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Abstract Arm elevation induces diastolic retrograde flow

in the brachial artery and an incremental rise in arterial

compliance in healthy subjects with no modifications in

vascular resistance. In contrast, changes in resistance have

been observed after handgrip exercise. Our objective was

to investigate if the resistance change induced by isometric

handgrip exercise is able to reverse diastolic retrograde

flow induced by arm elevation in a healthy population and

to explore these adaptive changes in hypertensive subjects.

Arterial flow velocity Doppler measurements were

obtained including: (a) a baseline measurement, (b) mea-

surement 30 s after arm elevation, (c) measurement during

handgrip maneuver with the arm elevated, (d) measurement

during handgrip release with the arm elevated. Our findings

showed that diastolic retrograde flow is induced by arm

elevation, partially increased by arm-up handgrip and

completely reversed during arm-up handgrip release both

in healthy and hypertensive subjects. As compared with

normal subjects, deceleration time was longer in the

hypertensive subjects during baseline but not during the

arm-up stage, handgrip contraction and handgrip release

stages. An important increase in deceleration time values

from baseline to arm-up and handgrip contraction stages

was observed in normal subjects but not in the hypertensive

group. We believe that the highly significant difference in

reactivity to postural changes observed in deceleration time

values constitutes a promising hemodynamic index to

investigate. Also, our observation of complete reversal of

the retrograde flow during arm-up handgrip release pro-

vides a new approach to postural and exercise-induced

vasomotor responses.

Keywords Doppler � Postural flow modifications �
Handgrip � Reverse arterial flow

Introduction

Since Celermajer et al. (1992) introduced flow-mediated

dilation (FMD) assessment to determine arterial dilator

capacity, this technique has become a well-established

diagnostic method for predicting cardiovascular events in

patients with cardiovascular disease (Thijssen et al. 2011).

Moreover, over the past few years, there has been an

increased interest in novel approaches to the brachial artery

flow study, such as, retrograde flow and shear rate assess-

ment (Thijssen et al. 2009; Padilla et al. 2010; Tinken et al.

2009). In this line of work, Thijssen and Green (Thijssen

et al. 2009) demonstrated that retrograde flow can acutely

impair endothelial function in humans. Furthermore,

increased brachial and femoral retrograde flow was asso-

ciated with aging (Credeur et al. 2009; Young et al. 2010)

and a recent investigation demonstrated the influence of

arterial stiffness on Doppler wave patterns in the femoral

artery (Hashimoto and Ito 2010). Nevertheless, many

aspects of retrograde flow and their relation with cardio-

vascular risk factors are still unknown. Brachial artery

compliance is increased during arm elevation in healthy

subjects with little or no modifications in vascular resis-

tance. This response has been attributed to a reduced

intravascular pressure that may trigger smooth vascular

muscle relaxation (Bochmann et al. 2005) decreasing the
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vasomotor tone without modifying the vessel diameter

(Zamir et al. 2007). Likewise, previous investigations

reported increased diastolic retrograde flow components

during arm elevation (Mc Loughlin et al. 2011) In contrast,

handgrip exercise activates vasodilatory mechanisms

(Clifford and Hellsten 2004) reducing arterial resistance

and increasing brachial antegrade blood flow (Pyke et al.

2008; Wray et al. 2011; Humphreys and Lind 1963; Kirby

et al. 2009). We hypothesized that diastolic retrograde flow

could be reversed by changes in arterial resistance induced

by isometric handgrip exercise. We further hypothesized

that postural and exercise-induced adaptation might be

impaired in hypertensive patients due to the reduction in

arterial compliance (London et al. 1989) and endothelial

dysfunction (Panza et al. 1990; Perticone et al. 2001;

Plavnik et al. 2007). The purpose of this study was to

investigate arm elevation and handgrip exercise influence

on arterial flow velocities and retrograde flow in a healthy

population and in hypertensive subjects.

Methods

Subjects

Eleven healthy volunteers (7 women) and seven hyperten-

sive patients (3 women) matched by age and body mass

index participated in the study (Table 1). Other than

hypertension, no subjects reported having been diagnosed

with cardiovascular risk factors, myocardial infarction or

stroke. Measurements were carried out in a quiet laboratory

at a temperature between 21 and 24�C. Caffeine and exercise

were avoided for 24 h before testing (Urbina et al. 2009;

Corretti et al. 2002). All patients in the hypertensive group

were under drug treatment to normalize blood pressure and

have been diagnosed with mild hypertension 5–10 years

before participating in the study. The study procedures were

approved by the ethics committee of the ININCA (UBA-

CONICET) and adhered to the Declaration of Helsinki. All

of the subjects gave previous written consent.

Experimental design

The entire hemodynamic study was performed in one

session. Arterial blood pressure was measured in a supine

position in the left arm before Doppler assessment. After

blood pressure assessment, Doppler measurements were

obtained in the right arm while the patients were lying

supine and included (a) a baseline measurement, (b) mea-

surement 30 s after arm elevation, (c) measurement during

handgrip maneuver with the arm elevated, (d) measurement

during handgrip release with the arm elevated. After

obtaining the baseline measurement, the patient arm was

passively elevated until a vertical position of 90� perpen-

dicular to the stretcher. Once elevated, the arm was not

descended at any moment during the rest of the hemody-

namic study. The assessment in the arm-elevated handgrip

position was performed during a 15-s constant muscle

contraction. Fifty percent of the previously determined

maximum voluntary contraction was used in all subjects

and the last five Doppler waves before handgrip release

were used for measurements. For the handgrip release

state, measurements were made at the fifth Doppler wave

after ending muscle contraction.

To facilitate the article comprehension, the arm-up

handgrip contraction stage and the arm-up handgrip release

stage will be mentioned only as handgrip contraction and

handgrip release.

Doppler assessment

The brachial artery was imaged approximately 5 cm

proximal to the antecubital fossa in a longitudinal plane

using a commercially available ultrasound scanner with a

12-MHz transducer. Doppler velocity tracings were

obtained with an insonation angle inferior to 60�. The wall

filter was set at the lowest possible level (50 Hz). Sample

volume was widely spaced to encompass the near and far

walls of the artery, and simultaneous duplex B-mode -

Doppler technique was used to certify venous signals were

not included in the tracing.

Table 1 Demographics (n = 18)

Group Number

of

patients

Age Weight (kg) Height

(cm)

BMI Systolic

pressure

(mmHg)

Diastolic

pressure

(mmHg)

Arm-up

systolic

pressure

(mmHg)

Arm-up

diastolic

pressure

(mmHg)

Normal 11 57.9 ± 13.8 70.2 ± 11.7 165 ± 6.96 25.4 ± 3.3 123 ± 8.64 70.2 ± 6.03 104 ± 10.3 53.5 ± 8.61

Hypertensive 7 63.2 ± 6.47 77 ± 9.5 169 ± 8.9 27.1 ± 3.3 140 ± 15.6* 82.1 ± 9.80* 118 ± 14.3* 64.4 ± 5.88*

Values are means ± SD

BMI body mass index

* Significant difference
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Doppler measurements

Calculations were made with the ultrasound equipment built-

in software and included peak systolic velocity (PSV),

minimum diastolic velocity (MDV), pulsatility index (PI)

and deceleration time (DT). Deceleration was calculated as

peak systolic velocity-minimum diastolic velocity/decel-

eration time and deceleration time was assessed using the

built-in software of the ultrasound equipment measuring the

time from peak systolic velocity up to minimum diastolic

velocity. (Hashimoto and Ito 2010) (Fig. 1, left). The ultra-

sound scanner built-in modified resistivity index

(MRI = PSV-MDV/PSV) that considers minimum dia-

stolic velocity instead of end diastolic velocity was used.

Peak-to-peak difference (PSV-MDV) was calculated for all

cases. Mean flow velocity was calculated as (PSV-MDV/

PI). Retrograde flow time (ms) was measured and then

divided by total cycle time to establish the retrograde time/

total time ratio. DT% change was the percent of change

during each stage of the study compared with baseline.

Statistics

Statistical analysis was performed using SPSS for Win-

dows (version 17.0) software. Continuous variables were

expressed as mean ± one standard deviation. A one-way

repeated measures ANOVA was used to evaluate the four

hemodynamic stages. When a significant change was

found, Bonferroni’s post hoc procedure was used for

pairwise comparisons. Unpaired two-sample t test was used

to compare normal subjects with the hypertensive popula-

tion. A p \ 0.05 was considered significant.

Results

Effects of arm elevation and handgrip maneuver

in healthy patients

Peak systolic velocity was similar during the four stages

(see Table 2). During the arm-up stage, minimum diastolic

velocity was reduced as compared with baseline results

(p = 0.023). On the contrary, modified resistivity index

(p = 0.045), retrograde flow time (p = 0.003) and retro-

grade flow time/total time (p = 0.002) were increased.

Deceleration time and pulsatility index were also

increased, however, statistical significance was not reached

(p = 0.06, p = 0.1). Deceleration and mean velocity pre-

sented a decline trend as compared with baseline, however,

these reductions were not statistically significant.

During the handgrip contraction stage, an accentuation

of the already observed arm-up changes was noticed.

Minimum diastolic velocity was, again, reduced as com-

pared with baseline results (p \ 0.008). Deceleration time

(p \ 0.034), modified resistivity index (p = 0.003), retro-

grade flow time (p \ 0.0001), retrograde time/total time

(p \ 0.0001) and pulsatility index were increased when

compared to baseline (p \ 0.002). Mean velocity was

reduced during the handgrip contraction stage as compared

with baseline (p \ 0.001). Deceleration was also reduced

when compared with baseline; however, statistical signifi-

cance was not reached (p = 0.3).

Finally, during the handgrip release stage a partial

reversion of the arm-up induced changes was observed.

When the handgrip release stage was compared with the

arm-up stage, a significant decrease in modified resistivity

Fig. 1 Left Peak systolic velocity (PSV) and deceleration time (DT).

DT time was measured from peak systolic velocity up to minimum

diastolic velocity. Middle Doppler wave patterns in a normal subject.

(A) Baseline, (B) arm-up, (C) arm-up handgrip contraction and

(D) arm-up handgrip release Right Doppler wave patterns in a

hypertensive subject. (A) Baseline, (B) arm-up, (C) arm-up handgrip

contraction and (D) arm-up handgrip release
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index (p = 0.001), retrograde flow time (p = 0.001) and

retrograde time/total time (p = 0.002) was observed.

Minimum diastolic velocity was increased from the arm-up

stage to the handgrip release stage (p = 0.001). In con-

clusion, handgrip contraction increased the hemodynamic

changes produced by arm elevation. On the other hand,

handgrip release produced a reversion of the changes

observed during the arm-up and the handgrip contraction

stages. In fact, handgrip release results were similar to

baseline results (See Table 2; Fig. 1, middle).

Normal versus hypertensive

Peak systolic velocity was higher in healthy subjects during

all the stages with the arm elevated (p = 0.004; p = 0.005

and p = 0.008). However, statistical significance in the

difference between groups was not reached during baseline

(p = 0.06). Deceleration time was higher in the hyperten-

sive subjects during baseline (p = 0.002) but not during

the arm-up, handgrip contraction and handgrip release

stages of the hemodynamic study (p = 0.97; p = 0.27 and

p = 0.41). Interestingly, DT% change demonstrated an

important increase in DT values from baseline to arm-up

and handgrip contraction stages in normal subjects but not

in the hypertensive group. Statistical significance of the

different DT% change between healthy versus hypertensive

subjective was p = 0.007 during arm-up and during

handgrip contraction p = 0.001. During handgrip release,

normal subjects presented a tendency for returning to DT

baseline values resulting in a reduction of the described

difference between the groups in the DT% change values

(p = 0.32). Statistical data are presented in Table 2.

Discussion

Previous investigations have reported the presence of

increased brachial retrograde flow in elderly patients with

one or more cardiovascular risk factors (Credeur et al.

2009). A significant role of NO in the generation of arterial

reflux (Padilla et al. 2011) was recently communicated.

Moreover, an increase in blood flow after handgrip exercise

(Pyke et al. 2008; Wray et al. 2011; Humphreys and Lind

1963) and the role of both NO and acetylcholine in the

observed reactive hyperemia (Casey et al. 2010; Shoe-

maker et al. 1997) have been demonstrated. In the present

paper, we introduce a novel method for assessing Doppler

velocities and retrograde flow in the brachial artery. During

the first stage of our study, we evaluated the hemodynamic

impact of gravity (arm-up stage). We then added to gravity

Table 2 Normal subjects

(n = 11) and hypertensive

subjects (n = 7) mean ± SD

* Values different from baseline
# p \ 0.05 respect to arm up
§ p \ 0.05 respect to handgrip
\ Values different from the

hypertensive group

Baseline Arm-up Handgrip Handgrip release

Normal subjects

PSV (cm s-1) 51.89 ± 18 51.8 ± 15.4\ 54 ± 17.6\ 56.4 ± 16.3\

MDV (cm s-1) -1.30 ± 4.86 -8.25 ± 5.11* -11.6 ± 5.94*,\ 2.40 ± 2.59#,§

MRI 1.03 ± 0.08 1.13 ± 0.11* 1.2 ± 0.09* 0.95 ± 0.04#,§

PI 6.10 ± 2.50 17. 4 ± 16.1 24.5 ± 13.3* 4.26 ± 0.78§

DT (ms) 140 ± 50.9\ 223 ± 92.1 271 ± 131* 208 ± 52.1*

DT change (%) 70.8 ± 69\ 107 ± 79.8\ 61.5 ± 57

Mean velocity (cm s-1) 9.45 ± 3.28\ 6.80 ± 8.19 3.64 ± 2.43* 13.3 ± 5.11§,\

Deceleration (cm s-2) 420 ± 212\ 287 ± 94.5\ 269 ± 130 263 ± 66.6\

Total cycle time (ms) 919 ± 198 921 ± 193 918 ± 197 910 ± 191

Retrograde flow time (ms) 36.3 ± 46.1 378 ± 216* 609 ± 94.4*,§ 18.1 ± 60.3#,§

Retrograde flow (%) 3.6 ± 4.4 44.3 ± 25.5* 67 ± 10*,# 1 ± 6#,§

Hypertensive subjects

PSV (cm/s) 38.4 ± 10.8 33.4 ± 8.13 34.2 ± 8.23 38 ± 9.82

MDV (cm/s) -1.25 ± 3.15 -4.4 ± 4.50 -6.6 ± 2.61* 0.07 ± 2.06§

MRI 1.02 ± 0.07 1.15 ± 0.06* 1.20 ± 0.09* 1 ± 0.05#,§

PI 6.13 ± 1.46 11.7 ± 8.02 21.5 ± 13.4 4.53 ± 1.08

DT (ms) 225 ± 46.1 222 ± 24.2 225 ± 20.7 250 ± 121

DT change (%) 1.01 ± 14 2.8 ± 18# 21.6 ± 90#,§

Mean velocity (cm/s) 6.58 ± 2.11 3.77 ± 1.30 2.52 ± 1.51* 8.89 ± 3.57§

Deceleration (cm s2) 180 ± 61.4 171 ± 54.7 183 ± 52 176 ± 73

Total cycle time (ms) 880 ± 193 875 ± 183 879 ± 199 879 ± 193

Retrograde flow time (ms) 40 ± 50.3 351 ± 188* 580 ± 106* 71.4 ± 149§

Retrograde flow (%) 4.8 ± 6 41.5 ± 24* 66.3 ± 44.3* 9.35 ± 21.3§

3580 Eur J Appl Physiol (2012) 112:3577–3583

123



force an increase in forearm impedance produced by iso-

metric handgrip contraction (arm-up handgrip contraction

stage), and we investigated if post exercise vasodilation

was able to reverse the previously observed changes

induced by gravity and handgrip contraction (arm-up

handgrip release stage).

Effects of arm elevation and handgrip maneuver

in healthy patients

Peak systolic velocity was similar during the four stages of

the experimental design. Our results, demonstrate that

gravity and arm-up handgrip exercise induce changes in

Doppler parameters only after the peak systolic velocity is

reached. In contrast, after peak systolic velocity was

reached we observed that retrograde flow was induced by

arm elevation. Specifically, our findings showed that ret-

rograde flow is induced by arm elevation, partially

increased by arm-up handgrip and completely reversed

during arm-up handgrip release. Moreover, our results

suggest that the impedance augmentation caused by the

restriction of the large vessels at the fascia level as they

enter and leave the muscle (Gray et al. 1967) and/or by the

local compression of intramuscular blood vessels during

the muscle contraction (Barcroft and Dornhorst 1949;

Sadamoto et al. 1983) causes an incremental rise in grav-

ity-induced reflux (Green et al. 2005; Lutjemeier et al.

2005). This finding occurs despite the described systemic

pressure increase observed during handgrip exercise (Ekl-

und et al. 1974; Hunyor and Nyberg 1978) that might

facilitate antegrade flow. Given that conduit artery blood

flow profiles are markedly affected by downstream vas-

cular resistance (Baccelli et al. 1985; Halliwill and Minson

2010), and the observed retrograde flow reversion during

handgrip release suggests an adaptive response in the

forearm microvasculature after exercise that results in a

monophasic Doppler wave where no retrograde flow is

observed. Diastolic retrograde flow reversion observed in

the brachial artery after handgrip might be useful for

studying microvasculature relaxation after isometric

exercise.

Normal versus hypertensive subjects

A similar response in retrograde flow to postural changes

and exercise in hypertensive subjects was observed (see

Table 2). However, special considerations must be

addressed concerning peak systolic velocity, deceleration

time, deceleration and mean velocity. As previously

reported (Safar et al. 1981), our results demonstrate that

normal subjects present higher velocities and lower

deceleration time than hypertensive subjects during base-

line and these findings might reflect an increased arterial

stiffness in the hypertensive group (Hashimoto and Ito

2010). Moreover, in normal subjects, deceleration time was

increased during arm-up position and handgrip contraction

resulting in a reduction in the deceleration slope from peak

systolic velocity to minimum diastolic velocity. Although

not significant, a tendency for returning to baseline values

was observed in deceleration time and deceleration during

handgrip release. Interestingly, the change in deceleration

time observed in normal subjects between baseline and

arm-up position was absent in hypertensive patients. Pro-

longed deceleration slopes are caused by the deprivation of

pressure energy (Abela 2004). When post-stenotic arterial

segments are studied using the Doppler technique, pro-

longed deceleration slopes are observed due to the depri-

vation of pressure energy caused by the upstream stenosis

(Fronek et al. 1976). As mentioned, we observed a similar

response when healthy subjects elevated the arm. These

results suggest that healthy subjects compensate retrograde

flow components induced by arm elevation by increasing

the deceleration time enabling a prolonged antegrade flow.

Likewise, it has been demonstrated that normal subjects

increase the brachial arterial compliance during arm ele-

vation (Zamir et al. 2007). Our observation of deceleration

time increment in normal subjects might reflect the arterial

compliance modification. The absence of prolongation of

the deceleration slope in hypertensive subjects during arm

elevation suggests an impaired response to postural chan-

ges that might represent an early marker of altered brachial

hemodynamics. The understanding of this mechanism may

be addressed in future investigations.

Study limitations

Some limitations of the present study need to be noted.

Although the sample size was relatively modest, it is in

keeping with physiological studies of this nature and the

results were consistent between and within individuals. We

believe that the highly significant difference observed

between the four stages of the experimental design pro-

vides powerful evidence that our findings are robust.

Moreover, all subjects in our cohort were white, so gen-

eralization to other ethnicities is not possible. Hypertensive

subjects in our experiment were studied without suspend-

ing antihypertensive therapy. As in previous investigations

evaluating hemodynamic modifications in the brachial

artery in similar patients (Benjamin et al. 2004), we con-

sidered that since the study was performed with commu-

nity-based volunteers, it would have been inappropriate to

withhold antihypertensive medication. Previous commu-

nications demonstrated that the administration of vasoac-

tive medications not containing nitrates does not

significantly influence hemodynamic variables in the bra-

chial artery such as FMD% (Gokce et al. 2002). Other

Eur J Appl Physiol (2012) 112:3577–3583 3581
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studies have shown that chronic treatment with ACE

inhibitors actually improves FMD (Anderson et al. 2000;

Hornig et al. 2001). Nevertheless, it is important to men-

tion that antihypertensive therapy may have influenced the

differences observed between the studied groups.

Perspectives

Sustained retrograde flow can be induced by arm elevation

in a population where normal triphasic flow is observed

during baseline measurements. Our findings, encourage

further studies of the impact of retrograde flow. Also, our

observation of complete reversion of the retrograde flow

during arm-up handgrip release is, to our knowledge, a

previously unknown physiological phenomenon that pro-

vides a new approach to postural and exercise-induced

vasomotor responses. Frequent associations of hyperten-

sive disease, such as dysautonomia, might be the future

targets for the study of retrograde flow reversion. Finally,

we demonstrate that deceleration time is significantly lower

in normal subjects as compared with hypertensive subjects

during baseline and that hypertensive patients lack the

adaptive deceleration time increase observed in normal

subjects. The highly significant difference in reactivity to

postural changes observed in deceleration time values

constitutes a promising hemodynamic index to explore.
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