways not only for autonomic 
and motor control, but also for sensory feedback. three 
such nerves innervate each hand (Standring 2008). Firstly, 
and perhaps of greatest functional significance, is the ulnar 
nerve, which enters the hand ventrally, passing below the 
palmarcarpal ligament and dividing into deep and super-
ficial segments. Since it innervates most of the intrinsic 
hand muscles, except those responsible for the delicate 
digit movements (Standring 2008), then the preservation of 
the functional integrity of the hand relies upon the protec-
tion of this nerve. the second major pathway is the median 
nerve. It also passes below the palmarcarpal ligament and 
is the most important sensory nerve of the hand (Standring 
2008). In addition, it innervates the muscles that control 
fine thumb and finger movements. Finally, there is the 
superficial branch of the radial nerve, which enters the hand 
at the base of the thumb. It carries the cutaneous sensory 

information from the dorsolateral surface of the hand as 
well as from parts of the thumb and the first two fingers 
(Standring 2008).

Each foot has five somatosensory nerves (Standring 
2008). Branches of the tibial nerve (medial calcaneal, 
medial and lateral plantar nerves) innervate the heel, the 
sole and the first four toes. these enter from behind the 
medial malleolus, with the lateral plantar nerve controlling 
the intrinsic foot muscles (Standring 2008). Secondly, the 
superficial fibular nerve traverses the dorsal foot, carrying 
most of the cutaneous sensory information for that surface. 
the deep fibular nerve innervates three muscles and car-
ries some sensory afferents from the first and second toes 
(Standring 2008). Finally, two nerves innervate the medial 
ankle and upper foot (saphenous nerve) and the lateral 
aspect of the foot (sural nerve; Standring 2008).

thermoafferent feedback

Thermoreceptors

thermoreceptors are located throughout the deep and 
superficial structures of the body (Boulant 2011; Pierau 
2011) with the latter providing our first source of thermal 
awareness. the warm- and cold-sensitive receptors (free 
nerve endings) are not homogeneously distributed across 
the skin surface (Hardy and Oppel 1938), and all are found 
in a three-dimensional configuration within the lower epi-
dermis (Iggo 1969; Hensel et al. 1974; Ivanov et al. 1986).

One generally considers the volar (glabrous) aspects of 
the fingers to possess greater thermosensitivity, though this 
is perhaps more due to habitual hand use to obtain sensory 
feedback than it is to their thermoreceptor density. Indeed, 
Zotterman (1959) identified 7–9 cold-sensitive spots per 
cm2 within the skin of the dorsal fingers and hands, but only 
2–5 spots cm−2 for the volar skin. the feet have a similar 
distribution (dorsal: 5.6 spots cm−2; volar: 3.4 spots cm−2), 
whilst the warm-sensitive sensors are more evenly distrib-
uted (0.4–1.7 spots cm−2 across all sites; Zotterman 1959). 
Furthermore, the cold-sensitive receptors respond to tem-
peratures ranging from −5 to 43 °C, whilst warm-sensitive 
sensors operate over 28–48 °C (Hensel 1981). this greater 
response range, in combination with their greater density, 
is of considerable functional significance during cold expo-
sure and defence.

Thermoafferent pathways and thermosensitivity

Most cutaneous sensory flow from the hand occurs through 
the radial and median nerves, whilst that from the foot is 
carried in the tibial (plantar surface), superficial fibular 
(dorsal surface) and saphenous nerves (laterodorsal ankle 
surface; Standring 2008). Of these two appendages, the 
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nerves of the hands are better protected, with those of the 
feet being more vulnerable. For instance, the tibial and 
sural nerves pass behind the malleoli (Standring 2008), and 
are relatively well protected. However, poorly designed 
shoes that come into firm contact with the malleoli may 
impinge upon these nerves. Moreover, the superficial fib-
ular nerve passes across the upper surface of the foot, so 
shoes that are tight across that surface may also adversely 
affect neural function.

Cutaneous thermoafferents travel to the spinal cord, with 
neurons from the hands entering the dorsal (sensory) roots 
of the sixth, seventh and eighth cervical spinal nerves, and 
those from the foot feeding into the first sacral and the fifth 
lumbar spinal nerves (Michael-titus et al. 2007; Standring 
2008). this arrangement means that anatomically related 
skin regions share common neural pathways (dermatomes). 
the spinal cord is thermosensitive, as well as being a relay 
through which signals pass and undergo some synaptic 
modification and convergence (Simon 1974; Simon et al. 
1998).

within the spinal cord, second-order thermal affer-
ents ascends via the lateral spinothalamic tract (willis 
et al. 1973; Brück and Hinkel 1990), eventually reaching 
the somatosensory cortex and the hypothalamus. we con-
sciously perceive our environment from sensory feedback 
to the former, the organisation of which enables discrimi-
nation among different skin surfaces. Indeed, the sensory 
acuity of some surfaces is much greater than that of others, 
due to variations in peripheral innervation density and also 
the volume of the somatosensory cortex assigned to those 
regions. thus, sites with superior acuity have a greater 
innervation density as well as a greater cortical representa-
tion (Penfield and Rasmussen 1952). these are both char-
acteristics of the hands and fingers, which, along with the 
face, are our most sentient of structures. the feet and toes 
also have considerable sensory importance. Accordingly, 
feedback from any of these surfaces heavily influences 
thermal sensation, which appears to be age dependent (tay-
lor et al. 1995). In the hypothalamus, sensory neurons syn-
apse with both the warm- and cold-sensitive hypothalamic 
neurons (Boulant and Hardy 1974), and the integration of 
these signals gives rise to the autonomic regulation of body 
temperature by controlling heat loss, heat conservation and 
thermogenesis (werner et al. 2008).

At this point, it is necessary to briefly review the rela-
tive importance of thermal feedback from the hands 
and feet (physiological thermosensitivity), since animal 
research has established regional differences in cutaneous 
thermosensitivity (Hales and Hutchinson 1971; Ingram 
and Legge 1972; necker 1977). In humans, however, dif-
ferential cutaneous thermosensitivities have not been con-
vincingly demonstrated, despite several attempts (nadel 
et al. 1973; Crawshaw et al. 1975; werner and Heising 

1990; Bothorel et al. 1991). the problem was that ther-
mosensitivity was evaluated using closed-loop methods, 
in which selected (relatively small) skin sites were heated 
and cooled, but the temperatures of the untreated surfaces 
were not controlled. Under such conditions, local heating 
or cooling will elicit generalised thermoeffector responses 
which, in turn, modify the temperatures of larger non-
treated surfaces, modifying thermal feedback and altering 
thermoeffector function. For example, forearm heating can 
increase whole-body sweating and evaporative heat loss. 
this lowers the mean skin temperature and can counteract 
the sudomotor responses induced by the initial treatment.

to address this limitation, Cotter and taylor (2005) 
examined cutaneous thermosensitivities for sweating in 
supine, resting individuals during the local warming and 
cooling of ten skin sites. throughout each manipulation, 
the deep-body (core) and remaining skin temperatures 
were clamped above the sweat threshold (Cotter et al. 
1995; Patterson et al. 1998), opening feedback loops from 
untreated skin and ensuring that changes in sweating could 
be assigned solely to feedback arising from the treated 
region. with respect to the hands and feet, neither site dif-
fered significantly in thermosensitivity from each other, or 
from any other treated site (Cotter and taylor 2005). that 
is, local thermal stimulation displayed equivalent and mini-
mal autonomic impact on whole-body sweating. However, 
these open-loop experiments have not yet been performed 
to evaluate local cutaneous thermosensitivies with respect 
to cutaneous blood flow.

thermoefferent pathways

Sweating and cutaneous vasomotor responses are driven 
by both thermal (Kuno 1938; Johnson and Kellogg 2010; 
Roddie 2011) and non-thermal stimulations (Kenny and 
Journeay 2010; Kondo et al. 2010). thus, whilst whole-
body heating induces sweating and cutaneous vasodilata-
tion, the subsequent initiation of exercise is accompanied 
by a reduction in cutaneous blood flow and a further eleva-
tion in sweat secretion (Christensen and nielsen 1942; van 
Beaumont and Bullard 1963). In this case, neural feed-
forward (central command) emanating from the rostral 
brain simultaneously activates the motor and sympathetic 
neurons (Kondo et al. 2010). these generalisations apply 
also to the thermoeffectors of the hands and feet, with the 
thermal sudomotor and cutaneous vascular responses being 
controlled by the preoptic anterior hypothalamus (teague 
and Ranson 1936; Hardy et al. 1964; Boulant et al. 1989).

the thermally activated sudomotor efferents descend 
through the brain stem and spinal tract, terminating in the 
lateral horn region and synapsing with neurons that inner-
vate the eccrine sweat glands (Sato 1977). the classi-
cal work of List and Peet (1938) first revealed the spinal 
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segments through which these efferents left the spine, with 
thoracic segments t2–t8 innervating sweat glands of 
the upper limbs, and the lower thoracic and lumbar seg-
ments (t11–L2) relaying sudomotor efferents to the lower 
extremities. these neurons are post-ganglionic, sympa-
thetic fibres producing the neurotransmitter acetylcholine 
(Schotzinger and Landis 1988) which targets the mus-
carinic receptors of the clear cells. Efferent signals reach 
the sweat glands in waves, such that each sudomotor unit 
secretes sweat in a pulsatile fashion, with a period of 0.60–
0.74 s (Bini et al. 1980; nilsson et al. 1980). this secre-
tion pattern occurs in synchrony with motor units innervat-
ing other skin regions (nakayama and takagi 1959; van 
Beaumont et al. 1966), thus confirming their autonomic 
linkage with the hypothalamus. Moreover, secretions from 
the volar and dorsal (non-glabrous) surfaces of the hands 
and feet are also synchronised (van Beaumont et al. 1966; 
taylor and Machado-Moreira 2013), although this is not 
always observed (nakayama 1969).

An absence of this sudomotor synchronisation between 
the volar and dorsal surfaces of the hands and feet is con-
sistent with different pathways innervating each area, 
which may, in turn, be activated by different central mech-
anisms. Furthermore, it might indicate that different con-
trol centres modulate sweating from each skin surface, and 
some have hypothesised that dorsal secretion is driven by 
the hypothalamic thermoregulatory centre whilst a separate 
centre controls psychological sweating from the volar sur-
faces (Darrow 1937; Kuno 1956; Ogawa 1975). It has even 
been proposed that these psychological responses were 
noradrenergically mediated (Robertshaw 1977; nakazato 
et al. 2004). Indeed, this hypothetical modulation of ther-
mal and non-thermal sweating has become the frequently 
accepted teaching (Iwase et al. 1997), although those views 
are not held by the current authors, and these theories are 
explored and challenged within a subsequent section of this 
communication.

It has long been known that two separate neural mecha-
nisms modify the dilatation of cutaneous arterial blood 
flow (passive and active dilatation: Kellogg 2006; Roddie 
2011). Indeed, the research legacy behind this knowledge 
can be traced to Bernard (1852), and readers are directed 
to reviews by Rowell (1993), Charkoudian (2003), Kellogg 
(2006) and Roddie (2011), with the following text provid-
ing a distillation specific to the control of blood vessels that 
perfuse the skin of the hands and feet.

For the volar surfaces of the hands, and by default, also 
those of the feet, only one control mechanism modulates 
cutaneous blood flow (Roddie 2011), with this pathway 
first being identified through the research of Lewis and 
Pickering (1931) and then by Roddie et al. (1957b). this 
mechanism operates via active constriction during both 
thermoneutral and cold states, with strong vasoconstriction 

also seen during various non-thermal stresses, such as exer-
cise (Blair et al. 1961). therefore, in thermoneutral condi-
tions, blood flow to the volar skin surfaces is minimal, like 
that for the nose, lips and ears (Roddie 2011). thus, the 
vasoconstricted state is normal for these areas, and venous 
pooling is also minimal. Constriction is brought about 
through the tonic release of noradrenaline from the sym-
pathetic fibres that innervate these blood vessels (Roddie 
2011). noradrenaline activates both the alpha1 and alpha2 
receptors that respectively dominate the arterial and venous 
vessels of the volar skin surfaces (Bodelsson et al. 1990). 
In warm–hot conditions, this sympathetic vaso- and ven-
omotor tone is withdrawn, leading to a pressure-mediated 
(passive) dilatation (Blair et al. 1960).

On the dorsal surfaces of the hands, and again presum-
ably the feet, there exist active vasodilatory mechanisms 
(Johnson et al. 1995). when the body is heated, the cutane-
ous arterioles actively dilate, with the corresponding smooth 
muscle activation reducing the vascular transmural pres-
sure, and facilitating a cutaneous blood flow elevation (Rod-
die et al. 1957a). Under thermoneutral conditions, there is 
some tonic constrictor tone to these skin regions; however, 
the active dilatory pathways are silent (Roddie 2011). Cool-
ing induces greater noradrenergic constriction, but does not 
influence the vasodilatory mechanism (Roddie 2011).

Vasomotor characteristics

Blood vessels of the hands and feet

The arteries

Blood flow to the hand is provided by the brachial artery, 
which terminates below the elbow, dividing into the radial 
and ulnar arteries (Standring 2008). the former passes 
over the wrist to the dorsal hand, then down through the 
first dorsal interosseous muscle to the palm. near the fifth 
metacarpal, the radial artery forms the deep palmar arch 
and joins the deep branch of the ulnar artery. the superfi-
cial palmar branch of the radial artery provides blood to the 
thenar muscles. On the palmar aspect, the radial artery also 
gives rise to smaller vessels that feed the thumb and index 
finger. the deep palmar arch is formed by vessels from 
the radial and ulnar arteries. three metacarpal arteries run 
along the second, third and fourth interossei, and join the 
digital branches of the superficial palmar arch (Standring 
2008). the latter divides to form the common palmar dig-
ital branches that descend on the lumbricals and join the 
corresponding palmar metacarpal artery. the main blood 
vessels for the fingers now arise and run down both sides of 
each digit before eventually terminating in the subcutane-
ous tissues of the finger tips (Standring 2008).



2042 Eur J Appl Physiol (2014) 114:2037–2060

1 3

Each foot receives blood from arteries that enter behind 
each malleolus (medial and lateral malleolar arteries), 
and across the dorsal foot surface (dorsalis pedis artery; 
Standring 2008), and their positioning, with respect to the 
bones, has significant implications for shoe design. thus, 
poorly designed or incorrectly fitted footwear may reduce 
blood flow through these arteries. Along the dorsal foot, 
dorsalis pedis forms the medial and lateral tarsal arter-
ies, the arcuate artery and the first dorsal metatarsal artery 
(Standring 2008). this last vessel supplies blood to the first 
and second toes, whilst the second, third and fourth dorsal 
metatarsal arteries supply both their respective digits plus 
one neighbour. Eventually, each gives rise to two dorsal 
digital arteries. On the plantar surface, the medial plantar 
artery (a sub-division of the posterior tibial artery) enters 
below the medial malleolus (Standring 2008). this vessel 
supplies the foot muscles, the skin of the medial sole and 
the three medial toes. the lateral plantar artery travels to 
the calcaneus, the adjacent muscles, the plantar tarsal and 
tarso-metatarsal joints, and the lateral sole. Eventually it 
joins dorsalis pedis, forming the plantar arch deep in the 
foot. the four plantar metatarsal arteries are now formed, 
feeding the digital arteries as per the dorsal metatarsal 
arteries. However, the plantar digital arteries are the major 
arterial source for the toes (Standring 2008).

Capillaries and arteriovenous anastomoses

Cutaneous capillaries typically have internal diameters of 
~10 µm (Molyneux and Bryden 1981), and it is through 
the walls of these vessels that exchanges occur between 
the blood and the interstitial compartment (Starling 1896). 
In the skin, capillaries are in the papillary region, looping 
up towards the surface before descending to the superficial 
venous plexus (Standring 2008). In the fingers and toes, the 
density of these capillaries is quite variable. For instance, 
Zhong et al. (2000) reported a fingernail capillary density 
of ~65 vessels mm−2, whilst Bukhari et al. (2000) found 
6.5 vessels mm−2 on the nailfold. However, perhaps the 
most extensive work for the hand still remains that of Grant 
and Bland (1931), and these data are presented in table 2. 
In the foot, Mørk et al. (2002) observed toenail bed capil-
lary densities of 54 vessels mm−2, and Zhong et al. (2000) 
reported 38 vessels mm−2 on the big toe. For the whole 
foot, Lamah et al. (1999) found average densities of 34 ves-
sels mm−2. From this evidence, one may conclude that 
capillary densities of the hands and feet are in the range 
40–70 vessels mm−2.

these papillary capillaries are aligned perpendicularly 
to their arterial (rete subpapillare) and venous connec-
tions (Standring 2008), optimising the gradient for heat 
exchange. Since the papillae are not well perfused, then 
epidermal temperatures are heavily influenced by ambient 

temperature, and heat exchange with the blood is maxim-
ised (Conrad 1971). Moreover, since capillary flow is very 
slow (Hales 1985), then the blood rapidly equilibrates with 
tissue temperature.

However, whilst the papillary capillaries facilitate heat 
dissipation, this function is enhanced in a multiplica-
tive manner by the cutaneous arteriovenous anastomoses 
that exist within the hands and feet. these vessels, first 
described by Sucquet (1862) and Hoyer (1877), are found 
in the skin of the hands, feet, ears, lips and nose, and almost 
exclusively on the glabrous surfaces (Clark 1938; nagasaka 
et al. 1987a). the most complex and largest anastomoses 
are believed to exist within the palms and the soles (Clark 
1938; Abramson 1965). Although, Grant and Bland (1931) 
found that anastomoses were most abundant in the nail 
beds of the hands and feet (500–600 anastomoses cm2), 
with the volar surfaces of the second toes being the next 
most plentiful sites (290 anastomoses cm2), followed by the 
volar aspect of distal phalanges of the fingers (150 anas-
tomoses cm2). the palmar and plantar surfaces seem to 
possess widely variable distributions, ranging from 30 to 
200 anastomoses cm2. However, most of the dorsal surfaces 
of the hands and feet appear not to have these arteriovenous 
anastomoses (Grant and Bland 1931). Readers are directed 
to Masson (1937) and Clark (1938) for both a critique of, 
and elaboration upon, these observations.

these anastomotic vessels are found deeper than the 
papillary capillaries, and they behave as capillary by-pass 
vessels and have internal diameters ranging from 25 to 
125 µm (Hales 1985). these characteristics appear coun-
ter-intuitive, given the function of anastomoses in promot-
ing heat loss. However, the paradox disappears when one 
considers volar blood flow during heat-induced vasodilata-
tion. In this state, papillary blood flow rises, and the anas-
tomotic vessels passively dilate, producing a much larger 
elevation in cutaneous blood flow. this occurs because 
dilatation of a vessel with a radius that is perhaps tenfold 
larger than a capillary, would, for the same pressure head, 
elicit a 10,000-fold greater blood flow elevation over the 
same tube length (Poiseuille’s law: nelms 1963; Molyneux 

Table 2  Capillary densities for the skin of the hand (Grant and Bland 
1931)

Site Capillary density 
(vessels mm−2)

Hand (palmar: fifth metacarpo-phalangeal joint) 77

Finger (volar, medial phalanx) 76

Hand (palmar: thenar eminence) 69

Finger (volar, distal phalanx) 57

Finger (dorsal, medial phalanx) 52

Hand (dorsal) 47
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and Bryden 1981). therefore, whilst this blood by-passes 
the more superficial papillary capillaries, it actually deliv-
ers more blood to the slower moving, deep venous plexus. 
Since the tissues surrounding these plexuses are poorly 
insulated, then heat exchanges with the ambient medium 
are enhanced (Midtgåtrd 1980; nuzzaci et al. 1999).

Conversely, maximal constriction of the arterioles and the 
anastomoses reduces acral cutaneous blood flow to levels 
less than required to support basal metabolism (Abramson 
1965), and heat is conserved. thus, extremes of cold can 
result in protracted under-perfusion, giving rise to poten-
tially debilitating consequences, including disturbances to 
manual dexterity, peripheral pain, work performance, and 
non-freezing and freezing cold injuries (Enander and Hygge 
1990; Heus et al. 1995; Stocks et al. 2004; Imray et al. 
2011; Golden et al. 2013). However, the anastomoses will 
intermittently open (cold-induced vasodilatation), with each 
blood flow surge helping to protect the surrounding tissues 
(wilson and Goldman 1970; nuzzaci et al. 1999; Daanen 
2003). Readers are directed to supplementary resources for 
further discussion on cold-induced vasodilatation (Edwards 
and Burton 1960; Livingstone 1976; Bergersen et al. 1999; 
Daanen and Ducharme 1999; O’Brien 2005; van der Struijs 
et al. 2008; Cheung and Mekjavic 2007; Flouris and Cheung 
2009; Keramidas et al. 2010).

The veins

the veins are the vascular capacitance vessels and may 
contain 70–80 % of the total blood volume in thermoneu-
tral individuals (Pang 2001; Mertz 2004). thus, changes 
to venous tone can have a pronounced influence on central 
blood volume and systemic blood pressure (Rowell 1993; 
Halliwill et al. 2013). the cutaneous veins similarly have 
a considerable capacity (Rowell 1993; Roddie 2011), and 
are well innervated and quite responsive to sympathetic 
stimulation (Zimmerman 1966; webb-Peploe and Shepherd 
1968). these veins participate principally in temperature 
regulation by reducing the volume of blood within the cuta-
neous tissue beds (Rothe 1983; Rowell 1983). In addition, 
the close proximity of veins and arteries within the hands 
and feet, but perhaps more importantly within the forearms 
and legs, means that, during cold exposures, heat carried in 
the arterial blood is transferred to the veins. this counter-
current heat exchange reduces peripheral heat loss, and it 
was first recognised by Bernard (1876), with Forster et al. 
(1946), Scholander and Krog (1957) and weinbaum et al. 
(1984) elaborating on this heat conservation mechanism. 
However, it was the classical work of Scholander and Sche-
vill (1955) that demonstrated its significance in heat con-
servation for diving mammals.

Each finger possesses a venous network, with most blood 
passing to the dorsal surface, and through the metacarpal 

veins and the dorsal venous arch (Standring 2008). this 
latter structure is the largest superficial venous network 
of the hand and provides tributaries to the cephalic and 
basilic veins (Schmidt and Lanz 2004). On the palmar sur-
face and within the limbs in general, there are three drain-
age routes: the deep and superficial palmar venous arches 
(draining into the radial and ulnar veins, respectively) and 
the more superficial venous plexus that feeds the median 
antebrachial vein (Schmidt and Lanz 2004). However, there 
exist numerous communicating conduits (perforator veins) 
between the palmar and dorsal vessels of the carpo-meta-
carpal region. these vessels pass through the interosseous 
spaces, permitting palmar blood to flow to the dorsal sur-
face, but since 70 % of these vessels have valves, this flow 
is predominantly unidirectional (Zhang and Schmidt 1993). 
thus, the perforator veins facilitate venous return that is 
assisted by muscle pumping during finger and hand flexion 
(Pegum and Fegan 1967b; Simons et al. 1996).

In the foot, blood drains from the toes through super-
ficial veins on the dorsal and plantar surfaces (Standring 
2008). the feet have several plantar and dorsal veins, the 
most significant of which are the two venous arches: the 
deep plantar arch and the more superficial dorsal arch 
(Standring 2008). the former runs the length of the meta-
tarsal region and, as well as feeding into the posterior tibial 
vein, these vessels connect to the dorsal veins by perforat-
ing conduits at the foot margins (Pegum and Fegan 1967a). 
Perforating veins also join the plantar and dorsal veins, 
again with about half containing valves (Pegum and Fegan 
1967a). thus, venous blood from the plantar surface can 
return via the tibial veins and also through the foot fascia, 
mixing with blood from the dorsal surface, before leaving 
through the saphenous veins. this latter route is activated 
during lower-limb loading (compression pumping).

Since the veins are very compliant, a significant vol-
ume of blood within each appendage may be retained 
within these vessels (Levy et al. 1985), particularly when 
in a dependent position at rest. the resulting venous pool-
ing increases blood vessel diameter and slows blood tran-
sit time, both of which optimise heat exchange. However, 
generalised or cutaneous venoconstriction shifts significant 
blood volumes away from the skin, preventing pooling and 
reducing vessel transit times. therefore, the combination of 
these anatomical structures with the morphological config-
uration of the hands and feet allows these regions to poten-
tially behave as radiators and insulators.

Mechanical modulation of hand and foot blood flow

Muscle pumping assists venous return from depend-
ent regions (Halliwill et al. 2013), and this is particu-
larly important for the hands and feet, both of which are 
susceptible to oedema. In addition, pressure loading and 
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load bearing also modify arterial inflow and venous stasis 
(Pegum and Fegan 1967b; Broderick et al. 2010).

Activation of the forearm flexors when gripping objects 
elevates venous pressure and flow in the hand (Simons et al. 
1996). Similarly, standing compresses the plantar venous 
arch, as does foot flexor activation (Broderick et al. 2010). 
thus, whilst the anastomoses increase blood flow to the 
palmar and plantar skin of supine, resting individuals, com-
pression pumping diverts this blood through the perforating 
veins to the dorsal skin. One might therefore expect these 
surfaces to become prime heat loss avenues during physical 
activity, perhaps with the overall contributions from these 
appendages being reduced relative to the resting state.

If these local pressures are excessive, blood flow is 
impeded. For instance, finger flows can be reduced by 85 % 
when local pressures of 30–52 kPa are applied, whilst pal-
mar flow can tolerate pressures up to 100 kPa before expe-
riencing a similar decline (Johansson et al. 2002). How-
ever, a 70-kg individual bearing the full body mass on both 
hands will only experience a palmar pressure of ~16 kPa, 
or a plantar pressure of only ~12 kPa when standing. Fur-
thermore, the hands, and presumably the feet, resist com-
pression through a reactive, pressure-induced vasodilata-
tion of the cutaneous vasculature (Abraham et al. 2001), 
and this sustains tissue perfusion, albeit at a reduced level.

thermal modulation of cutaneous blood flow

Hand and foot blood flows are rarely stable (Grant and 
Pearson 1938; Blair et al. 1961). Indeed, it is often when 
people are thermally comfortable that appendage flows 
are the most variable, with the vaso- and venomotor tone 
to these appendages constantly changing within the ther-
moneutral zone (Mekjavic and Eiken 2006; werner et al. 
2008). these changes modify the convective delivery 
of thermal energy to the skin, and with the whole-body 
cutaneous blood flow in thermoneutral males averaging 
~350 mL min−1 (Rowell 1974, 1993), then ~5 kJ min−1 
(83 w) of thermal energy will be transferred to the skin 
for the 4 °C core-skin gradient that typically obtains under 
these conditions. In fact, in suitably clothed people resting 
at 22–27 °C, thermal homeostasis can be achieved entirely 
through subtle changes in cutaneous blood flow, particu-
larly to the hands, face and feet.

Blood flow to the skin of the hands and feet is modi-
fied centrally (Boulant 2011), with deep-body temperature 
dominating this modulation (wenger et al. 1975; Proppe 
et al. 1976; Jessen 2011). this also applies to sweating, but 
with cutaneous feedback rising in importance during ther-
mal adaptation (Regan et al. 1996; tipton et al. 2013; tay-
lor 2014) or when the skin temperature is rapidly changed 
(Libert et al. 1978). with the exception of the arteriovenous 
anastomoses (Hales 1985), cutaneous blood vessels are also 

powerfully affected by local thermal changes (taylor et al. 
1984; Pérgola et al. 1993; Johnson and Kellogg 2010), the 
influence of which is related to the existing level of sympa-
thetic tone (Spealman 1945; Pérgola et al. 1993; Caldwell 
et al. 2014). For instance, Spealman (1945) demonstrated 
that hand blood flow was always greatest when the deep-
body tissues were warm (Fig. 1), and this deep-body domi-
nance in the control of blood flow has recently been further 
verified for the foot (Caldwell et al. 2014).

At the hands or feet, local cooling can elicit strong 
vasoconstriction (Grant and Pearson 1938; Blair et al. 
1961; Pérgola et al. 1993; Caldwell et al. 2014), with 
blood flow in previously cooled individuals decreas-
ing to below that needed for normal cellular function 
(0.8 mL 100 mL−1 min−1: Abramson 1965). Local skin 
heating of thermoneutral subjects first produces a large 
flow increase (rapid vasodilatation), followed by a slight 
constriction, then a gradual dilatation over 25–30 min 
(Pérgola et al. 1993; Minson et al. 2001). However, whilst 
powerful, these local thermal influences can neither abolish 
nor dominate central autonomic drive (Johnson et al. 1976; 
Pérgola et al. 1993; Caldwell et al. 2014). thus, whilst it 
is generally assumed that (local) heating the skin to 42 °C 
induces maximal vasodilatation (taylor et al. 1984), maxi-
mal hand and foot blood flows can only be obtained if one 
first induces some level of hyperthermia (Spealman 1945; 
Caldwell et al. 2014).

In a thermoneutral state, vasoconstrictor tone within 
the hands and feet dictates blood flow, with active dilata-
tion being minimal (Blair et al. 1961). During whole-body 

Fig. 1  volume-specific hand blood flow during hand immersion at 
different water temperatures, but with the body uncomfortably warm 
(air temperature 32 °C), thermoneutral (air temperature 24 °C) or 
uncomfortably cold (air temperature 16 °C). Blood flow was power-
fully modulated by the thermal state of the deep-body tissues when 
this temperature was elevated, regardless of local tissue temperatures. 
Data digitised from Spealman (1945) and used with permission
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cooling, cutaneous venoconstriction is activated, driving 
a significant blood volume back to the deep-body tissues. 
Simultaneously, a generalised vasoconstriction reduces 
arterial flow to the hands and feet. this is associated with 
a relatively stronger constriction of the sub-papillary veins 
and the intermediate venous plexuses, which are closer 
to the skin surface, and this means that venous blood is 
directed into the deeper and better insulated vessels. the 
arteriovenous anastomoses also close, and tissue insulation 
increases to conserve heat. Indeed, under these influences, 
a temperature gradient is established along the skin surface 
(Freeman and nickerson 1938; werner and Reents 1980), 
and also through cutaneous cross-sections (Pennes 1948; 
webb 1992). thus, the appendages behave as a protective 
barrier, with a physiological amputation of the extremi-
ties conserving deep-body heat as one becomes progres-
sively colder (Forster et al. 1946; Scholander and Krog 
1957; Caldwell et al. 2014). without this insulating capac-
ity, primitive humans would probably not have migrated 
beyond the temperate regions, unless they possessed heav-
ily insulated hand and footwear.

In warmer conditions, veno- and vasoconstrictor tones 
may be abolished and pressure-induced, passive dilatation 
occurs. During maximal heating, whole-body cutaneous 
blood flow can reach 7–8 L min−1 (Rowell et al. 1970). 
thus, for a 1 °C core-skin temperature gradient, this flow 
can now deliver thermal energy at a rate of 27 kJ min−1 
(450 w). this elevates the skin temperature, which has 
three consequences, the first two of which are beneficial. 
Firstly, it buffers against external heat gains and helps to 
defend the temperatures of the deep-body tissues. Sec-
ondly, there is an elevation in cutaneous water vapour 
pressure which increases evaporation without the need to 
increase sweat flow. Finally, it reduces the convective and 
conductive heat flow from the deep-body tissues.

these skin temperature increases are most dramatic at 
the extremities (Maddock and Coller 1933; werner and 
Reents 1980; webb 1992). For the hands and feet, pas-
sive dilatation occurs along the volar surfaces, reinforced 
by opening the arteriovenous anastomoses. On the dorsal 
surfaces, active vasodilatation can also be initiated (Lewis 
and Pickering 1931; Greenfield 1963; Johnson et al. 1995), 
and the resulting cutaneous blood flow is much greater than 
would accompany vasoconstrictor tone withdrawal. Indeed, 
approximately 80–95 % of the flow increase within non-
glabrous (dorsal) skin occurs through active vasodilata-
tion (Kellogg 2006; Johnson and Proppe 2011), and these 
mechanisms mean that the hands and feet have a consider-
able capacity to both reduce and elevate cutaneous blood 
flow.

It has been estimated that the minimal blood flow to 
support cutaneous tissues is ~0.8 mL 100 mL−1 min−1 
(Abramson 1965). In resting, thermoneutral males, 

basal (volume-specific) hand blood flow is approxi-
mately 6.7 mL 100 mL−1 min−1, whilst that of the foot 
is about 2.8 mL 100 mL−1 min−1 [Caldwell et al. 2014 
(males)]. when normalised to segmental surface areas 
(table 1), basal hand blood flow (550 mL m−2 min−1) is 
more than three times greater than might observed for 
the rest of the body [79.1 kg, 1.72 m (table 1), abso-
lute blood flow 350 mL min−1 (Rowell 1974, 1993); 
183 mL m−2 min−1], and 1.6 times that observed in the 
foot (340 mL m−2 min−1). Such basal, area-specific flows 
emphasise the extent to which these appendages, particu-
larly the hand, can function as radiators under thermon-
eutral states (Grant and Pearson 1938; Forster et al. 1946; 
Ferris et al. 1947).

table 3 provides an historical summary of hand and foot 
blood flows across a range of treatments, revealing that 
the hands have an enormous potential for increasing blood 
flow and heat dissipation. If one assumes that volume-
specific flows of 30 (hand) and 18 mL 100 mL−1 min−1 
(foot) are maximal, with the respective minimal flows 
both approximating 0.2 mL 100 mL−1 min−1 (table 3), 
then the hand supports a 150-fold blood flow increase 
over these extremes; for the foot, this is a 90-fold eleva-
tion. Indeed, both extremities can dramatically elevate tis-
sue insulation by reducing blood flow to <25 % of their 
metabolic requirement. However, for lightly clad indi-
viduals resting in the cold, blood flows of ~0.4 (hand) and 
0.2 mL 100 mL−1 min−1 are more typical (table 3). Finger 
flows reveal even greater minimal-to-maximal ranges (0.2–
120 mL 100 mL−1 min−1; wilkins et al. 1938; nagasaka 
et al. 1987b). Moreover, flow variations exist between the 
distal (higher) and middle phalanges of the fingers (wilkins 
et al. 1938), and this is consistent with the distributions 
of both the arteriovenous anastomoses and eccrine sweat 
glands.

notwithstanding the number of experiments in which 
hand and foot blood flows were investigated, until recently, 
a detailed description of these flows, across a range of 
whole-body thermal states, was not available. Indeed, 
most investigations focussed upon states approximating 
thermoneutrality. therefore, the current authors developed 
water-displacement plethysmographs for the hand and foot 
that permitted independent control over local tissue tem-
peratures (Caldwell and taylor 2014). In combination with 
pre-experimental, whole-body cooling and heating (water 
immersion: Booth et al. 2001), followed by whole-body 
thermal clamping (Cotter and taylor 2005), three steady-
state thermal states were investigated: mild hypothermia 
[deep-body (oesophageal) temperature: 36.1 °C; mean skin 
temperature: 22.2 °C], thermoneutral (deep-body: 37.0 °C; 
mean skin: 33.6 °C) and moderate hyperthermia (deep-
body: 38.5 °C; mean skin: 37.7 °C). Under each of these 
clamped conditions, five thermal treatments (5, 15, 25, 33, 
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40 °C) were applied to the hand and foot of supine, resting 
participants using rapid changes in the water temperature of 
each plethysmograph (Caldwell et al. 2014). these data are 
summarised in table 4. From this experiment, three-dimen-
sional surfaces were created that described the interactions 

of mean body and local tissue temperatures on segmental 
blood flows (Fig. 2a, b).

volume-specific hand blood flows exceeded those of 
the foot during all treatments (Fig. 2), and flow elevations 
with increments in segmental temperature (sensitivity) 

Table 3  Hand and foot volume-
specific blood flows reported 
across a range of experimental 
manipulations

Blood flow Condition Source

Hand blood flow (mL 100 mL−1 min−1)

 0.15–0.75 whole-body: air temperature: 15.3 °C (rest) Forster et al. (1946)

 0.9 Hand immersion: 15 °C (rest) Spealman (1945)

 2.7 Hand immersion: 25 °C (rest) Spealman (1945)

 5.0 Hand immersion: 32 °C (rest) Kunkel et al. (1939)

 5.9 Hand immersion: 35 °C (rest) Spealman (1945)

 6.20–8.72 whole-body: air temperature: 25 °C (rest) Forster et al. (1946)

 10.0 Hand immersion: 37 °C (rest) Kunkel et al. (1939)

 12.1–31.7 whole-body: air temperature: 37–38 °C (rest) Forster et al. (1946)

 30–40 Hand immersion: local anaesthesia (neutral) Roddie et al. (1957a)

 32.0 Hand immersion: 43 °C (rest) Kunkel et al. (1939)

 34.0 Hand immersion: 44 °C (rest) Roddie and Shepherd (1956)

Foot blood flow (mL 100 mL−1 min−1)

 0.2 Foot immersion: 17–20 °C (rest) Kunkel and Stead (1938)

 0.24 Foot immersion: 14–15 °C (rest) Allwood and Burry (1954)

 17.1 Foot immersion: 43 °C (rest) Kunkel and Stead (1938)

 17.8 Foot immersion: 44 °C (rest) Allwood and Burry (1954)

Table 4  Hand and foot volume-specific blood flows (mL 100 mL−1 min−1) for semi-nude, supine subjects (resting N = 8) during three clamped 
thermal states: mild hypothermia, thermoneutral and moderate hyperthermia

thermal data are means (o C) for the clamped deep-body (oesophagus: Tcore) and mean skin temperatures (Tskin: area-weighted, whole-body 
average), and localised whole-segment [hand and foot (local Tskin)] temperatures during cooling and heating. Five local skin temperature treat-
ments were applied to each limb segment using a water-displacement plethysmograph (Caldwell and taylor 2014) that was also used to measure 
segmental blood flows. Data extracted from Caldwell et al. (2014) with permission

Right hand Left foot

Tcore Tskin Local Tskin Blood flow Tcore Tskin Local Tskin Blood flow

36.1 22.3 6.2 0.9 36.1 22.4 5.5 0.6

36.1 21.8 15.6 1.4 36.1 22.0 15.5 0.7

36.0 22.0 25.3 1.4 36.1 22.0 25.5 1.2

36.1 22.1 33.1 1.9 36.0 22.1 33.3 1.3

36.1 22.0 40.4 1.5 35.8 22.0 41.8 2.5

37.0 33.3 7.1 2.5 36.9 33.2 5.2 2.0

37.0 33.4 16.1 3.5 36.9 33.4 16.6 1.4

37.0 33.4 25.4 4.1 36.9 33.3 25.1 2.2

37.0 33.2 33.8 7.3 36.9 33.4 33.5 2.8

37.0 33.3 41.8 8.2 36.9 33.3 41.6 4.5

38.5 37.7 8.1 6.4 38.5 37.7 6.5 4.5

38.3 37.6 17.1 8.4 38.5 37.6 16.7 4.6

38.4 37.5 25.6 9.7 38.5 37.6 25.1 6.1

38.4 37.6 33.3 12.6 38.5 37.5 34.2 9.3

38.4 38.1 40.3 18.4 38.5 37.9 41.4 12.8
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were significantly greater within each thermal state. when 
mildly hypothermic, these thermal treatments were barely 
able to override vasoconstriction. However, when hyper-
thermic, both segments demonstrated considerable sen-
sitivity to these local temperature changes. Indeed, both 
appendages act as radiators when humans are hot, with 
the hands performing significantly better. this cutaneous 
vascular dilatation means that heat delivery to the skin is 
sustained even when hot individuals are immersed in cool, 
but not cold water (Caldwell et al. 2014), and this centrally 
mediated resistance to vasoconstriction provides a vascular 
mechanism that explains why immersion cooling of hyper-
thermic individuals can be achieved quite rapidly, even 
when using temperate water (26 °C; taylor et al. 2008; 
Casa et al. 2010).

the descriptions above largely relate to blood flows 
measured during supine rest. However, during upright loco-
motion in the heat, it is highly likely that dilatation of the 
arteriovenous anastomoses within the feet will be much 
less effective, with load bearing redirecting plantar venous 
return to the dorsal foot surfaces, which may well be cov-
ered. when the hands are used for work, the contribution 
of the palmar surfaces is similarly reduced, and in both 
instances, the appendages are generally in dependent posi-
tions. thus, whilst the hands and feet of unclothed, resting 
individuals can radiate large amounts of heat, this capacity 
is compromised during exercise and work.

Restoration of blood flow following hypothermia

Foot and hand blood flow within hypothermic individuals 
cannot be instantaneously restored (wyndham and wilson-
Dickson 1951; Savard et al. 1985). In the early stage of 
recovery from acute hypothermia, this delay is due to the 
progressive reduction in deep-body temperature following 
rescue (afterdrop: Currie and Percival 1792; Currie 1797; 
Alexander 1945; Golden and Hervey 1977). Beyond this 
point, the combined influence of deep-body and peripheral 
cooling results in the maximal constriction of the arteriolar 
and venous vessels. If mean arterial pressure is normal, 
then peripheral blood flow restoration initially involves a 
release of this generalised constrictor tone. However, this 
only occurs if the deep-body tissues have first been warmed 
(Ferris et al. 1947; Savard et al. 1985; Brajkovic et al. 1998; 
Caldwell et al. 2014). the process involves sympathetic 
withdrawal (Freeman 1935), with a more complete disen-
gagement occurring at the hands than at the feet (Pickering 
and Hess 1933; Caldwell et al. 2014). thus, the feet retain 
constrictor tone, not only when thermoneutral (Caldwell 
et al. 2014), but also during rewarming, and even after the 
hands have dilated (Pickering and Hess 1933).

Fig. 2  three-dimensional surfaces for hand (a) and foot blood flows 
(b) across mean body temperatures from 31.2 to 38.3 °C and segmen-
tal temperatures from 5 to 40 °C. Semi-nude, supine subjects (resting 
N = 8) were pre-treated (water immersion) and clamped in three ther-
mal states (separate trials): mild hypothermia, thermoneutral and mod-
erate hyperthermia. Mean body temperatures were calculated using the 
weighted sum of oesophageal and mean skin temperatures using the 
following deep-body coefficients (vallerand et al. 1992): 0.65 (mild 
hypothermia), 0.70 (thermoneutral) and 0.80 (moderate hyperthermia). 
Five hand and foot thermal treatments were applied (5, 15, 25, 33, 
40 °C). Segmental blood flows were measured using water-displace-
ment, venous-occlusion plethysmography. Data are averages for the 
15 three-dimensional coordinates with points between derived through 
extrapolation. the colour spectra indicate flow graduations (red for 
highest), whilst the transparent (white) planes are thermoneutral blood 
flows for the opposite limb segment (oesophageal temperature 37.0 °C 
a, b, mean skin temperature 33.6 °C a, b, and respective foot and hand 
skin temperatures of 33.7 and 33.4 °C). From Caldwell et al. (2014) 
and reproduced with permission
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Cold-induced cutaneous vasoconstriction is maximal, 
even in moderate air temperatures (Bittel et al. 1988), and 
if this constriction has been protracted, then peripheral tis-
sue temperatures will approximate ambient temperature. 
In this circumstance, smooth muscle relaxation will be 
impaired, even after constrictor tone has eased. Since the 
surrounding tissues have a relatively poor thermal conduc-
tivity, they will remain cool for some time, and this local 
impediment to the restoration of cutaneous blood flow is 
not immediately corrected (Bazett 1968). Indeed, blood 
flow is only fully restored when deep-body thermoneutral 
tissue temperatures have been re-established (Savard et al. 
1985; Caldwell et al. 2014). However, the return of normal 
blood flow occurs faster to the hands than to the feet for an 
equivalent level of cold, physiological strain (Pickering and 
Hess 1933), with the application of external heating accel-
erating this process (Savard et al. 1985).

Sudomotor characteristics

Human skin in not impermeable, with both water and water 
vapour moving through the epidermis. In this section, the 
focus is primarily on eccrine sweating, but the hands and 
feet lose more water through transepidermal (insensi-
ble) water loss than any other body segment (taylor and 
Machado-Moreira 2013).

In resting, thermoneutral individuals, whole-body 
transepidermal water loss occurs at approximately 20–
43 mL h−1 (taylor and Machado-Moreira 2013). the stra-
tum corneum has a uniform thickness (10–20 µm), except at 
the volar surfaces of the hands and feet (both 400–600 µm: 
Rushmer et al. 1966; Scheuplein and Blank 1971). this 
thickness appears not to dictate vapour diffusion. In fact, 
water vapour flux through abdominal skin, for instance, is 
only about 10 % of that observed from the sole, and 30 % 
that of the palm (Scheuplein and Blank 1971), and water 
loss from the hands and feet appears to be 2–4 times greater 
than that from all other skin surfaces. thus, the dorsal 
hands and feet lose ~0.05 mg cm−2 min−1, whilst the corre-
sponding volar surfaces lose 0.13 and 0.10 mg cm−2 min−1 
(respectively: taylor and Machado-Moreira 2013).

thermal sweating

Eccrine sweat gland distribution

Recent analysis of investigations involving over 320 data 
sets has shown that a reference adult (70.0 kg, 1.702 m, 
body surface area 1.807 m2: Miller et al. 1980) will pos-
sess some 2.06 million functional eccrine sweat glands 
(taylor and Machado-Moreira 2013). On the non-glabrous 
surfaces of the hand and feet, these glands are found at the 

intersections of the skin creases (Johnson et al. 1970) and 
participate extensively in thermal sweating. Conversely, 
the epidermal ridges of the palmar and plantar surfaces 
contain glands at much greater densities (Johnson et al. 
1970; taylor and Machado-Moreira 2013). these glands 
are powerfully activated by non-thermal influences (e.g. 
psychological sweating; Kuno 1956; Machado-Moreira and 
taylor 2012a, b), although they also respond strongly to 
thermal stimulation (taylor et al. 2006; Machado-Moreira 
et al. 2008a), and in a manner very similar to the torso and 
head (Machado-Moreira et al. 2008b, c). the distribution 
of sweat glands across the hands and feet is summarised 
within table 5, with minimal evidence of ethnic differ-
ences (taylor 2006). these gland counts were determined 
following thermal, exercise, psychological and pharmaco-
logical stimulations, and if one assumes that the volar sur-
faces represent 39 % of the total hand surface area (Hsu 
and Yu 2010), and 79 % of the total foot surface area (Yu 
et al. 2010), then one may predict local sweat gland densi-
ties (glands cm−2) for each hand and foot from these data 
(taylor and Machado-Moreira 2013) from a knowledge of 
total body surface area and the relative contribution of each 
appendage to that total area. thus:

(1)

Dorsal hand = body surface area (cm)2
× 0.0283 × 166

(2)

Palmar hand = body surface area (cm)2
× 0.0181 × 518

Table 5  the distribution of physiologically active eccrine sweat 
glands (glands cm−2) across the hand and foot surfaces

Data are means derived from 16 studies [with 95 % confidence inter-
vals across studies (in parenthesis), unless fewer than three data sets 
were obtained]. Some studies contributed data to several sites, and 
sometimes more than one data set within a site. these total contribu-
tions are indicated in the rightmost column

Calculations: Site-specific means were computed as: regional den-
sity = ((N1 × density1) + (N2 × density2) + … (Ni × densityi))/Ntotal 
(where: N is the sample size and subscript numerals refer to separate 
studies)

Sources: Clark and Lhamon (1917), Ogata (1935), Randall (1946), 
MacKinnon (1954: with that author’s surface area error corrected), 
thompson (1954), Hellon and Lind (1956), Silver et al. (1964), Juni-
per and Dykman (1967), toda (1967), Bar-Or et al. (1968), Knip 
(1969), Roberts et al. (1970), Knip (1972), Schaefer et al. (1974), 
Catania et al. (1980), Amano et al. (2011)

Sites Gland density Data sets

Finger (volar: distal phalanx) 530 (±113) 14

toe (volar: distal phalanx) 526 2

Foot (plantar surface) 467 2

Hand (palmar surface) 307 (±94) 6

Hand (dorsal surface) 167 (±45) 14

Foot (dorsal surface) 119 (±41) 9
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One could expect to find our reference person (1.8 m2) to 

have about 270,000 eccrine glands across both hands, 67 % 
of which would occur on the palmar surfaces. For the feet, 
the corresponding values would be 410,000 glands, with 
77 % on the plantar surfaces. Since these glands typically 
have a mass of ~35 µg (Sato 1977) and an approximate 
length of 6.1 mm (Kuno 1956; Sato and Sato 1983), then 
the hands and feet of this individual would contain glands 
with a combined mass of ~24 g, and if laid end-to-end, 
their combined length would be approximately 4.1 km.

Sweat composition

Eccrine sweat gland activation initiates a calcium flux into 
the clear cells, followed by an active pumping of sodium 
into those cells and the passive influx of chloride and water 
(Sato 1977; Morimoto 1978). On the luminal sides of these 
cells, sodium–potassium pumps increase their activity, now 
transporting sodium ions into the glandular lumen, with 
chloride and water again following passively (Hashimoto 
1978). this primary (precursor) sweat rapidly accumulates, 
eventually elevating the intra-luminal pressure to the point 
that sweat starts to flow through the coiled duct. En route, 
the surrounding cells actively extract sodium, with an 
obligatory reabsorption of chloride and water (Sato 1973). 
the resulting hypotonic fluid that reaches the skin surface 
forms the discharged sweat, with its volume and composi-
tion dictated by its transit time within the duct (Schwartz 
and thaysen 1956). Indeed, across the physiological range 
of secretion rates, sweat sodium concentrations can change 
at least twofold in some people (Allan and wilson 1971; 
Costill 1977). thus, the composition of sweat is widely 
variable across (Dill et al. 1966; Maughan and Shirreffs 
2008) and within individuals (Dill et al. 1967; Patterson 
et al. 2000).

Four groups have studied the composition of discharged 
sweat from the hands and feet (Collins 1962; Emrich 
et al. 1968; Yousef and Dill 1974; Patterson et al. 2000). 
At secretion rates of about 0.05 mg cm−2 min−1, one may 
expect palmar sweat to contain 20.9 mmol L−1 of sodium, 
17.4 mmol L−1 of chloride and 18.8 mmol L−1 of potas-
sium. On the dorsal surfaces of the hands, for which the 
corresponding sweat rate may be 0.50 mg cm−2 min−1, 
the respective ion losses would be 28.8, 28.3 and 
5.7 mmol L−1. Plantar sweat composition seems not 
to have been reported. However, when the dorsal foot 
sweats at 0.56 mg cm−2 min−1, its sodium, chloride and 

(3)
Dorsal foot = body surface area (cm)2

× 0.0364 × 119

(4)

Plantar foot = body surface area (cm)2
× 0.0290 × 497

potassium compositions approximate 24.3, 18.1 and 
6.8 mmol L−1 (respectively). For comparative purposes, 
whole-body electrolyte losses, derived across sweat rates 
from 0.72 to 3.65 mg cm−2 min−1, would range from 26.5 
to 49.7 mmol L−1 for sodium (95 % confidence interval), 
and chloride loss would be 26.8–36.7 mmol L−1, with a 
potassium loss of 2.7–4.5 mmol L−1 (taylor and Machado-
Moreira 2013). the palmar surfaces lose relatively small 
amounts of sodium and chloride, but potassium loss 
appears to be about five times greater than for the rest of 
the body. However, since only one data set was available 
for this electrolyte (Collins 1962), these data need to be 
verified and perhaps treated with caution at this time.

Sweat secretion during passive heating

the hydration state of the skin is essential for its nor-
mal function, and the stratum corneum contains about 
0.9 mL water g−1 dry tissue (Scheuplein and Blank 1971). 
this content is sustained through vapour fluxes from deeper 
layers as well as reabsorption from sweat ducts and plays 
an important role in protecting the skin from injury (wil-
cott 1966). these generalisations also apply to the hands 
and feet, and in the former instance, hydration affects con-
tact friction and grip (Adelman et al. 1975) as well as the 
tactile and thermal sensitivities of the volar surfaces (Edel-
berg 1961). thus, these water fluxes interact with tool use, 
locomotion and temperature regulation, and it is assumed 
that these attributes evolved simultaneously as co-selected 
characteristics (Montagna and Parakkal 1974; Folk and 
Semken 1991).

During whole-body (passive) heating of resting indi-
viduals, a considerable range of sweat secretion may be 
observed across the body surface (weiner 1945; Hertz-
man et al. 1952; Smith and Havenith 2011; taylor and 
Machado-Moreira 2013). Readers may see a critique of 
the sweat-measurement techniques within taylor and 
Machado-Moreira (2013). Herein, the focus centres entirely 
upon passive thermal sweating from the hands and feet, and 
data for these regions were collected from three studies, 
and reported in Fig. 3. Each project was undertaken under 
identical conditions (climatic chamber: 36 °C, 60 % rela-
tive humidity; water-perfusion suit: 40–46 °C), with local 
sweat rates measured using ventilated capsules positioned 
at 14 sites over the dorsal and volar surfaces of the hands, 
fingers, feet and toes (taylor et al. 2006; Machado-Moreira 
et al. 2008a; Smith et al. 2013). this thermal load elevated 
deep-body temperature about 0.5 °C, and resulted in a 
mean skin temperature of 37.1 °C and resting heart rates of 
84 beats min−1 (see original manuscripts for details). Under 
these conditions, a threefold variation in the steady-state 
sweating was observed across the hand surfaces [dorsal fin-
ger (highest) to palm], with a twofold range across the feet 
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[dorsal toe (highest) to sole]. these changes occurred with-
out introducing reactive errors, such as the cooling of skin 
below each sweat capsule. 

these data confirm the presence of thermal sweating 
from the volar surfaces of both appendages, although some 
have suggested otherwise (Kerassidis 1994; tronstad et al. 
2008). Certainly the palms and soles are the least prolific 
sites (Fig. 3), as first described by Grew (1684), but this is 
not a universal attribute of the glabrous surfaces, with the 
volar fingers secreting only slightly, although not signifi-
cantly less sweat than the dorsal hand (Machado-Moreira 
et al. 2008a). when the fingers and toes are included 
with the metacarpal and metatarsal surfaces, the glabrous 
sites are seen to secrete 60–67 % (foot-hand) of the ther-
mal sweat produced from the dorsal surfaces. However, 
when the digits are excluded, these relative flows become 
40 % (hand) and 66 % (foot), reflecting the greater ther-
moresponsiveness of the fingers. when all sites were con-
sidered, along with typical hand and foot surfaces areas 
(table 1), then one may anticipate that, for a deep-body 
temperature elevation of ~0.5 °C above its thermoneu-
tral level, a resting individual would lose approximately 
20 mL h−1 of sweat from each hand and about 27 mL h−1 
from each foot. Since whole-body heating significantly 
increases hand and foot blood flow (Caldwell et al. 2014), 
and skin temperatures (Maddock and Coller 1933; wer-
ner and Reents 1980; webb 1992), then cutaneous water 
vapour pressure rises, elevating evaporation. thus, these 
appendages also behave as physiological evaporators, with 

these secretion patterns resembling segmental blood flow 
variations.

Sweat secretion during exercise in the heat

when exercising, whole-body water losses of 10–
16 L day−1 can occur under challenging climatic condi-
tions (Eichna et al. 1945; Ladell 1945; Latzka and Montain 
1999), with the hands and, to a lesser extent, the feet sweat-
ing copiously. In the trials reported above (taylor et al. 
2006; Machado-Moreira et al. 2008a; Smith et al. 2013), 
subjects exercised (cycling) in the same conditions after 
resting data were collected, and this was incremental in 
nature (25-w increase every 15 min), terminating at voli-
tional fatigue. this forcing function resulted in final deep-
body temperatures of 38.5–39.0 °C. Sweat data were aver-
aged across all work rates to provide integrated responses 
for the same 14 sites (Fig. 4), representing flows when 
performing about 100 w of external work (36 °C, 60 % 
relative humidity). to facilitate inter- and intra-segmental 
comparisons, Figure 4 includes only those data collected 
using ventilated sweat capsules, although qualitatively 
similar outcomes have been obtained from most skin sur-
faces using the sweat-patch technique (Fogarty et al. 2007; 
Smith et al. 2013). Relative to the resting phase, sweat rates 
increased 1.5-fold (volar toe) to 9.4-fold (dorsal surface, 
proximal phalanx of index finger). Across the entire hand, 
sweating varied by a factor of 5.7 (lowest-highest), whilst 
for the foot there was a 2.8-fold variation.

Fig. 3  Distributions of steady-state thermal sweating (ventilated 
capsules) across 14 sites within the hands and feet (shaded bars) 
of resting individuals (seated: air temperature 36 °C, 60 % relative 
humidity) wearing a heated, water-perfusion suit (40–46 °C). Data 
are means with standard deviations. Sources: taylor et al. (2006), 
Machado-Moreira et al. (2008a), Smith et al. (2013)

Fig. 4  Sweat secretion (ventilated capsules) from 14 sites on the 
hands and feet (shaded bars) during incremental exercise in the heat 
(cycling: air temperature 36 °C, 60 % relative humidity) whilst wear-
ing a heated water-perfusion suit (40–46 °C). Data are means (with 
standard deviations) averaged across the entire exercise period, and 
equate with sweat rates that would obtain when working at 100 w. 
Sources: taylor et al. (2006), Machado-Moreira et al. (2008a), Smith 
et al. (2013)
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If one now combines the morphological data from 
table 1 with these sweat rates, mean total sweat rates for 
each hand (80.7 mL h−1 or 1.52 mg cm−2 min−1) and each 
foot can be obtained (64.8 mL h−1 or 0.75 mg cm−2 min−1) 
for individuals exercising in the heat at an average external 
work rate of ~100 w. within each segment, the volar sur-
faces produced 43–57 % (foot-hand) of the sweat secreted 
from the dorsal regions, or 33–44 % (foot-hand) of total 
sweat from each segment. the relationship between the 
volar and dorsal surfaces is not identical for the hands and 
feet. For example, secretions from the sole and the volar 
surface of the big toe were uniformly lower than both the 
average dorsal foot and dorsal toe sweat rates. However, 
this generalisation did not apply to the hand, with the 
dorsal and volar surfaces of the fingers secreting signifi-
cantly more sweat than the palm, but not the dorsal hand 
(Machado-Moreira et al. 2008a).

Finally, one may combine the regional glandular den-
sities with these data to derive sweat gland outputs: an 
approximation of discharged sweat from individual glands. 
within each appendage, the surfaces with the lowest glan-
dular densities (dorsal hand and foot) produced the greatest 
glandular flows: 12.7 and 7.6 µg gland−1 min−1 (respec-
tively). the palms and soles possess intermediate gland 
densities, but displayed the lowest flows when exercising in 
the heat: 1.2 and 1.0 µg gland−1 min−1 (respectively).

Psychological (non-thermal) sweating

the eccrine sweat glands are stimulated by both thermal 
and non-thermal mechanisms, and readers are directed to 
recent reviews on the latter (Kenny and Journeay 2010; 
Kondo et al. 2010). However, a particular form of non-ther-
mal sweating that was once believed to dominate secretion 
from the hands and feet is that which accompanies changes 
in emotional and affect states (Harrison and MacKinnon 
1966; Homma et al. 2001); psychological (psychogenic) 
sweating.

the widely accepted view has been that such sweating 
is modulated by a separate nervous system centre (Ogawa 
1975) with its own neural pathways (Chalmers and Keele 
1952), possibly innervating only the glabrous surfaces 
of the hands and feet (Darrow 1937; Kuno 1956; Ogawa 
1975), and quite probably through a noradrenergic sympa-
thetic pathway (Robertshaw 1977; nakazato et al. 2004). 
these combined hypotheses have intrigued the current 
authors for some time, precipitating a series of experi-
ments, three of which are relevant to the current topic 
(Machado-Moreira and taylor 2012a, b; Machado-Moreira 
et al. 2012).

In the first experiment, passive, whole-body heating was 
used to elicit steady-state sweating in 30 individuals (0.5 °C 
deep-body temperature elevation above thermoneutral: 

Machado-Moreira and taylor 2012a). Secretion was meas-
ured from 38 sites (ventilated capsules), with an emphasis 
upon glabrous and non-glabrous surfaces. Following this 
priming of sweat secretion, cognitive challenges and a 
painful stimulus (palmar pressure) were used to evoke psy-
chological sweating. these stimuli always elevated sweat-
ing, with >70 % of sites revealing significant increases, but 
with no change in body temperatures. Sweating from both 
glabrous and non-glabrous skin increased significantly, 
with no consistent differences between skin types. Further-
more, these whole-body trends were equally apparent at the 
hands and feet (Fig. 5), and appeared to refute the possi-
bility of independent control mechanisms for thermal and 
psychological sweating from these surfaces.

Since most research on psychological sweating was 
undertaken in thermoneutral conditions, and since thermal 
loading potentiates sudomotor function, it was necessary 
to verify these observations without first priming the sweat 
glands (Machado-Moreira and taylor 2012b). Eccrine 
sweating was therefore evaluated when thermoneutral 
individuals were challenged to perform 10 min of mental 
arithmetic (26 °C). Sudomotor function was first quantified 
using ventilated sweat capsules. very low, but significant 
secretion was observed not only from the palm, the volar 
surfaces of third finger and the sole, but also from the dorsal 
aspects of the finger and foot (Fig. 6), with only the dorsal 

Fig. 5  Relative changes in sweat secretion (ventilated capsules) from 
the glabrous (volar) and non-glabrous (dorsal) skin surfaces of the 
hands and feet (shaded bars) following the superimposition of cogni-
tive (open bars) and painful stimulations (hatched bars) upon steady-
state, thermal sweating. these stimuli were applied after passive 
heating (climatic chamber: 36 °C, 60 % relative humidity; water-per-
fusion suit: 40–46 °C) had elicited a deep-body temperature elevation 
of ~0.5 °C and fully primed thermal sweating. Data are mean changes 
relative to the pre-stimulus thermal sweating (with standard errors of 
the means), and were extracted from Machado-Moreira and taylor 
(2012a) and used with permission
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hand failing to yield significant sweat. In addition, changes 
in skin conductance were measured at the volar and dorsal 
aspects of the first and second fingers. this technique was 
used because the reabsorption of primary sweat can pre-
vent low-intensity (subliminal) secretion from reaching the 
skin surface, thus remaining undetected via sweat capsule 
methods. Indeed, psychogenic sweat can remain within 
the duct for 150–200 s before being fully absorbed (Ohmi 
et al. 2009), but it can easily be detected from changes in 
skin conductance (thomas and Korr 1957). Both the gla-
brous and non-glabrous surfaces of the fingers were found 
to produce significant primary sweat. Collectively, these 
observations demonstrated that psychological sweating is 
ubiquitous, further contesting the hypothesis that it might 
be restricted to the glabrous skin surfaces of the hands and 
feet.

In the most recent project from this series, the hypoth-
esis was tested that psychological sweating was not medi-
ated via noradrenergic neural pathways (Machado-Moreira 
et al. 2012). Subjects were exposed to mental arithmetic, 
palmar pain and isometric handgrip stimulations under each 
of three different conditions, applied in series and within 
one trial: thermoneutral rest (27–28 °C), passive whole-
body heating (water-perfusion garment and foot bath) and 
a systemic atropine infusion (0.04 mg kg−1) with deep-
body temperature still elevated, but now clamped (Cot-
ter and taylor 2005). Sweating responses were measured 
using ventilated capsules on the dorsal and volar surfaces 
of one hand (plus forehead, dorsal forearm and calf), and 
from changes in skin conductance at the same hand sites 

(plus forehead and dorsal forearm). when thermoneutral, 
these non-thermal treatments elicited significant discharged 
sweat only from the palm, but following passive heating, 
significant secretions were also induced from the dorsal 
and volar sites, verifying previous observations (Machado-
Moreira and taylor 2012a). when the atropine blockade 
was established and sweating was completely suppressed, 
the non-thermal stimuli were repeated, with no site produc-
ing either primary or discharged sweat. these data demon-
strated that sweating during these thermal, psychological 
and static exercise stimulations was exclusively cholinergi-
cally mediated. whilst eccrine sweat glands can respond to 
catecholamines (Robertshaw 1977; nakazato et al. 2004), 
these observations were not consistent with the existence of 
functionally relevant noradrenergic pathways to the glands 
of the glabrous hand surfaces.

Palmar and plantar hyperhidrosis

Primary hyperhidrosis is a pathological state in which dis-
charged sweating exceeds that required for the maintenance 
of normal skin function or that which might normally be 
observed during thermal and non-thermal stimulations 
(Kuno 1956; Quinton 1983; vorkamp et al. 2010). It can 
be a whole-body phenomenon, but is more frequently 
observed at the palms, soles and axillae. Epidemiological 
evidence indicates that perhaps 1 % of the population suf-
fers from this condition (Adar et al. 1977; vorkamp et al. 
2010), with about one-fifth of these people being affected 
only at the palms (Strutton et al. 2004). Hyperhidrosis usu-
ally occurs early during adolescence (Edmondson et al. 
1992), with most patients being young women (Quraishy 
and Giddings 1993). In some individuals, palmar and plan-
tar sweating can be so excessive that it can handicap the 
performance of tasks for which hand grip may be essential. 
A range of treatments exist from topical medication and the 
administration of cholinergic antagonists, through to injec-
tions of botulinum toxin to block sudomotor neurotrans-
mitter release (vorkamp et al. 2010). In more severe cases, 
surgical interventions may be used (Kux 1978; Edmondson 
et al. 1992; Rieger et al. 2011).

Thermal biophysics

when a warm object is moved from one thermal steady 
state to a colder state, its energy content changes, with the 
outermost layer of molecules losing thermal energy to the 
environment, forming a cooler shell. A series of thermal 
layers soon form, with heat continuously moving away 
from the centre until thermal equilibration occurs. Between 
adjacent layers, thermal gradients are formed, and each 
remains until heat transfer ceases (Burton and Bazett 1936; 

Fig. 6  Psychological sweating (ventilated capsules) from the gla-
brous (volar) and non-glabrous (dorsal) surfaces of the hands and feet 
(shaded bars) during mental arithmetic (10 min) performed under 
thermoneutral conditions (26 °C, 50 % relative humidity). Data are 
mean changes in sweating (peak minus baseline secretion with stand-
ard errors of the means), extracted from Machado-Moreira and taylor 
(2012b) and used with permission
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Golden and Hervey 1977). the energy exchanges during 
this dynamic phase are determined by the physical proper-
ties of the object and its environment, and these first prin-
ciples apply to the hands and feet. However, these append-
ages also produce heat, and they secrete sweat and are 
variably perfused.

In thermally comfortable individuals, temperature gra-
dients favouring heat loss exist along and below the sur-
faces of both appendages (Pennes 1948; werner and Reents 

1980; webb 1992). these result from local metabolism and 
heat transfers among adjacent tissues, including its convec-
tive delivery in the blood. Since the hands and feet have a 
relatively limited capacity for heat production, then local 
tissue temperatures are principally altered through vasomo-
tor and sudomotor changes, and the corresponding dry and 
evaporative heat transfers. tables 1 and 6 summarise the 
biophysical characteristics of the hands and feet that sup-
port heat conservation and dissipation, allowing one to pre-
dict heat exchange across different thermal environments. 
Readers are directed to hand and foot models that may 
supplement this information (Lotens 1992; Kuklane et al. 
2000). In cool-cold conditions, skin temperatures track 
changes in cutaneous blood flow quite well, but this rela-
tionship becomes weaker under thermoneutral states and is 
almost non-existent in the heat (Fetcher et al. 1949).

Powerful vasoconstriction reduces blood flows to 
0.2–0.4 mL 100 mL−1 min−1 (foot-hand), theoretically 
delivering <0.1 w of heat to each appendages for a 1 °C 
thermal gradient. Conversely, maximal segmental flows of 
18–30 mL 100 mL−1 min−1 (foot-hand) increase heat mass 
flow to 8.5 and 6.0 w (respectively) for the same thermal 
gradient, elevating dry and evaporative heat losses. At the 
hand, maximal blood flows are typically 4.5-fold greater 
than in the thermoneutral state, and ~75 times greater than 
may be expected during maximal vasoconstriction; the cor-
responding comparisons for the foot are 6.4- and 90-fold 
larger.

to evaluate the impact of these vascular changes on 
the dry heat exchange of the hands and feet in air, three 
environments (15, 27, 45 °C) were modelled using data 
from tables 1 and 4, first-principle equations (Goldman 
and Kampman 2007) and skin temperatures observed for 
unclothed people in these conditions (webb 1992). the 
results of these computations are presented in table 6.

whilst the combined radiative and convective transfers 
of the hands and feet were not high, when normalised to 
segmental and gender-specific surface areas, these became 
impressive due to the large surface area to mass ratios 
of these segments. For instance, at 27 °C, each hand and 
foot could lose 150–220 w m2 (male–female); Chen et al. 
(1999) reported losses of 50–300 w m−2 in cold air from 
the hand. this gender difference is potentially quite impor-
tant and needs to be explored to help explain differences in 
thermoeffector function. However, when considered across 
genders, and in combination with the arteriovenous anas-
tomoses found in these limb segments, these capacities 
make the hands and feet important sites for heat dissipa-
tion, and this attribute has been investigated during water 
immersion (wade et al. 1979; Livingstone et al. 1989; Kuk-
lane et al. 1999). Indeed, others have taken advantage of 
this characteristic to rapidly extract heat from the hands of 
hyperthermic individuals (tipton et al. 1993; House et al. 

Table 6  the biophysical attributes and heat exchanges of one hand 
and one foot from an average, resting man (79.1 kg, 1.72 m) and 
women (66.2 kg, 1.60 m)

Authors’ compilation using data obtained from 49 countries (height) 
and seven countries (body mass)
a Derived using appendage volumes from table 1 and the following 
blood flows
b Derived using appendage volumes and basal volume-
specific blood flows: hand = 6.7 mL 100 mL−1 min−1; 
foot = 2.8 mL 100 mL−1 min−1 (Caldwell et al. 2014)
c Minimal blood flow = 0.4 (hand: mid-range value from Forster 
et al. 1946) and 0.2 mL 100 mL−1 min−1 (foot: Kunkel and Stead 
1938), maximal blood flow = 30 (hand: Roddie et al. 1957a) and 
18 mL 100 mL−1 min−1 (foot: Allwood and Burry 1954)
d weighted average derived from tissue-related mass and spe-
cific heat: blood = 3.610 kJ kg−1 °C−1 (González-Alonso 
et al. 2000), bone = 1.256 kJ kg−1 °C−1 (Karmani 2006), mus-
cle = 3.590 kJ kg−1 °C−1 (González-Alonso et al. 2000), 
skin = 3.600 kJ kg−1 °C−1 (Henriques and Moritz 1947), other tis-
sues = 2.302 kJ kg−1 °C−1 (Henriques and Moritz 1947)
e Radiative plus convective heat loss (w) = 6.45 × appendage sur-
face area × 1/total insulation × (ambient − skin temperature): 
assumes naked skin (surface insulation 0.13 m2K w−1) and uses skin 
temperatures from webb (1992) with a −0.5 °C offset for women 
(Cunningham et al. 1978)
f Area-weighted evaporation using sweat rates from Figs. 3 and 4, 
assuming 100 % evaporation with heat loss of 2.43 kJ mL−1

Attributes Hand Foot

Male Female Male Female

Basal blood flow (mL min−1)a, b 24.4 20.0 24.2 19.8

Minimal blood flow (mL min−1)c 1.46 1.20 1.72 1.41

Minimal blood volume (mL)a, c 3.4 2.8 1.7 1.4

Maximal blood flow (mL min−1)c 109.5 89.8 154.8 126.9

Maximal blood volume (mL)a, c 110.0 90.0 155.0 127.0

Average specific heat 
(kJ kg−1 °C−1): all tissuesd

1.201 0.699 2.635 1.835

Radiation and convection (w): 
cold air (15 °C)e

−17.9 −14.2 −29.0 −23.0

Radiation and convection (w): 
neutral air (27 °C)e

−6.6 −8.3 −10.6 −13.4

Radiation and convection (w): hot 
air (45 °C)e

19.2 15.7 31.2 25.4

Evaporation (w): rest (air 36 °C)f −14.8 −22.4

Evaporation (w): exercise (air 
36 °C)f

−66.5 −45.8
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1997, 2003b; House 2003). when both hands were placed 
into cold water (~10 °C), heat extraction approximated 70–
85 w, whilst the feet lost 90–95 w.

For heated, resting subjects secreting sweat from the 
hand at 22 mL h−1 (as described above), complete evapora-
tion would dissipate a further 15 w (rest: 336 w m−2) from 
each hand. Sweat from each foot under identical conditions 
(33 mL h−1) would remove another 22 w (313 w m−2). 
During exercise in the heat (~100 w of external work), the 
potential contributions from each appendage increase to 
67 w (hand: 1,506 w m−2) and 46 w (foot: 642 w m−2) 
using corresponding sweat rates of 99 and 68 mL h−1. 
thus, these body segments, and in particular the hands, 
have a considerable thermolytic potential.

Since the hands and feet have such area-specific heat 
transfer potentials, then a brief reflection on gloves and 
socks appears warranted. these garments add insulation, 
but do not modify local temperature in the absence of 
either external heating or a significant change in cutane-
ous circulation (House et al. 2003a). However, since such 
garments do reduce heat loss and help defend deep-body 
temperature, then they add effective insulation that can 
enhance thermal comfort. In states close to thermoneu-
trality, blood will perfuse both appendages, and the hands 
and feet will become warmer and more comfortable. thus, 
within this zone, hand and footwear can have a significant 
impact on thermal comfort. For instance, if an individual 
with cold hands or feet, but normal deep-body temperature, 
puts on gloves or socks, and rapidly feels a warming of the 
extremities, then one could assume that person was losing 
heat just slightly faster than its local delivery to these limb 
segments. One can also assume that cold discomfort pre-
ceded a fall in deep-body temperature. In this case, clothing 
increased total insulation to match or exceed that required 
for thermal homeostasis, and the thermoneutral state was 
rapidly restored. In another example, one often observes 
people removing hand or footwear without modifying 
torso insulation. In this instance, the upper limit of thermal 
comfort was crossed, prompting an effective and learned 
behavioural response to facilitate a subtle increase in heat 
removal. However, if the deep-body tissue temperature has 
fallen sufficiently, adding gloves and socks will have a neg-
ligible impact upon local blood flow (Figs. 1, 2), deep-body 
temperature or thermal comfort.

Concluding remarks

the surface area to mass ratios of the hands and feet are 
ideally suited to conserving and dissipating heat. this char-
acteristic is supported by counter-current heat exchanges 
and the arteriovenous anastomoses that permit large local 
blood flow increase, with maximal hand blood flow rising 

to be 4.5 times greater than in the thermoneoutral state. At 
the foot, these flows differ by a factor of 6.4. thus, the the-
oretical maximal heat deliveries for the hand and foot are 
6.0 and 8.5 w (respectively) for a 1 °C thermal gradient. 
Maximal vaso- and venoconstriction reduces blood flows to 
levels less than the metabolic requirement, physiologically 
isolating the extremities to conserve heat, and restricting 
the heat flow for each segment to <0.1 w. In addition, the 
production of eccrine sweat from each hand (22 mL h−1) 
and foot (33 mL h−1) in heated, resting individuals could 
dissipate a further 15 and 22 w (respectively), assuming 
100 % evaporation. Such attributes allow these regions to 
behave as excellent radiators, insulators and evaporators 
in resting and unclothed individuals, characteristics that 
are shared with the large, well-perfused and poorly insu-
lated ears of elephants (Phillips and Heath 1992) and bills 
of toucans (tattersall et al. 2009). However, during upright 
locomotion and tool use, vascular dilatation is much less 
effective, with load bearing and muscle activation redirect-
ing plantar and palmar venous return to the dorsal surfaces, 
possibly reducing heat dissipation. In addition, whilst 
sweat flows are elevated during work in the heat [e.g. 99 
(hand) and 68 mL h−1 (foot)], the thermolytic potential of 
these appendages is often prevented by the use of hand and 
footwear.
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