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Abstract The purpose of this study was to evaluate

whether ultra endurance exercise changes the mRNA levels

of the autophagy-related and autophagy-regulatory genes.

Eight men (44 ± 1 years, range: 38–50 years) took part in

a 200-km running race. The average running time was 28 h

03 min ± 2 h 01 min (range: 22 h 15 min–35 h 04 min).

A muscle sample was taken from the vastus lateralis

2 weeks prior to the race and 3 h after arrival. Gene

expression was assessed by RT-qPCR. Transcript levels

of autophagy-related genes were increased by 49% for

ATG4b (P = 0.025), 57% for ATG12 (P = 0.013), 286%

for Gabarapl1 (P = 0.008) and 103% for LC3b (P =

0.011). The lysosomal enzyme cathepsin L mRNA was

upregulated by 123% (P = 0.003). Similarly, transcript

levels of the autophagy-regulatory genes BNIP3 and

BNIP3l were both increased by 113% (P = 0.031 and

P = 0.007, respectively). Since upregulation of these

genes has been related with an increased autophagic flux in

various models, our results strongly suggest that autophagy

is activated in response to ultra endurance exercise.
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Introduction

Skeletal muscle represents the largest protein pool in

human body and thereby constitutes an important stock for

supplying alternative energetic substrates during long

periods of high energy demand like an ultramarathon (Finn

and Dice 2006). Skeletal muscle is also known to be

mechanically damaged and metabolically disturbed during

such an exercise (Sandri 2010). Therefore, skeletal muscle

cell needs an efficient system for removing damaged pro-

teins and organelles and for releasing amino acids in the

case of energetic stress. Until recently, most attention had

been paid to the ubiquitin–proteasome pathway and less

consideration had been given to the autophagic-lysosomal

pathway (ALP), but there is now a body of evidence that

both systems are coordinately regulated in catabolic situ-

ations (Zhao et al. 2008).

Experiments conducted in yeast in the 90s brought novel

knowledge in the understanding of ALP regulation (Wang

and Klionsky 2003). They discovered a series of genes

implicated in the ALP that are now referred to as the

‘autophagy-related genes’ (ATG) (Klionsky et al. 2003).

To date, several mammalian homologues of ATG proteins

have been identified. Among them, the ATG1 homologues

Ulk1 and Ulk2 (unc-51-like kinases) as well as the ATG6

homologue Beclin1 play a role in the signalling pathways

that activate autophagy (Eskelinen and Saftig 2009; Lee

and Tournier 2011). Two conjugation systems controlling

autophagosome formation and substrate targeting have

been described: (1) the ATG12-ATG5 complex and (2) the

lipidated form of ATG8. In mammalian cells, two homo-

logues of ATG8 are LC3b (microtubule-associated protein

1 light chain 3 beta) and Gabarapl1 (GABA(A) receptor-

associated protein like 1) (Cabrera et al. 2010). ATG8

participates in autophagosome formation and in substrate

Communicated by Håkan Westerblad.
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targeting under its active form, namely when conjugated

with phosphatidylethanolamine (PE). This lipidation pro-

cess involves among others the participation of ATG4.

More recently, the major role of BNIP3 (BCL2/adenovirus

E1B 19 kDa interacting protein 3) in autophagy has been

observed. The over-expression of this gene enhances

autophagy and mitochondrial fragmentation (Hamacher-

Brady et al. 2007; Tracy and Macleod 2007).

Autophagy can be regulated in response to conditions

such as energy deprivation (Mizushima et al. 2004), the

unfolded protein response (Ogata et al. 2006) or oxidative

stress (Dobrowolny et al. 2008). These three situations can

be triggered by exercise (de Lange et al. 2007; Kim et al.

2011; Sahlin et al. 2010). While increased lysosomal

enzyme activities and elevated number of autophagic

vacuoles have been reported during the repair of exercise

injuries due to strenuous endurance exercise in rodents

(Salminen 1985; Salminen and Vihko 1984), no data are

available concerning the possible regulation of ATG in

response to an acute form of strenuous endurance exercise

in human. There is evidence that autophagy-related as well

as autophagy-regulatory genes are regulated during ALP

activation (Mammucari et al. 2007). Therefore, the goal of

this study was to evaluate whether an ultra endurance

exercise can trigger up-regulation of the autophagy-related

and autophagy-regulatory genes. For that purpose, we used

muscle samples acquired in another study from athletes

who ran a 200-km race (Kim et al. 2011).

Methods

Subjects, race and sample collection

Eight men (44 ± 1 years, range: 38–50 years) well experi-

enced in ultra endurance exercise took part in a 200-km

running race. The average running time was 28 h

03 min ± 2 h 01 min (range: 22 h 15 min–35 h 04 min).

The event was held at sea level in Cheju Island (South

Korea). Subjects were experienced and well-prepared

ultramarathon runners so that all completed the distance

within the cut-off time of 36 h. The local temperature ranged

from 12.5 to 25.3�C (mean 15.9�C) with a relative humidity

between 59.0 and 63.4% and a wind speed of 3–4.5 km/h.

The subjects were informed about the experimental

procedure before their written consent was obtained. The

experiment was approved by the Ethical Committee of the

Korea National Sport University. All the procedures used

were in accordance with the WMA’s Declaration of Hel-

sinki on ethical principles for medical research involving

human subjects.

The subjects reported to the laboratory in the morning,

2 weeks prior to the race. They had been told to refrain

from exercise for a week prior to sample collecting and ate

their usual breakfast 3 h prior to the biopsy. A muscle

sample was taken from the mid portion of the vastus

lateralis with a 5-mm Bergström biopsy needle. Local skin

anesthesia was performed with 2% lidocaine. Samples

were quickly frozen in liquid nitrogen and stored at -80�C

before further analysis. During the race and the recovery,

the runners were allowed to drink and eat ad libitum. Three

hours after arrival, a second muscle biopsy was taken from

the same leg about 1 cm apart from the first biopsy site.

RNA extraction and quantitative Real-Time PCR

Frozen muscle samples (*30 mg) were pulverized using a

mortar and a pestle, transferred in a pre-cooled micro-tube

and homogenized in 1 ml TRIzol� reagent (Invitrogen,

Vilvoorde, Belgium). Total RNA was then isolated fol-

lowing the manufacturer’s instructions. Briefly, after cen-

trifugation of the homogenate (12,000g, 10 min, 4�C),

0.2 ml chloroform was added to the supernatant The

solution was centrifuged at 12,000g for 15 min at 4�C and

the aqueous phase was removed. RNA was isolated using

0.5 ml 100% isopropanol. The pellet was washed with 1 ml

of 75% ethanol and then dried on air. RNA was re-sus-

pended in RNAase-free water and stored at -80�C. RNA

quality was checked by 1.5% agarose gel electrophoresis.

RNA quantity was measured by Nanodrop� spectropho-

tometry. Reverse transcription was performed by MyIQ2

thermocycler (Bio-Rad, Nazareth, Belgium). 10 ll RT

Buffer and 1 ll 209 Enzyme Mix (Bio-Rad) were added to

1.5 lg RNA and RNase-free water to a final volume of

20 ll. Samples were run for 60 min at 37�C followed by

5 min at 95�C. Primers used for quantitative PCR are listed

in Table 1. cDNA was amplified on MyIQ2 thermocycler,

using the following conditions: 3 min at 95�C, followed by

35 cycles of 30 s at 95�C, 30 s at 60�C and 30 s at 72�C.

Triplicates containing 4.8 ll IQ SybrGreen SuperMix (Bio-

Rad), 0.1 ll of each primer (final concentration: 100 nM)

and 5 ll cDNA were analyzed. Melting curves were sys-

tematically performed for quality control. Beta-2-micro-

globulin (b2MG) was used as reference gene and was

unchanged in response to exercise confirming previous

results acquired in our laboratory with another exercise

paradigm (Deldicque et al. 2008).

Statistics

Post-exercise mRNA expression levels are expressed in

fold change (mean ± SEM), compared with their respec-

tive pre-exercise values. A paired t-test was conducted for

statistical analysis. Pearson product moment correlations

were applied to assess a possible relationship between

magnitude of changes in autophagy markers and race time
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as well as magnitude of changes in autophagy markers and

age. Statistical significance was set at P \ 0.05.

Results

The mRNA level encoding for key proteins of the ALP

were increased in response to the 200-km race (Fig. 1).

Transcript levels of ATG4b increased by 1.49 ± 0.21 fold

(P = 0.025), and transcripts of ATG12 similarly raised by

1.57 ± 0.23 fold (P = 0.013). Gabarapl1 and LC3b—two

human homologues of ATG8—increased by 3.86 ± 0.92

(P = 0.008) and 2.03 ± 0.35 fold (P = 0.011), respec-

tively. The lysosomal enzyme cathepsin L was up-regu-

lated by 2.23 ± 0.33 fold (P = 0.003).

The mRNA expression level of genes encoding for

proteins regulating the ALP are presented in Fig. 2. Tran-

script levels of the autophagy-regulatory genes BNIP3

and BNIP3l were similarly increased by 2.13 ± 0.51 (P =

0.031) and 2.13 ± 0.34 fold (P = 0.007), respectively, in

response to exercise. The mRNA expression level of

Beclin1 and Ulk2 remained unchanged.

There was no association between race time and mag-

nitude of changes in autophagy markers or between age

and magnitude of changes in autophagy markers.

Discussion

Already in 1984 and 1985, increase in lysosomal enzyme

activities and an elevated number of autophagic vacuoles

were reported subsequently to a strenuous endurance

exercise (Salminen 1985; Salminen and Vihko 1984). Much

more recently, the control of autophagy in response to

endurance exercise was investigated in rat skeletal muscle.

In that study, endurance exercise, 1 h treadmill 6 days a

week for 8 weeks, induced an increase in the protein

expression level of ATG7, Beclin1 and LC3 in rat soleus

muscle (Feng et al. 2011). The results of the present

investigation are the first showing an increase in transcripts

Table 1 Primer sequences

(50-30)
Forward Reverse

ATG4b GAT GGA GGA AAT CAG AAG GTT G CGC AGG GGA ATG AGA AGT A

ATG12 AGT AGA GCG AAC ACG AAC CAT C CCA TCA CTG CCA AAA CAC TCA T

Beclin1 CAC ATC TGG CAC AGT GGA CA CGG CAG CTC CTT AGA TTT GT

BNIP3 CTG AAA CAG ATA CCC ATA GCA TT CCG ACT TGA CCA ATC CCA

BNIP3l CCA AGG AGT TCC ACT TCA GAC A AGT AGG TGC TGG CAG AGG GTG T

Cathepsin L GTG AAG AAT CAG GGT CAG TGT G GCC CAG AGC AGT CTA CCA GAT

Gabarap1 l GTG CCC TCT GAC CTT ACT GTT G CAT TTC CCA TAG ACA CTC TCA TC

LC3b AAT CCC GGT GAT AAT AGA ACG A GGA GAC GCT GAC CAT GCT GT

Ulk2 CTT CTC CAC CAT CCC TTC CA ACT GCC CTC CAC ACA CCA A

b2MG ATG AGT ATG CCT GCC GTG TGA GGC ATC TTC AAA CCT CCA TG

Fig. 1 mRNA expression levels of autophagy markers before (white
bars) and 3 h after (grey bars) an ultramarathon. Bars represent mean

fold change. Variability is represented by individual response (black
dots) to exercise. *P \ 0.05, **P \ 0.01

Fig. 2 mRNA expression levels of autophagy mediators before

(white bars) and 3 h after (grey bars) an ultramarathon. Bars
represent mean fold change. Variability is represented by individual

response (black dots) to exercise. *P \ 0.05, **P \ 0.01
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of autophagy-related and autophagy-regulatory genes in

human skeletal muscle in response to an acute form of

strenuous endurance exercise, namely an ultramarathon run.

These results are in agreement with those reported in

previous studies which investigated in vivo modulation of

autophagy-related and autophagy-regulatory genes in

response to both atrophy models of denervation and food

deprivation in rodents (Mammucari et al. 2007; Zhao et al.

2007). Three days of denervation induced a significant

increase in the mRNA expression level of ATG4b, ATG12,

Beclin1, BNIP3, BNIP3l, cathepsin L, Gabarapl1 and

LC3b, followed by a later increase of Ulk2 after 7 days.

The same pattern of gene expression was observed in

response to 24-h food deprivation, except for Ulk2 and

Beclin1 the mRNA levels of which were not modified. The

similarity of our results with those obtained on the basis of

denervation and food deprivation models of muscle atro-

phy supports the idea that extreme endurance exercise may

also be considered as a catabolic model for skeletal muscle.

Recent data indicate that the transcription factor fork-

head box O3 (FoxO3) is probably the major effector for

autophagy regulation in skeletal muscle (Mammucari et al.

2008). Cell culture experiments have evidenced that FoxO3

stimulates autophagy through the transcriptional activation

of several autophagy genes including ATG4b, ATG12,

Beclin1, Gabarapl1 and LC3b (Zhao et al. 2007), which

were all increased in response to the ultramarathon race.

The precise role of the observed transcript up-regulation

remains to be elucidated. On the one hand, it is likely that

increased expression of BNIP3 and BNIP3l regulates

directly autophagy induction. Over-expression of one or

the other is sufficient to induce autophagosome formation

in skeletal muscle. Their respective inhibition reduces LC3

lipidation caused by a constitutively active form of FoxO3

(Mammucari et al. 2007). On the other hand, up-regulation

of ATG could be essential for autophagic flux maintenance.

LC3b and Gabarapl1 are degraded by lysosomes and must

be constantly renewed to maintain the autophagic flux.

LC3b over-expression does not increase autophagic flux

while LC3b gene inhibition blocks the autophagic process

(Mammucari et al. 2008). Thus, increased expression of

LC3b and Gabarapl1 transcripts could be necessary for

replenishing protein stocks.

Skeletal muscle response to exercise is highly specific

and depends on the characteristics of exercise, including

intensity and duration. Even if the predominant energetic

substrates during endurance exercise remain carbohydrates

and fats, 1–6% of the dissipated energy can originate from

amino acid (AA) oxidation (Tarnopolsky 2004). Ultra-

marathon race represents an extreme exercise in which

food and fluids intake cannot compensate energy and fluid

needs. Not only endurance exercise per se but also a sub-

optimal energy intake as well as dehydration can induce an

increase in AA oxidation (Tarnopolsky 2004). Alterna-

tively, repeated eccentric contractions can cause severe

injury to skeletal muscle (McCully and Faulkner 1985).

A limitation of the present study is that biopsies were

taken in the context of a race, so that intensity and duration

of exercise as well as food and water intake were impos-

sible to control. This can probably induce variations in the

responses of autophagic markers. As mentioned above,

increase in autophagy-related and autophagy-regulatory

gene expression is strongly dependent on dietary state

(Finn and Dice 2006; Mammucari et al. 2007). The fact

that subjects had time to eat between arrival and post-

biopsy sampling must undoubtedly have partially blunted

the level of the observed increases, but does not question

the main outcomes of this study.

In conclusion, our results show an increase in autoph-

agy-related and autophagy-regulatory gene expression in

human, in response to ultra endurance exercise. As men-

tioned above, such an increase has been associated with

ALP activation and catabolism (Mammucari et al. 2007).

However, more research is needed to shed light on the

exercise-dependent signalling pathways which regulate the

expression of these transcripts.
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