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significant drop in blood pressure after exercise, counter-
measures that target the respiratory pump and pharmaco-
logical countermeasures based on the involvement of hista-
mine receptors show promise.
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Introduction

Post-exercise syncope can be defined as loss of conscious-
ness or development of pre-syncopal signs and symptoms 
during recovery from a bout of physical activity or exer-
cise. It is an alarming response to exercise which can occur 
in apparently healthy individuals, including athletes, or 
in individuals with autonomic disorders, and represents a 
failure of integrative physiology in the setting of recovery 
from exercise. It is associated with regulated reductions in 
blood pressure known as post-exercise hypotension, which 
can be large enough in magnitude to become symptomatic 
(Kenny and Seals 1993; Halliwill 2001; Halliwill et al. 
2013). However, most reports of post-exercise syncope are 
likely to be incidents of neurally mediated syncope (for-
mally called vasovagal syncope) (Freeman et al. 2011) 
that have occurred during recovery from exercise, with the 
underlying changes associated with post-exercise hypoten-
sion contributing to the onset of the event (Kosinski et al. 
2000; Krediet et al. 2004; O’Connor et al. 2009).

Several case studies of individuals who have reportedly 
fainted following physical activity have been examined, 
yet the physiology remains poorly understood (see Table 1 
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tension and loss of the muscle pump contributing to the 
onset of the event. One can consider the initiating reduction 
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This review summarizes the current mechanistic under-
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rize the variation of the physiological processes that arise 
in multiple exercise settings. Newer investigations into the 
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Table 1  Compilation of case reports on post-exercise syncope

References Age Sex History Clinic test Onset time

Eichna et al. (1947b) 22 Male Syncope while standing after 
performance of the Harvard 
pack test

Harvard pack test 3 min post-exercise

Schlesinger (1973} 35 Male Pre-syncopal episodes with 
prolonged standing

6 min cycling @ 100 w Immediately after cessation 
of exercise

Tsutsumi et al. (1979) 48 Male History of syncopal episodes 
after exercise (running)

Master’s augmented 2-step test Immediately after cessation 
of exercise

Fleg and Asante (1983) 52 Male Pre-syncopal episode after 
maximal exercise; brief his-
tory of mild hypertension

Graded maximal treadmill test 
(Balke protocol)

10 min post-exercise

Hirata et al. (1987) 29 Male Six episodes of syncope after 
strenuous exercise over last 
18 years

Stair-stepping exercise test Immediately after cessation 
of exercise

Huycke et al. (1987) 22 Male Syncopal episode several sec-
onds after maximal exertion 
(cycling uphill)

Graded maximal treadmill test 
(Bruce protocol)

Immediately after cessation 
of exercise

Kapoor (1989) 34 Male Two syncopal episodes after 
exercise

Graded maximal treadmill test 
(Bruce protocol)

Immediately after cessation 
of exercise

Pedersen et al. (1989) 29 Male No history of syncope Graded maximal treadmill test 
(Bruce protocol)

3 min post-exercise

Tamura et al. (1990) 45 Male Recurrent syncopal episodes 
after strenuous exercise (rope 
skipping)

Graded maximal treadmill test 
(Bruce protocol)

1 min post-exercise

Arad et al. (1993) 36 Male Hypertension and syncope 
after a graded maximal cycle 
test

Graded maximal cycle test 2 min after cessation of 
exercise

Ueyama et al. (1994) 62 Male Two episodes of syncope after 
exertion; history of hyperten-
sion; 50 mg atenolol daily

Graded maximal treadmill test 1 min post-exercise

Osswald et al. (1994) 34 Male Recurrent syncopal and 
pre-syncopal episodes after 
weight lifting

Submaximal exercise test 2 min post-exercise

Osswald et al. (1994) 22 Male Four syncopal episodes during 
or after playing basketball

Maximal exercise test 1 min post-exercise

Osswald et al. (1994) 35 Male Two pre-syncopal episodes 
after strenuous exercise and 
after fighting a fire

Undescribed exercise test 8 min post-exercise (seated)

Tse and Lau (1995) 41 Male Three syncopal episodes asso-
ciated with abdominal pain 
or micturition

Graded maximal treadmill test 
(Bruce protocol)

4 min post-exercise

van den Berg et al. (1995) 37 Male Recurrent syncopal episodes 
after exercise

Graded maximal cycle test 6 min post-exercise (during 
active recovery)

van den Berg et al. (1995) 36 Male Prolonged asystole and syn-
copal episode after a graded 
maximal exercise test

Graded maximal cycle test 4 min post-exercise (during 
active recovery)

Crisafulli et al. (2000) 18 Male Syncopal episode after a 
graded maximal cycle test

Graded maximal cycle test Immediately after cessation 
of active recovery

Lowe et al. (2000) 29 Male Syncopal episode after strenu-
ous physical activity; two 
pre-syncopal episodes after 
sexual activity

Graded maximal treadmill test 
(Bruce protocol)

1 min post-exercise

Thijs et al. (2003) 20 Male Recurrent syncopal and 
pre-syncopal episodes after 
exercise

Cycle exercise Immediately after cessation 
of exercise

Ziegelstein (2004) 72 Male Recurrent pre-syncopal epi-
sodes after exercise

n/a n/a
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below for an extensive listing). Important from these case 
studies is the recognition that cessation of exercise is a key 
step in the cascade leading to neurally mediated syncope 
in healthy individuals (Krediet et al. 2004), whereas hypo-
tension during exercise is more likely to occur in individu-
als with autonomic disorders (Low et al. 2012). Charac-
teristically, post-exercise syncopal events occur when an 
individual is standing motionless during the first 5–10 min 
after exercise (Krediet et al. 2004), a time when the muscle 
pump (with its implicit role of maintaining central venous 
pressure during exercise in the upright position) is no 
longer engaged. 

Prior work on “the postural problem” had suggested a 
key role of postural muscles (activated tonically to offset 
gravity and rhythmically during postural sway) in aid-
ing venous return to the heart during quiet standing, as 
highlighted by Amberson (1943). However, it was clas-
sic studies in the 1940s (Hellebrandt and Franseen 1943; 
Pollack and Wood 1949; Hellebrandt and Cary 1949; 
Barcroft and Dornhorst 1949) that coined the term “mus-
cle pump” and demonstrated the profound power of skel-
etal muscle contractions to reduce both venous pressure 
and blood volume within the dependent exercising limbs, 
as well as the rapidity with which this beneficial effect 
of skeletal muscle contraction is lost when transitioning 
from exercise to quiet standing. Figure 1 illustrates some 
of these classic demonstrations. Indeed, this early work, 
as well as studies by Stegall (1966), show that rhythmic 
muscle contractions in the dependent limbs are capable 
of moving blood toward the heart against significant 
pressure gradients (i.e., >90 mmHg) so long as venous 
valves are competent.

Thus, with quiet standing after exercise, one can antici-
pate a significant rise in dependent limb venous pressure 
and blood volumes, and a consequent fall in venous return 
to the heart, when this second generator of forward blood 
flow is switched off. This shift in blood volume, along with 
sustained post-exercise vasodilation and other responses 
associated with post-exercise hypotension, set the stage for 
syncope in individuals who attempt to remain stationary 
and upright. Along these lines, we estimate that between 
50 and 80 % of healthy individuals will develop pre-synco-
pal signs and symptoms if they are subjected to a head-up 
tilt for 15 min following a range of exercise activities (see 
Table 2 below). This is markedly higher than the incidence 
of ~8 % pre-syncope during similar head-up tilt in the gen-
eral population (Kosinski and Grubb 1994; Natale et al. 
1995).

This topic was last explored from a mechanistic or inte-
grative physiology perspective a decade ago (Kosinski 
et al. 2000; Halliwill 2001; Krediet et al. 2004), but has 
been reviewed from a clinical assessment perspective in 
more recent years (Link and Estes 2007; O’Connor et al. 
2009; Asplund et al. 2011; Hastings and Levine 2012). We 
believe that recent investigations into the basic integrative 
physiology of recovery from exercise provide new insight 
into the mechanisms (Halliwill et al. 2013) and potential 
interventions (Lacewell et al. 2013) that could be devel-
oped as countermeasures against post-exercise syncope.

One can consider the reduction in blood pressure asso-
ciated with post-exercise hypotension and syncope as the 
tip of the proverbial iceberg. What we have endeavored 
to create is a clear model of what lies under the surface; 
a model that puts the observational variations in context 

Table 1  continued

References Age Sex History Clinic test Onset time

Krediet et al. (2005) 27 Female Recurrent syncopal and pre-
syncopal episodes during 
exercise and sexual activity

Graded maximal cycle test During maximal or imme-
diately after cessation of 
exercise

Krediet et al. (2006) 28 Male Syncopal episode after a  
graded maximal cycle test

Graded maximal cycle test 3 min post-exercise

Dockery and Newman (2007) 40 Male Syncopal episode after playing 
basketball; four pre-syncopal 
episodes after exercise

Graded maximal treadmill test 
(Bruce protocol)

30 s post-exercise

Karadag et al. (2007) 44 Male History of syncope and chest 
pain

Graded maximal treadmill test 
(Bruce protocol)

2 min post-exercise

Karadag et al. (2007) 41 Male Bodybuilder with recurrent 
syncopal and pre-syncopal 
episodes associated with 
strenuous exercise

Graded maximal treadmill test 
(Bruce protocol)

3 min post-exercise

Karadag et al. (2007) 44 Male Atypical chest pain with no  
history of syncope

Graded maximal treadmill test 
(Bruce protocol)

4 min post-exercise

Case reports and case series in which pre-syncope or syncope developed during recovery from exercise. Excluded were cases of syncope that 
occurred during exercise, rather than post-exercise. Clinical tests show the variety of exercise tests subjects underwent to evaluate syncopal epi-
sodes



564 Eur J Appl Physiol (2014) 114:561–578

1 3

and provides a rational framework for developing strategic 
physical or pharmacological countermeasures. Part one of 
this review summarizes the current understanding of the 
mechanisms that contribute to post-exercise hypotension 
and syncope in humans. Part two of this review explores 
and attempts to categorize the variations on these physi-
ological processes that arise in the settings of (1) moder-
ate-intensity exercise, (2) high-intensity exercise, (3) exer-
cise in the heat, (4) exercise at altitude, and (5) resistance 
exercise. Part three of this review explores and attempts to 
categorize targets of intervention including physical and 
pharmacological countermeasures against post-exercise 
syncope.

Part 1: review of the mechanisms underlying 
post‑exercise hypotension and syncope

The observation that “arterial pressure becomes depressed 
below normal resting pressure after severe muscular work” 
(Hill 1898) is nearly as old as the sphygmomanometer 
itself. There are two distinct phenomena to consider in this 
context. Post-exercise hypotension represents a well-regu-
lated reduction in arterial pressure lasting several hours fol-
lowing a single bout of exercise. It is well regulated in that 
the hemodynamic state is stable, the reduction in pressure 
is similar in magnitude whether the individual is studied 
upright or supine, and it is driven by modest quantitative 
changes in autonomic control of arterial pressure. In con-
trast, post-exercise syncope represents a failure of the nor-
mal regulation of pressure and or cerebral perfusion such 
that symptoms develop which are syncopal in nature. It is 
an unstable hemodynamic state in which there is either a 
failure to compensate for symptomatic hypotension or in 
which a qualitative change in autonomic control of arte-
rial pressure results in paradoxical vasodilatory and brady-
cardic responses. With a basic definition of these two phe-
nomena, let us explore the known mechanisms, which link 
them to recovery from exercise.

As recently reviewed (Halliwill et al. 2013), the hemo-
dynamic patterns most readily observed following exercise 
(e.g., reduced blood pressure, increased heart rate) are part 
of a larger pattern of hemodynamic responses and underly-
ing mechanisms. Work over the last few years has gener-
ated a number of important mechanistic insights into post-
exercise hypotension and identified the related phenomenon 
of sustained post-exercise vasodilation and its primary 
cause. During the exercise recovery period, the combina-
tion of centrally mediated decreases in sympathetic nerve 
activity, in addition to a reduced signal transduction from 
sympathetic nerve activation into vasoconstriction, and 
local vasodilator mechanisms contribute to the fall in arte-
rial blood pressure seen after exercise, which in some cases 
may contribute to the development of pre-syncopal signs or 
symptoms.

Post-exercise baroreflex resetting and blunted transduction

After exercise, the arterial baroreflex is reset to defend 
lower blood pressures in humans (Halliwill et al. 1996) and 
in rats (Kajekar et al. 2002; Miki et al. 2003), resulting in 
reduced sympathetic outflow (Floras et al. 1989; Halliwill 
et al. 1996; Kulics et al. 1999; Kajekar et al. 2002; Miki 
et al. 2003). In this discussion, baroreflex resetting is used 
to indicate a shift in the operating point of the baroreceptor 
reflex in absence of any change in gain or sensitivity of the 
control of sympathetic outflow. In humans, the sensitivity 
of baroreflex control of sympathetic outflow is unaltered 

Fig. 1  Early observations of the muscle pump. a Changes in calf 
volume with muscle contraction as measured by plethysmography. 
E denotes the onset of exercise (plantar flexion at 1 Hz for 10 s); R 
denotes onset of rest; CP denotes inflation of a cuff above the knee 
to 90 mmHg for remainder of tracing. This early study shows the 
considerable volume of blood that can be mobilized from the calf 
in response to modest muscle contractions, as well as showing that 
the muscle pump is capable of moving blood against a considerable 
pressure gradient. (Reproduced from Barcroft and Dornhorst 1949). 
b Changes in saphenous vein pressure with walking on a treadmill 
at 1.7 mph. Step-by-step changes in minimum and maximum vein 
pressure at the level of the ankle during quiet standing (control), slow 
walking, and quiet standing after walking. This early study shows that 
dependent limb venous pressure can be markedly reduced within a 
few steps by engagement of the muscle pump, as well as the rate at 
which venous pressure will return that that predicted by gravitational 
forces when muscle pump activity ceases. (Reproduced from Pollack 
and Wood 1949)
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during post-exercise resetting (Halliwill et al. 1996) but 
it appears blunted in rats (Kajekar et al. 2002; Miki et al. 
2003). Baroreflex control of heart rate has proven to be 
more variable in its response to exercise, perhaps due to dif-
ferences in methodology, idiosyncrasies resulting from the 
dual autonomic control of the heart, or thermal influences 
on heart rate. The current model for the mechanism of post-
exercise baroreflex resetting is based on studies conducted 
by Chen and colleagues (reviewed in Chen and Bonham 
2010), in which muscle afferents to the nucleus tractus soli-
tarii (NTS) provide the key modulation of sympathetic out-
put from the cardiovascular control centers in the medulla. 
In brief, muscle afferents activated in response to muscle 
contraction release substance-P at neurokinin-1 receptors 
on GABAergic interneurons in the caudal (NTS). These 
GABAergic interneurons inhibit second-order barosensitive 
neurons within the NTS which convey information from 
baroreceptor afferents to the caudal ventrolateral medulla. 
GABA reduces their excitability, resulting in less inhibition 
of sympathetic neurons in the rostral medulla, greater fir-
ing of sympathetic vasoconstrictor neurons during exercise, 
and resetting of the baroreflex to higher pressures during 

exercise. As exercise continues, neurokinin-1 receptors 
internalize on the GABA interneuron so that after exercise, 
neurokinin-1 receptors are less available for binding (Chen 
et al. 2009). As a result, the GABAergic interneurons exert 
less inhibitory influence on the second‑order barosensitive 
neurons, leading to an overall decrease in sympathetic out-
flow from the rostral ventrolateral medulla after exercise. 
When neurokinin-1 receptors are blocked prior to exer-
cise, post-exercise hypotension is attenuated (Chen et al. 
2002). Likewise, GABAa receptor antagonism in the rostral 
ventrolateral medulla prevents post-exercise hypotension 
(Kajekar et al. 2002).

In young healthy humans exercised in thermoneutral 
conditions, neither the splanchnic nor renal vasculatures 
demonstrate changes in vascular conductance from rest-
ing pre-exercise levels to post-exercise recovery (although 
both vasoconstrict during exercise). This is an interesting 
contrast to the well-known vasoconstriction that occurs in 
these vascular beds in response to hypotension in general, 
and has been interpreted to be another representation of 
the central resetting of the arterial baroreflex (Pricher et al. 
2004). Hence, these vascular beds do not directly contribute 

Table 2  Compilation of prospective studies on post-exercise syncope

Prospective studies in which pre-syncopal rates during head-up tilt or tolerance to lower body negative pressure were assessed during recovery 
from exercise

References Exercise Environment Incidence

Moderate‑intensity exercise

Mayerson (1944) 10 min cycling @ 45 w 24–32 °C 54 % pre-syncopal; 60°–75° head-up tilt (15 min)

Gratze et al. (2008) 42.2 km marathon 20 °C, 78 % humidity 27 % pre-syncopal; active standing (6 min)

Privett et al. (2010a) 42.2 km marathon 10–11 °C, light rain 10 % pre-syncopal; active standing (3 min)

Murrell et al. (2009) 4.5 h running @ 70–80 %  
maximal heart rate

15 °C, 72 % humidity 81 % pre-syncopal; 60° head-up tilt (15 min)

Eichna et al. (1947a) 51.5 km hike with pack “Moderately warm” 54 % pre-syncopal; 70° head-up tilt (5 min)

Holtzhausen and Noakes 
(1995)

80 km ultramarathon 14–25 °C, 44–24 % 
humidity

23 % pre-syncopal; active standing (10 min)

High‑intensity exercise

Brogdon and Hellebrandt 
(1940)

Brief “violent” exercise n/a 2 out of 3 pre-syncopal; active standing

Eichna et al. (1947a) Maximal exercise for up to 5 min 23 °C 58 % pre-syncopal; 70° head-up tilt (5 min)

Bjurstedt et al. (1983) Graded maximal cycle test 21 °C 83 % pre-syncopal; 70° head-up tilt (6 min)

Privett et al. (2010b) Graded maximal treadmill test 23 °C 100 % pre-syncopal; active standing (10 min)

Lacewell et al. (2013) Supra-maximal exercise for 1 min)
modified Wingate test)

23 °C, 40 % humidity 58 % pre-syncopal; 60° head-up tilt (15 min)

Exercise in the heat

Luft et al. (1976) 2 h intermittent cycling @ 30 % 
VO2max

50 °C, 15 % humidity Lower body negative pressure tolerance was 
reduced 31 %

Shvartz et al. (1977) 3 h bench stepping @ 40 w 39 °C, 50 % humidity 46 % pre-syncopal; leaning upright against wall 
(20 min)

McCord et al. (2008) 45 min running @ 50 % VO2max 35 °C, 30 % humidity 53 % pre-syncopal; 60° head-up tilt (15 min)

Exercise at altitude: No prospective studies

Resistance exercise: No prospective studies
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to post-exercise hypotension, yet they do not attenuate it. 
Likewise, cutaneous vascular conductance quickly returns 
to pre-exercise levels despite continued elevations in body 
core temperature (Wilkins et al. 2004). This appears to be 
an expression of a shift in threshold of the thermoreflexes, 
which allow core temperature to remain higher during 
recovery from exercise.

In addition to the sympathoinhibition that results from 
baroreflex resetting, post-exercise hypotension is associated 
with a blunted transduction of sympathetic outflow into 
vasoconstriction. For comparable levels of muscle sympa-
thetic nerve activity, there is a reduced vascular resistance 
after exercise in the previously active skeletal muscles 
(Halliwill et al. 1996). It is unlikely that a post-junctional 
mechanism is responsible for this blunted sensitivity to 
sympathetic outflow, as both α1- and α2-adrenergic respon-
siveness remain intact following exercise (Halliwill et al. 
2003). Pre-synaptic inhibition of norepinephrine release or 
increased reuptake of norepinephrine are possible explana-
tions for the blunted transduction.

Post-exercise vasodilation

There are two recognized vasodilatory phenomena during 
recovery from exercise: (1) immediate post-exercise hyper-
emia, and (2) sustained post-exercise vasodilation of the 
previously active skeletal muscle vascular beds (Laughlin 
et al. 2012). The immediate post-exercise hyperemia can 
last from several seconds up to 20 min. The magnitude 
and duration of the hyperemia is dependent on the time, 
type, and intensity of exercise, but is not fully explained 
by mechanisms related to oxygen consumption within the 
previously active skeletal muscle (Morganroth et al. 1975; 
Bangsbo and Hellsten 1998). It has been suggested that the 
same vasodilator signals that drive exercise hyperemia con-
tribute to immediate post-exercise hyperemia (Bangsbo and 
Hellsten 1998; Halliwill et al. 2013), but there is no con-
sensus on its cause which is likely to be multi-factorial.

In contrast to the short-lived immediate post-exercise 
hyperemia, sustained post-exercise vasodilation typically 
lasts upwards of 2 h following moderate-intensity aero-
bic exercise. It is dependent on the activation of histamine 
H1- and H2-receptors, as combined H1- and H2-receptor 
antagonism reduces post-exercise vasodilation by ~80 % 
following 60 min of moderate-intensity cycle ergometry 
in both sedentary and endurance-trained athletes (Lock-
wood et al. 2005; McCord and Halliwill 2006; McCord 
et al. 2006). Further, sustained post-exercise vasodilation 
following 60 min of moderate-intensity unilateral dynamic 
knee-extension exercise is abolished by H1- and H2-recep-
tor antagonism (Barrett-O’Keefe et al. 2013). Several pos-
sible mechanisms may increase intramuscular histamine 
during recovery from exercise. Mast cells located within 

the connective tissue layer surrounding skeletal muscle 
fascicles or near blood vessels may degranulate, releasing 
histamine locally (Metcalfe et al. 1997). Exercise-related 
factors that have been associated with mast cell degranula-
tion in other contexts include reactive oxygen species (Son 
et al. 2006), a variety of cytokines (and perhaps myokines), 
increases in temperature, and vibration (Grabbe 2001). 
Alternatively, histamine can be formed de novo with-
out storage in mast cells through histidine decarboxylase 
(Watanabe and Ohtsu 2002). Along these lines, histidine 
decarboxylase mRNA expression (Endo et al. 1998) and 
enzyme activity increase with prolonged exercise in mice 
(but not rats) (Graham et al. 1964; Ayada et al. 2000). There 
appear to be links between oxidative stress (Höcker et al. 
1998), hypoxia inducible factor-1α (Jeong et al. 2009), 
and histidine decarboxylase transcription. There is also 
older evidence that increased shear stress promotes hista-
mine formation in large vessels such as the aorta (DeFor-
rest and Hollis 1978). Future studies are needed to define 
the cascade of events that result in post-exercise histamine-
receptor activation. In particular, studies must identify the 
exercise-related signal (e.g., oxidative stress, increased 
muscle temperature) that activates the histaminergic path-
way, determine the source of histamine released by this sig-
nal (i.e., mast cell degranulation and/or de novo formation), 
and the timing or dose–response of this system in relation 
to exercise.

Obligatory versus situational influences

As a way to comprehend varied outcomes during recovery 
from exercise, we identified mechanisms that appear to be 
obligatory versus situational influences that vary from case 
to case. Along these lines, prolonged muscle afferent acti-
vation and consequent resetting of the baroreflex, resetting 
of thermoreflexes (Journeay et al. 2006), pre-synaptic inhi-
bition of sympathetic vasoconstrictor nerves, and activation 
of H1- and H2-receptors in the previously active muscle all 
appear to be obligatory components of post-exercise hypo-
tension. Of these factors, histaminergic vasodilation may 
be the most important contributor to the fall in pressure in 
the normotensive and recreationally active population, as 
blockade of histamine receptors (Lockwood et al. 2005; 
McCord and Halliwill 2006; McCord et al. 2006; Barrett-
O’Keefe et al. 2013), but not removal of the sympathetic 
component (Halliwill et al. 2000), reduces post-exercise 
hypotension. Situational influences include the fluid status 
of the individual, heat balance with the environment, and 
the presence or absence of gravitational stress. We have 
explored how combinations of obligatory mechanisms and 
situational influences produce the integrated responses 
observed, as illustrated conceptually in Fig. 2 (reproduced 
from Halliwill et al. 2013).
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The majority of studies report an elevated cardiac output 
concurrent with post-exercise hypotension, at least when sub-
jects are studied in the supine position (Halliwill 2001); how-
ever, this is not always the case. Reductions in cardiac output 
are commonly reported following exercise in endurance-
trained men even in the supine position (but not in endurance-
trained women, for unknown reasons) (Senitko et al. 2002). 
Heart rate is consistently elevated following exercise, and 
this is likely the product of higher temperatures affecting the 
SA node pacemaker. This may confound many of the studies 
exploring baroreflex control of heart rate following exercise.

Stroke volume is generally well maintained, despite 
reductions in central venous pressure (Halliwill et al. 

2000). Stroke volume appears highly sensitive to both 
core temperature and fluid status but seems to be sup-
ported by enhanced contractility of unknown origin. Again, 
endurance-trained men stand alone as a group that exhib-
its a reduced stroke volume following exercise (Senitko 
et al. 2002; Lynn et al. 2009). Ironically, it may be that 
the greater heat storage seen in less fit men (a response 
which allows for heat dissipation via physical mechanisms 
when physiological mechanisms are limited), leads to an 
enhanced cardiac contractility which is absent in highly fit 
men, and the absence of this effect leads to the marked fall 
in stroke volume in endurance-trained men after exercise 
(Lynn et al. 2009).

It is worth noting that the majority of studies reporting 
cardiac output and stroke volume have been performed 
with subjects in a supine position, and one would predict 
that upright recovery, via the increase in gravitational pool-
ing of blood, would shift the system toward lower stroke 
volumes and cardiac outputs. While this is often observed 
(McCord et al. 2008), there are also examples in which car-
diac output remained surprisingly high during upright tilt 
after exercise (Lacewell et al. 2013). These differences are 
likely related to the different exercise stimuli in these stud-
ies which may result in differing thermal, autonomic, and 
hormonal influences on the heart. Further, the impact of 
changes in plasma volume, which decreases ~10 % in the 
upright position, may be markedly impacted by exercise or 
thermal stress, and may change in response to the vascular 
responses in liver, skin, and muscle vascular beds.

Despite all these potential variations in the underlying 
physiology, in most cases where measurements are made 
upright following moderate-intensity exercise, post-exer-
cise blood pressure remains lower than pre-exercise, yet 
is still well regulated in the upright position (Senitko et al. 
2002).

Post-exercise syncope

Post-exercise syncope has an unknown rate of occur-
rence. There is likely an overlap between severe post-
exercise hypotension, the development of post-exercise 
syncope, and the phenomenon of exercise-induced col-
lapse, particularly when collapse occurs immediately after 
exercise and/or completion of athletic performance (e.g., 
crossing the finish line of a marathon) (Noakes 1988; 
Holtzhausen et al. 1994; Holtzhausen and Noakes 1995, 
1997; Kenefick and Sawka 2007). While it is likely that 
the regulated reductions in blood pressure known as post-
exercise hypotension can be large enough in magnitude as 
to become symptomatic under some circumstances, most 
reports of post-exercise syncope are likely incidences of 
neurally mediated syncope (formerly called vasovagal syn-
cope) during recovery from exercise, with the underlying 
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Fig. 2  Integrated hemodynamic responses following exercise. Reg-
ulated reductions in blood pressure known as post-exercise hypo-
tension can be large enough in magnitude to induce pre-syncopal 
symptoms and lead to post-exercise syncope. The expression of post-
exercise hypotension is the integration of a variety of obligatory and 
situational components. Obligatory components (indicated in pale 
blue) include (1) a sustained histaminergic vasodilation of the pre-
viously exercise skeletal muscle vascular beds, (2) resetting of the 
baroreflex (which generally results in sympathoinhibition of sym-
pathetic nerves to muscle vascular beds), (3) pre-synaptic inhibition 
of norepinephrine release from sympathetic nerves to the exercised 
muscle, and (4) resetting of thermoreflexes. These changes manifest 
as a rise in vascular conductance of the previously exercised muscle, 
inhibition of sympathetic vasoconstrictor nerve activity to previously 
active muscle vascular beds, and little or no change in cutaneous vas-
cular conductance despite higher core temperatures. Situational com-
ponents (indicated in light yellow) include the impact of whether or 
not significant fluid loss, gravitational pooling of blood, and hyper-
thermia are present. These components can greatly impact on the 
extent to which cardiac output is elevated. (Reproduced from Halli-
will et al. 2013)



568 Eur J Appl Physiol (2014) 114:561–578

1 3

changes associated with post-exercise hypotension con-
tributing to the onset of the event (Krediet et al. 2004). 
Generally speaking, when standing upright following exer-
cise, elevations in skeletal muscle blood flow combined 
with an inactive muscle pump can lead to marked reduc-
tions in venous return to the heart, a response which can be 
exacerbated in the heat (Krediet et al. 2004; McCord et al. 
2008; Kenney et al. 2013). By mechanisms which remain 
surprisingly murky (Noakes 2003; Hainsworth 2003; 
Joyner 2009), the situation of high cardiac contractility 
and compromised venous return may trigger both paradox-
ical reductions in sympathetic vasoconstrictor nerve activ-
ity and increases in parasympathetic cardiac nerve activ-
ity. The mechanism or trigger for such neurally mediated 
syncope is often attributed to ventricular mechanorecep-
tors firing in response to a misinterpreted tissue distortion 
and producing a response that is akin to the Bezold-Jarish 
reflex. Others have argued that the trigger is more likely to 
be generated within the central nervous system rather than 
within the ventricles (Hainsworth 2003), and may involve 
serotonin receptors in the rostral ventrolateral medulla 
(Dean and Bago 2002). This is a neglected topic of inves-
tigation. Regardless of where the origins of the response 
resides, the shift toward greater vasodilation (due to sym-
pathetic withdrawal) and a relative or frank bradycardia 
leads to a rapid collapse of arterial pressure and cerebral 
perfusion.

It is possible that some cases of post-exercise syncope 
are related to alterations in cerebral blood flow independent 
of vasovagal reactions or frank hypotension. For example, 
hypocapnia induced by hyperventilation during recovery 
from exercise could produce a cerebral vasoconstriction 
and diminish cerebral oxygen delivery in the absence of 
any change in perfusion pressure. Along these lines, Ras-
mussen et al. (2006) showed that cerebral CO2 vascular 
reactivity following strenuous exercise is increased such 
that arterial CO2 becomes the primary factor influencing 

changes in cerebral blood flow during and after prolonged 
exercise.

The potential for changes in cerebral autoregulation 
following exercise has also been explored. While cerebral 
autoregulation is well maintained following moderate-
intensity exercise (Ogoh et al. 2007; Murrell et al. 2007; 
Willie et al. 2013), two studies suggest that more intense 
exercise may produce a lasting cerebral autoregulatory 
deficit. Specifically, Ogoh et al. (2005) found reduced 
dynamic cerebral autoregulation during heavy cycle exer-
cise and Bailey et al. (2011) found reduced dynamic cer-
ebral autoregulation during recovery from a recumbent 
cycle peak test. Thus, it seems likely that cerebral perfusion 
is less protected from sudden onset hypotension following 
more intense exercise.

Table 1 summarizes case reports and case series of post-
exercise syncope in which individual patient information 
on age and sex were provided. It is worth noting that many 
cases include asystole, evidence of the vagal component 
of neurally mediated syncope. However, depending on the 
timing of events and the progression toward symptoms, 
bradycardia is not always evident.

In reviewing the case reports and case series, some inter-
esting patterns are evident regarding age and sex of individ-
ual patients, as indicated in Fig. 3. First, in contrast to con-
ventional wisdom, the majority of cases of post-exercise 
syncope occur in men. In general, women have decreased 
orthostatic tolerance compared to men, and this holds true 
in response to heat stress (Meendering et al. 2005), but not 
recovery from exercise (Lacewell et al. 2013). It is reason-
able to suggest that the higher number of cases in men is a 
spurious result, perhaps due to greater historical participa-
tion in physical activities, but the pattern holds true in sev-
eral prospective studies (Fleg and Lakatta 1986; Lacewell 
et al. 2013). Second, the cases represent a broad range of 
ages, with nearly every decade of life represented with a 
higher proportion of cases below the age of 50.

Fig. 3  Sex and age of patients 
evaluated with post-exercise 
syncope. a The percentage of 
male and female patients in case 
reports. b The distribution of 
case reports on post-exercise 
syncope by age. Both figures 
are based on data from refer-
ences listed in Table 1 (n = 27)
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There are several other notable case series related to 
post-exercise syncope. First, as part of the Baltimore Lon-
gitudinal Study on Aging, Fleg and Lakatta (1986) ana-
lyzed post-exercise blood pressure responses in a large 
cohort of healthy volunteers. During seated recovery from 
a graded maximal treadmill test, 3.1 % of subjects younger 
than 55 years exhibited a marked hypotension that was 
associated with pre-syncopal symptoms. The incidence was 
lower in women than men, and was only 0.3 % for subjects 
older than 55 years. Long-term investigation of subjects 
who became symptomatically hypotensive following exer-
cise did not indicate any increased health risks, supporting 
the notion that the prognosis related to post-exercise syn-
cope is generally benign. Second, Sakaguchi et al. (1995) 
reported on a group of 12 patients who were referred for 
exercise-related syncope. They noted a general suscepti-
bility to neurally mediated syncope in these individuals, 
fostering the concept that most cases of syncope follow-
ing exercise are incidences of neurally mediated syncope. 
Third, Holtzhausen et al. (1994) reported on 46 male ath-
letes who collapsed during or after a 56-km ultramarathon, 
finding that 85 % of these cases occurred after the finish 
line (i.e., post-exercise), and that hydration status (a surro-
gate for circulating blood volume) and core temperature in 
those who collapsed post-race are no different than control 
athletes who do not collapse. In other words, traditional 
contributing factors such as dehydration, hypovolemia, and 
hyperthermia are not necessary for post-exercise syncope 
following longer duration athletic events. Finally, an inter-
esting report by Eckart et al. (2010) suggests that the use 
of ergogenic supplements (e.g., stimulants such as ephedra 
and ephedra-substitutes) can increase the risk of post-exer-
cise syncope threefold.

While the long-term prognosis related to post-exercise 
syncope is generally benign, it is important that other more 
serious causes be ruled out by thorough clinical evalua-
tion, as syncope after exercise can be a sign of a significant 
pathophysiology (Kramer et al. 1988; Smith et al. 1993; 
Krediet et al. 2004; O’Connor et al. 2009; Hastings and 
Levine 2012).

Part 2: exploration of different exercise models 
that generate post‑exercise syncope

Much of our understanding of the mechanisms of post-
exercise hypotension come from a single model of exercise, 
namely, moderate-intensity exercise of medium-duration 
(e.g., up to 60 min) performed in a thermoneutral envi-
ronment. However, the cases of post-exercise syncope do 
not fall neatly into this model, but come from a range of 
exercise activities which may differentially affect arterial 
pressure regulation or control of cerebral oxygen delivery. 

Let us explore five archetypal exercise models, with the 
understanding that when individuals exercise, it may be on 
a spectrum that combines elements of these five models. 
Table 2 summarizes prospective studies on post-exercise 
syncope, as they relate to these models, in which pre-syn-
copal rates during head-up tilt (or tolerance to lower body 
negative pressure) were assessed during recovery from 
exercise.

Moderate-intensity exercise

In young healthy normotensive individuals, moderate-
intensity exercise for 30–60 min produces modest post-
exercise hypotension via the mechanisms described above, 
but is generally insufficient to elicit post-exercise syncope 
during seated recovery or brief (5 min) head-up tilt when 
performed in a thermoneutral environment (Raine et al. 
2001; Senitko et al. 2002). However, the incidence of 
orthostatic intolerance can be surprisingly high in response 
to even mild exercise when orthostatic stress is more pro-
longed (15 min) (Mayerson 1944). Further, when moder-
ate-intensity exercise is of extended duration, or under 
moderately warm conditions, the pre-syncopal incidence 
can reach as high as 54–81 % (Eichna et al. 1947a; Murrell 
et al. 2009, 2011), as shown in Table 2.

This model of post-exercise syncope is ostensibly 
explained by the effects of the sustained post-exercise 
vasodilation on reducing total peripheral resistance and 
reducing venous return to the heart. Noakes and colleagues 
(Noakes 1988, 2007; Holtzhausen and Noakes 1997) have 
argued that hyperthermia and dehydration play little or no 
role in the collapse of athletes at the end of marathons, 
whereas sustained peripheral vasodilation and loss of the 
muscle pump appear sufficient to explain many cases of 
post-exercise syncope following moderate-intensity exer-
cise of extended duration. It is worth noting that the early 
work by Eichna et al. (1947a) found the increased inci-
dence of pre-syncope during head-up tilt persists for 1–2 h 
following exercise. This is a timeline that is similar to the 
duration of the sustained post-exercise vasodilation that is 
mediated by histamine-receptor activation (Emhoff et al. 
2011).

High-intensity exercise

In contrast to moderate-intensity exercise, there are fewer 
studies investigating post-exercise hypotension and related 
phenomenon following short-duration high-intensity exer-
cise. However, there is anecdotal evidence that the Wingate 
test of anaerobic power, a staple of undergraduate exercise 
physiology labs, results in pre-syncopal symptoms in many 
individuals. Likewise, the classic study by Eichna et al. 
(1947a) found that more than half of healthy individuals 
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will become pre-syncopal during a 5-min head-up tilt after 
completion of maximal exercise. More recently, Lacewell 
et al. (2013) developed a modified Wingate test which pro-
duces post-exercise syncope in many individuals. Such 
maximal or supra-maximal efforts when followed by head-
up tilt or active standing elicit pre-syncopal responses in 
58–100 % of individuals, as shown in Table 2.

What is interesting in the study by Lacewell et al. (2013) 
is that arterial pressure was often well maintained at or 
above pre-exercise levels until a sudden shift to hypoten-
sion and development of pre-syncopal symptoms. In other 
words, arterial pressure did not demonstrate post-exercise 
hypotension prior to post-exercise syncope, rather pressure 
was well maintained (until it was not).

One of the characteristics of recovery from high-inten-
sity exercise is marked hyperventilation which can reduce 
arterial CO2 to values that would likely induce prominent 
cerebral vasoconstriction. For example, after a modified 
Wingate test, end-tidal CO2 decreased 14 mmHg to levels 
that would be associated with a ~40 % reduction in cerebral 
perfusion (Lacewell et al. 2013). There are cases of athletes 
developing syncope as a result of brief vigorous hyperven-
tilation (Buja et al. 1989).

The potential role of autoregulation in this model also 
merits discussion. While cerebral autoregulation is well 
maintained following moderate-intensity exercise (Ogoh 
et al. 2007; Murrell et al. 2007; Willie et al. 2013), two 
studies suggest that more intense exercise may produce a 
lasting cerebral autoregulatory deficit. Specifically, Ogoh 
et al. (2005) found reduced dynamic cerebral autoregula-
tion (as assessed by transfer function) during heavy cycle 
exercise and Bailey et al. (2011) found reduced dynamic 
cerebral autoregulation (as assessed by thigh-cuff release) 
during recovery from a recumbent cycle peak test. Thus, 
it seems likely that cerebral perfusion is less protected 
from sudden onset hypotension following high-intensity 
exercise.

Exercise in the heat

Exercise in the heat adds another level of complexity to 
these integrated responses. This model is exemplified by 
moderate-intensity exercise of moderate to long duration 
that is performed in a hot environment, which could be 
either arid or humid. Thus, the situational component that 
adds complexity to this model is the greater heat load, sec-
ondary to the reduced ability to dissipate metabolic heat 
to the environment. When individuals are exercising hard 
enough or long enough to generate significant increases in 
core temperature, then the physiological accommodations 
to heat stress such as cutaneous vasodilation and sweating 
can lead to reductions in central venous pressure, dehydra-
tion, and hypovolemia.

As recently reviewed by Kenney et al. (2013), there 
is a commensal use of cardiac output to serve both the 
metabolic demands of the exercising muscle and ther-
moregulatory need for heat dissipation (Rowell 1977). 
While skin blood flow may increase to more than 7 L/
min (more than half of available cardiac output) during 
passive heat stress (Rowell 1986; Crandall et al. 2010), 
in normal exercising individuals the blood flow needed 
to maintain heat dissipation and muscular activity is not 
a great enough demand to limit either of these vascula-
tures or to compromise blood pressure regulation (Ken-
ney et al. 2013). That said, the non-competing division 
of cardiac output may deteriorate into competition for 
limited cardiac output at the end of exercise (when the 
muscle pump is lost), but some surprising observations 
have been made.

While the greater fluid loss associated with exercise in 
the heat can be predicted to decrease cardiac preload, Lynn 
et al. (2009) showed that greater elevations in heart rate 
following exercise in the heat are associated with an aug-
mentation of cardiac output that is as great as what can be 
produced by fluid replacement, at least when subjects are 
supine. However, it is clear that the skin, when vasodilated 
in response to passive heat stress, is insufficiently vasocon-
stricted with orthostatic stress to support cardiac preload 
and, therefore, predisposes individuals to the development 
of syncope in the heat (Crandall 2008; Crandall et al. 2010; 
Pearson et al. 2013).

Following exercise, other vascular beds likely vasocon-
strict to maintain pressure in response to orthostatic chal-
lenge. While the arterial baroreflex is reset to maintain arte-
rial pressure at lower levels following exercise, sensitivity 
of baroreflex control of sympathetic outflow is augmented 
after exercise in the heat, possibly due to greater reduc-
tions in central venous pressure that result in decreased 
cardiopulmonary baroreceptor activation (Charkoudian 
et al. 2003). However, it is likely that the vasoconstric-
tor reserve is reached for important vasculatures such as 
the splanchnic region during this combination of stressors 
(Crandall 2008; Crandall et al. 2010; Pearson et al. 2013), 
leaving little if any margin for maintaining cerebral perfu-
sion in the upright position. Further, there is some evidence 
that exercise in the heat may produce a lasting deficit in 
the cerebral autoregulation which is observable after the 
return to resting body temperatures (Carter et al. 2006). 
Thus, it is not surprising that classic studies documented 
a decreased orthostatic tolerance following exercise in the 
heat (Greenleaf et al. 1974; Shvartz et al. 1977), and brief 
high-intensity (Greenleaf et al. 1974), prolonged low-inten-
sity (Shvartz et al. 1977), and medium-duration moderate-
intensity (McCord et al. 2008) exercise in the heat have all 
been used as prospective models for studying post-exercise 
syncope.
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Exercise at altitude

Anecdotes of altitude-related syncope both during and after 
exercise abound, but few (if any) have been documented in 
the literature (Hultgren 1997). That said, it is well estab-
lished that neurally mediated syncope can be produced 
in most individuals by having them breathe low O2 levels 
(<8 %), and that some individuals will become syncopal 
while breathing moderately hypoxic O2 mixtures (13–14 % 
O2) similar to the O2 levels at altitudes of 3,000–4,000 m. 
At these altitudes, orthostatic tolerance is reduced (Halli-
will 2003).

Early hemodynamic studies highlighted a potential role 
of exaggerated circulating epinephrine levels in precipitat-
ing hypoxic syncope (Halliwill 2003; Halliwill and Minson 
2005). Dinenno et al. (2003) were able to obtain an arte-
rial blood sample from a hypoxic individual at the onset 
of hypotension and bradycardia and found fourfold higher 
epinephrine than other subjects exposed to the same degree 
of hypoxia. This observation is consistent with the notion 
of exaggerated circulating epinephrine in hypoxic syncope. 
In this individual, high epinephrine was associated with 
progressive skeletal muscle vasodilation, but part of the 
hypotension may have been linked to hypoxic vasodilation 
of the splanchnic circulation (Rowell and Blackmon 1989; 
Westendorp et al. 1997). One case report suggests that 
β-adrenergic blockade may prevent hypoxic syncope (Frei-
tas et al. 1996).

With this background on hypoxic syncope, one can sur-
mise that post-exercise syncope at altitude is multi-facto-
rial, combining the elements of the other exercise mod-
els with epinephrine-induced vasodilation and a possible 
splanchnic steal of blood flow. These factors, which act-
ing alone can compromise cerebral perfusion, would act in 
combination with reduced arterial oxygen content to dimin-
ish cerebral oxygenation.

Resistance exercise

While most of the focus of this review is on the response 
to dynamic whole-body exercise, it is worth mentioning 
that resistance exercise is also associated with post-exer-
cise syncopal episodes. Often referred to as “weightlifter’s 
blackout,” post-resistance exercise syncope occurs during 
exercise or within seconds of completion (Compton et al. 
1973).

Unlike the moderate blood pressure increase that occurs 
during aerobic exercise, arterial blood pressure is pro-
foundly elevated during resistance exercise. Arterial blood 
pressure has been reported to reach 320/250 mmHg dur-
ing maximal double-leg press (Macdougall et al. 1985), 
although the rise in pressure during submaximal resistance 
exercise does not approach these levels (Edwards et al. 

2002; Romero and Cooke 2007). In the face of increased 
perfusion pressure, cerebral perfusion (measured via tran-
scranial Doppler) is unchanged (Edwards et al. 2002) or 
slightly elevated (Romero and Cooke 2007) during mod-
erate-intensity resistance exercise, but is reduced during 
high-intensity resistance exercise (Dickerman et al. 2000; 
Perry et al. 2013) perhaps as protection against hyperten-
sion (Tzeng and Ainslie 2013).

Subsequent to the marked elevation in blood pressure 
during resistance exercise, pressure falls rapidly to below 
pre-exercise levels upon the completion of the lift (Mac-
dougall et al. 1985; Edwards et al. 2002; Pott et al. 2003; 
Romero and Cooke 2007). As a result, cerebral perfusion 
falls below pre-exercise levels immediately following exer-
cise (Edwards et al. 2002; Romero and Cooke 2007). The 
precipitous fall in arterial blood pressure immediately fol-
lowing resistance exercise may be a sufficient challenge to 
the cerebrovascular regulatory mechanisms to produce syn-
cope (i.e., the large and rapid “swing” in pressure may be 
beyond the upper and lower limits of cerebral autoregula-
tion) (Macdougall et al. 1985; Dickerman et al. 2000).

Several additional mechanisms may exacerbate this state 
and contribute to post-resistance exercise syncope. First, 
voluntary or involuntary hyperventilation before or during 
resistance exercise may induce cerebral vasoconstriction 
(Compton et al. 1973; Romero and Cooke 2007), similar 
to what we have discussed above for high-intensity exer-
cise. Second, Valsalva straining during lifting may produce 
sudden blood pressure transitions both during and immedi-
ately after straining (Compton et al. 1973). Third, dehydra-
tion is a common practice among competitive weightlifters 
and other weight-class athletes (e.g., wrestling and boxing), 
and the reduced circulating blood volume associated with 
hypohydration can further reduce tolerance to post-exercise 
orthostatic challenges (Hand 1997; Moralez et al. 2012).

In summary, one can consider these five archetypal 
exercise models as situational variations on the underly-
ing physiology that may increase or decrease the predis-
position toward post-exercise syncopal events. Some of 
these models are well developed, but some remain poorly 
investigated.

Part 3: classifications of potential countermeasures

The majority of evidence indicates that post-exercise syn-
cope, in the absence of other medical conditions, is a nui-
sance. One to three percent of emergency department visits 
in the United States, with an estimated cost of $5,400 per 
patient and totaling $2.5 billion a year, are due to syncope 
(Sun et al. 2005). It is important to recognize that post-
exercise syncope can be situationally life-threatening (e.g., 
cycling, climbing, firefighting, and military operations), 



572 Eur J Appl Physiol (2014) 114:561–578

1 3

and several case reports on post-exercise syncope involve 
firefighters (Osswald et al. 1994; van den Berg et al. 1995; 
Krediet et al. 2006). Thus, the development of counter-
measures which can protect against post-exercise syncope 
should focus on ways to protect the individual from loss 
of consciousness during recovery from exercise. The cur-
rent arsenal of countermeasures falls into three basic cat-
egories: behavioral, pharmacological, and pacemakers. 
The evidence for these existing countermeasures is almost 
exclusively anecdotal. Table 3 summarizes case reports of 
post-exercise syncope which included an intervention or 
treatment and follow-up.

To the best of our knowledge, there is one randomized 
controlled trial for post-collapse treatment (but not preven-
tion) (Anley et al. 2011), one randomized controlled trial 
for prevention in athletes with post-exercise syncope (Priv-
ett et al. 2010b), and two randomized controlled trials for 

prevention in models of post-exercise syncope performed 
in healthy subjects (McCord et al. 2008; Lacewell et al. 
2013), as summarized in Table 4; Fig. 4.

Behavioral

It is disappointing that one of the most common medical 
recommendations to patients with post-exercise syncope is 
to simply avoid vigorous exercise. Considering the numer-
ous health benefits of routine vigorous exercise, this is not 
an acceptable remedy. Rather, avoidance of exercise should 
be seen as a last resort when all other countermeasures 
have failed to protect the individual.

In contrast to preaching avoidance, a number of easily 
learned physical countermeasures designed to engage the 
muscle pump and augment venous return are often found 
to be beneficial in preventing a significant drop in blood 

Table 3  Case studies with interventions and follow-up

References Treatment/intervention Outcome/follow-up

Behavioral

Fleg and Asante (1983) Avoid strenuous exercise No further episodes at 3 months

Hirata et al. (1987) Avoid strenuous exercise n/a

Tamura et al. (1990) Cardiac pacing and active walking recovery No further episodes with use of active recovery

Tse and Lau (1995) Avoid strenuous exercise No further episodes at 12 months

van den Berg et al. (1995) Avoid strenuous exercise n/a

Crisafulli et al. (2000) Active recovery after exercise n/a

Thijs et al. (2003) Ingest 1,000 ml water, 15 min prior to exercise No further episodes with use of countermeasure at 
2 months

Krediet et al. (2005) Instruction to try squatting, leg-crossing, leg-buttock-
abdominal muscle tensing, and drinking water

No further episodes with use of physical countermeas-
ures at 4 months

Krediet et al. (2006) Active recovery after exercise No further episodes at 5 years

Krediet et al. (2006) Avoid strenuous exercise No further episodes at 9 months

Karadag et al. (2007) Avoid strenuous exercise No further episodes at 3 years

Pharmacological

Tsutsumi et al. (1979) β-Blocker (20 mg pindolol) n/a

Huycke et al. (1987) β-Blocker (14 mg propranolol IV, then 20 mg every  
6 h for 3 days before exercise testing); avoid  
strenuous exercise

No further episodes with avoidance at 1 year

Pedersen et al. (1989) β-Blocker (100 mg metoprolol twice daily) No further episodes at long-term follow-up

Osswald et al. (1994) Anti-arrhythmic/anti-muscarinic (disopyramide) No further episodes at 38 months

Osswald et al. (1994) β-Blocker (25 mg atenolol daily) No further episodes at 9 months

Pacemaker

Kapoor (1989) Dual-chamber permanent pacemaker No further episodes at 4 years

Lowe et al. (2000) Dual-chamber permanent pacemaker Some pre-syncopal symptoms after exercise, but no 
measurable hypotension

Ziegelstein (2004) Dual-chamber permanent pacemaker No further episodes at 2 years

Dockery and Newman (2007) Dual-chamber permanent pacemaker No further episodes

van den Berg et al. (1995) Rate-responsive (QT) VVI pacemaker Asymptomatic with exercise

Karadag et al. (2007) Dual-chamber permanent pacemaker No further episodes at 26 months

Karadag et al. (2007) Dual-chamber permanent pacemaker No further episodes at 12 months
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pressure after exercise. A classic study by Eichna et al. 
(1947a) showed that alternate movement of the legs during 
orthostatic hypotension following exhaustive physical work 
in young, healthy soldiers raised blood pressure markedly. 
Likewise, Krediet et al. (2005) demonstrated that a simple 
squatting maneuver could ameliorate pre-syncopal symp-
toms and normalize blood pressure in a patient in whom 
neurally mediated syncope could be consistently triggered 
by moderate cycle exercise. One can consider such coun-
termeasures, along with the advice to “keep moving” after 
exercise, as a simple and effective means to avoid many 
cases of post-exercise syncope, as active recovery has been 
reported to be beneficial in some cases (Tamura et al. 1990; 
Krediet et al. 2006). However, there are likely limitations 
inherent in asking an exhausted athlete to rely on their 
fatigued muscles to protect them from post-race collapse, 
and it is likely that the finish-line chute standstill has con-
tributed to some cases of syncope (Holtzhausen and Noakes 
1995; Anon 2004). If active recovery is not practical, then 
use of the Trendelenberg position (or simply lifting the legs 
of the supine individual) may be an effective way to rectify 
venous return to the heart (Anley et al. 2011).

Lacewell et al. (2013) recently demonstrated the ben-
efits of using an inspiratory resistance device to alleviate 
post-exercise syncope following high-intensity exercise, as 
shown in Fig. 4b. Originally developed for the treatment 
of severe hemorrhage and shock, an impedance threshold 
device generates resistance during inspiration which may 
augment the function of the respiratory pump in mobiliz-
ing venous blood toward the heart. However, it is possible 
that the main benefit of the device following high-intensity 
exercise is the attenuation of hypocapnic cerebral vasocon-
striction or enhancement of a cerebral siphon effect.

Another behavioral approach with promise is the use of 
water ingestion (Thijs et al. 2003), not in the prevention of 
dehydration, but owing to the pressor response elicited by 

ingestion of modest to large volumes of hypotonic fluid. 
In other studies, fluid ingestion to replace that lost during 
exercise has been shown to reduce cardiovascular strain 
during lower body negative pressure (Davis and Fortney 
1997). However, when treating post-competition collapse 
following endurance events Anley et al. (2011) found that 
use of the Trendelenberg position was as effective as intra-
venous fluids.

Lastly, compression garments can be of benefit in reduc-
ing the likelihood of post-exercise syncope (Privett et al. 
2010b). Use of compression garments of various types are 
seeing more widespread use by the athletic community, so 
routine use of such garments in an individual with recur-
ring symptoms during recovery from exercise may be an 
appealing alternative to some of the more invasive counter-
measures described below.

Pharmacological

It is clear that many of the clinical approaches that are 
employed to treat patients with post-exercise syncope have 
been adapted from those tools that have also seen routine 
use in treating neurally mediated syncope. Thus, the use 
of β-adrenergic blocking drugs is the most common phar-
macological countermeasure (see Table 3), followed by the 
anti-arrhythmic agent disopyramide (which is used in part 
because of its vagolytic effects). These standard pharma-
cological approaches remain controversial in treatment of 
neurally mediated syncope, where anecdotal evidence and 
case reports are promising but evidence from controlled tri-
als is often inconclusive (Kaufmann and Freeman 2004).

It is important to recognize that none of the common 
pharmacological approaches, such as β-adrenergic block-
ing drugs, act directly on the underlying physiology related 
to post-exercise hypotension or sustained post-exercise vas-
odilation (except perhaps in the setting of altitude, where 

Table 4  Countermeasures against post-exercise syncope

Prospective studies in which pre-syncopal rates during head-up tilt were assessed during recovery from exercise with a countermeasure designed 
to prevent syncope

References Exercise and orthostatic test Countermeasure Outcome

Eichna et al. (1947a) High-intensity exercise; 70° head-up 
tilt (5 min)

Alternate movement of the legs; 
vascular occlusion of the legs prior 
to tilt

Reduced incidence of pre-syncope

McCord et al. (2008) Exercise in the heat; 60° head-up tilt 
(15 min)

Histamine H1-receptor blockade Reduced incidence of pre-syncope from 
53 to 27 %

Privett et al. (2010b) High-intensity exercise; active stand-
ing (10 min)

Heel raises Reduced incidence of pre-syncope from 
100 to 33 %

Privett et al. (2010b) High-intensity exercise; active stand-
ing (10 min)

Compression stockings Reduced incidence of pre-syncope from 
100 to 16 %

Lacewell et al. (2013) High-intensity exercise; 60° head-up 
tilt (15 min)

Inspiratory resistance Reduced incidence of pre-syncope from 
58 to 33 %
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circulating epinephrine is an issue). However, McCord 
et al. (2008), tested the effectiveness of H1-receptor antago-
nism in preventing post-exercise syncope induced by head-
up tilt following exercise in the heat. They found the mag-
nitude of the arterial pressure drop during head-up tilt was 
blunted by administration of an H1-receptor antagonist, and 
subjects were able to stand longer before the development 
of pre-syncopal signs and symptoms, as shown in Fig. 4a. 
In essence, this is the first pharmacological countermeasure 
which directly targets the underlying physiology of recov-
ery from exercise.

Pacemakers

In a number of cases, pacemakers have been implanted 
in patients with post-exercise syncope. Like the use of 
β-adrenergic blocking drugs, this is a countermeasure 
adapted from the clinical toolbox routinely used to deal 
with neurally mediated syncope. While a number of case 
reports (see Table 3) suggest that pacemakers are effec-
tive, such anecdotes are far from definitive and the use of 
pacemakers for the treatment of neurally mediated syncope 
remains controversial (Petersen and Sutton 1997; Romme 
et al. 2011). As reviewed here, knowledge of the physiol-
ogy of post-exercise hypotension, sustained post-exercise 
vasodilation, and post-exercise syncope do not provide a 
rationale for the use of implanted pacemakers, when other 
less-invasive countermeasures are likely to be beneficial.

Other directions

We believe there are other potential directions for interven-
tions, and that a systematic view of the underlying physiol-
ogy of post-exercise hypotension and syncope can be used as 
a roadmap. Specifically, each of the five archetypal exercise 

models may respond to targeted interventions with greater 
efficacy than a “one size fits all” approach, but some inter-
ventions may prove universally beneficial, but perhaps to 
lesser effect. The ideal solution, if it exists, would be a non-
invasive countermeasure that does not require the individual 
to medicate daily, and that can be deployed “as needed” 
without the need to carry equipment or wear special clothing.

One approach would be countermeasures that increase 
total peripheral resistance. In hot conditions, rapid skin 
cooling may prove an effective means of reducing cutane-
ous vascular conductance and improving hemodynamic sta-
bility. Along these lines, Wilson et al. (2002) demonstrated 
that, in a model of passive heat stress, rapid skin cooling 
protected arterial pressure, cerebral perfusion, and decreased 
pre-syncopal symptoms during head-up tilt. In other situ-
ations, sympathoexcitatory maneuvers such as bolus fluid 
ingestion of water or hand immersion in ice water to elicit 
a cold pressor response might be sufficient to increase total 
peripheral resistance and provide benefit. Pharmacological 
interventions that target specific vascular beds such as the 
highly compliant splanchnic circulation may prove effective 
in enhancing total peripheral resistance (Jarvis et al. 2012), 
and could be very advantageous for exercise at altitude.

Another approach would be countermeasures designed 
to augment cardiac preload, beyond administering flu-
ids and engaging the muscle pump (Tamura et al. 1990; 
Krediet et al. 2006). Augmentation of the respiratory pump 
via inspiratory resistance shows some promise in this area 
(Lacewell et al. 2013), and it is possible that some of the 
sympathoexcitatory maneuvers or rapid skin cooling also 
function to augment cardiac preload. External compression 
by medical compression garments or other means may be 
viable, but perhaps less than ideal.

The least explored approach would be countermeasures 
designed to protect cerebral blood flow directly, by either 

Fig. 4  Survival time during head-up tilt following exercise—two 
models and two countermeasures. The proportion of subjects remain-
ing in the tilted position as shown by survival function curve. a Effect 
of H1-receptor blockade on head-up tilt after 45 min running in the 

heat. (Modified from McCord et al. 2008). b Effect of inspiratory 
resistance on head-up tile after 1 min high-intensity exercise. (Modi-
fied from Lacewell et al. 2013). Solid line represents the control day; 
dotted line countermeasure day
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causing cerebral vasodilation or boosting cerebral perfu-
sion pressure gradients. Along these lines, when hypocap-
nia is a likely contributing factor (high-intensity exercise 
or resistance exercise), it is possible that something as 
simple as rebreathing from a paper bag might help protect 
cerebral blood flow by maintaining higher arterial CO2 
levels. To the extent that the cerebral siphon effect is pre-
sent in upright humans (which remains highly debated), 
breathing maneuvers which engage the respiratory pump 
may prove effective in augmenting the cerebral perfusion 
pressure gradient (as discussed in Lacewell et al. 2013). 
Lastly, supplemental oxygen could also be beneficial, 
but it seems to be seldom deployed during recovery from 
exercise aside from NFL games played at modest altitudes 
(~1,610 m).

One interesting potential countermeasure that may need 
to be re-explored is the role of acclimatization to heat. 
Early work by Greenleaf et al. (1974) found that orthostatic 
tolerance following exercise in the heat was, surprisingly, 
made worse by prior heat acclimatization. It is unclear 
how acclimatization, which greatly improves the ability to 
exercise in the heat and is associated with plasma volume 
expansion, would prove to be deleterious in the setting of 
post-exercise syncope.

Summary and conclusions

Blood pressure regulation after exercise is about much 
more than a simple loss of the muscle pump. Newer inves-
tigations on the recovery from exercise provide insight 
into the mechanisms of baroreflex resetting, the sustained 
histamine-mediated vasodilation, and changes in cerebral 
autoregulation. Thus, obligatory alterations in the control 
of sympathetic vascular tone and skeletal muscle blood 
flow interact with situational effects like cutaneous vaso-
dilation in the heat, dehydration, hypoxic vasodilation, 
and hypocapnic cerebral vasoconstriction to produce the 
post-exercise hypotension, and in some cases post-exercise 
syncope. Mining of case and prospective studies hints at 
additional influences regarding who is likely to suffer from 
pre-syncopal symptoms after exercise and under what cir-
cumstances. Together, this information creates a framework 
for challenging some of the traditional treatment strategies 
and for developing novel countermeasures against post-
exercise syncope.
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