
1 3

Int Arch Occup Environ Health (2016) 89:123–135
DOI 10.1007/s00420-015-1057-7

ORIGINAL ARTICLE

Effects of profession on urinary PAH metabolite levels in the US 
population

Bian Liu1 · Chunrong Jia2 

Received: 22 December 2014 / Accepted: 29 April 2015 / Published online: 8 May 2015 
© Springer-Verlag Berlin Heidelberg 2015

the reference group of “management.” Similar trends were 
seen in the “operators, fabricators, and laborers (OFL)” 
group for FLUO, PHEN, and PYR. In addition, both “ser-
vice” and “support” groups had elevated FLUO. Significant 
(p < 0.001) upward temporal trends were seen in NAP and 
PYR, with an approximately 6–17 % annual increase, and 
FLUO and PHEN remained relatively stable. Race and 
socioeconomic status show independent effects on PAH 
exposure.
Conclusions  Heterogeneous distributions of urinary PAH 
metabolites among people with different job categories 
exist at the population level. The upward temporal trends 
in NAP and PYR warrant reduction in PAH exposure, espe-
cially among those with OFL and ECR occupations.

Keywords  PAHs · NHANES · Occupation · 
Naphthalene · Pyrene

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a complex 
mixture of compounds formed during incomplete com-
bustion processes and are ubiquitous in the environment 
(ATSDR 1995). Some PAH compounds, such as benzo[a]
pyrene and benz[a]anthracene, have been identified as 
probable human carcinogens (ATSDR 1995; US EPA 
1999) and, in particular, are associated with respiratory 
tract and bladder cancers (Rota et  al. 2014). PAH expo-
sures are also linked to other adverse health effects ranging 
from cardiovascular diseases (Clark et  al. 2012; Xu et  al. 
2010), birth defects (Langlois et al. 2012), impaired early 
childhood development (Perera et  al. 2006; 2011; 2012), 
childhood obesity (Jung et  al. 2014b; Rundle et  al. 2012; 
Scinicariello and Buser 2014), to asthma and respiratory 
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symptoms (Jung et al. 2012; Miller et al. 2004; Rosa et al. 
2011). In the general environment, major sources of PAHs 
include tobacco smoking (Scherer et al. 2000), ambient and 
indoor air pollution generated from traffic, cooking, envi-
ronmental tobacco smoke (ETS), and space heating (Bos-
trom et al. 2002; Jung et al. 2010; Naumova et al. 2002), 
as well as food with high PAH contents such as grilled and 
smoked meat (Alomirah et al. 2011). The general routes of 
PAH exposure are through inhalation, ingestion, and der-
mal contact in multiple environmental media including air, 
water, food, and soil.

Occupational exposure is a significant contributor to the 
total PAH exposure in subpopulations (Hansen et al. 2008; 
Kim et al. 2013; Rota et al. 2014). Inhalation is the main 
route of occupational exposure to PAHs in most indus-
tries; however, some studies have shown that dermal uptake 
can also be a main exposure route of PAH at workplaces 
(McClean et al. 2004; Van Rooij et al. 1993). Studies have 
documented airborne PAH concentrations at the µg/m3 lev-
els in certain job sectors, such as aluminum production, 
coal gasification, coke production, iron and steel found-
ries, and transport-related industries (Boffetta et al. 1997). 
Occupational Safety and Health Administration (OSHA) 
set a permissible exposure limit (PEL) of 0.2  mg/m3 for 
PAH (as in coal tar pitch volatiles) in workplace. In con-
trast, typical ambient and residential air concentrations of 
PAHs are at the ng/m3 levels in the USA (Jung et al. 2014a; 
Naumova et al. 2002). Occupational exposure to PAHs has 
been recognized as a high health risk factor, with strong 
evidence of genotoxicity due to PAH-related exposure 
associated with coal gasification, coke production, coal tar 
distillation, paving and roofing, aluminum production, and 
chimney sweeping occupations (Baan et al. 2009).

Following exposure, PAHs undergo several biotransfor-
mation phases inside the human body involving formation 
of hydroxylated compounds by the hepatic cytochrome 
P450 monooxygenases (ATSDR 1995). Metabolites of 
parent PAH compounds smaller than pyrene are usually 
excreted from urine in the form of monohydroxy-PAHs 
(OH-PAHs), which give rise to the use of OH-PAHs as 
effective biomarkers of PAH exposure (Dor et al. 1999; Li 
et al. 2008). Pyrene is a major constituent of PAHs, and its 
sole metabolite, 1-hydroxypyrene, has been the most com-
monly used biomarker of PAH exposure in both environ-
mental and occupational studies (ATSDR 1995; Li et  al. 
2008). Due to the relatively short half-lives of OH-PAHs, 
which are on the order of hours to a couple of days (Li 
et al. 2008, 2012), urinary OH-PAHs are especially useful 
surrogates for assessing recent PAH exposures.

Multiple factors affect the concentrations of urinary 
OH-PAHs, including occupations, personal behavior, cook-
ing culture, and demographic profiles (Hansen et al. 2008; 
Li et  al. 2008). Several studies have evaluated multiple 

contributors to PAHs in occupational populations and the 
public (Campo et al. 2014; Scherer et al. 2000). However, 
previous research was unable to assess the significance of 
multiple sources in a systematic way, limited by sample 
size, job information, and demographic factors surveyed. In 
particular, no study has examined how PAH exposure dif-
fers across occupational groups over time. The objective of 
this study was to investigate the influences of occupation 
on the national reference PAH exposure over time in the 
general population. To this end, we investigated the varia-
tions in OH-PAHs by occupational groups in a large repre-
sentative US general population sample from the National 
Health and Nutrition Examination Survey (NHANES) dur-
ing the period of 2001–2008.

Materials and methods

Data sources

The NHANES is a population-based cross-sectional survey 
undertaken by the US National Center for Health Statistics 
(NCHS) of the Centers for Disease Control and Prevention 
(CDC) to assess a variety of health issues and nutritional 
status of the US civilian population. Briefly, civilians, 
non-institutionalized persons in the USA aged 2  months 
or older, were selected through a stratified, multistage, 
probability-cluster design. The continuous NHANES has 
a 2-year survey cycle with approximately 5,000 persons 
enrolled per year since 1999. Participants complete detailed 
questionnaires, receive physical examinations, and provide 
biological specimens such as urine and blood. These sur-
vey components are administered in homes and in mobile 
examination centers. The NHANES protocol was devel-
oped and reviewed in compliance with the policies for the 
protection of human research subjects developed by the 
US Department of Health and Human Services and was 
described in detail by the CDC (Zipf et al. 2013).

Four cross-sectional cycles (2001–2002, 2003–2004, 
2005–2006, 2007–2008) were used and combined using 
NCHS recommended methods (NCHS 2006, 2013). Of the 
initial 41,658 participants, those who lacked information on 
PAH urine metabolite concentrations (n = 9224), occupa-
tional questionnaire data (n = 6246), or both (n = 22,026) 
were excluded. The final population consisted of 4162 par-
ticipants who had both urinary PAH measurements and 
occupation information.

Urinary PAH metabolites

Concentrations of OH-PAH in spot urine samples were 
used as an indicator of participants’ recent PAH expo-
sure. Urine samples were typically collected during the 
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appointments in the mobile examination centers, which 
was open 5 days a week and operated on a rotating sched-
ule to accommodate a variety of appointments among par-
ticipants, who were randomly assigned a morning appoint-
ment or an afternoon or evening appointment (Zipf et  al. 
2013). Laboratory analysis of urine metabolites of PAHs 
involved enzymatic deconjugation, solid-phase extrac-
tion, and derivatization, and quantification using capillary 
gas chromatography combined with high-resolution mass 
spectrometry (GC/HRMS) coupled with isotope dilu-
tion with 13C-labeled internal standards (Li et  al. 2008; 
Romanoff et al. 2006). Measurements below the detection 
limits (DLs) were replaced with DL/√2. Urine creatinine 
was measured by colorimetric determination on a Beckman 
Synchron CX3 clinical analyzer (Beckman Instruments 
Inc., Brea, CA).

For this study, we focused on four OH-PAH mixtures 
grouped according to their parent compounds: metabo-
lites of naphthalene [NAP, sum of 1-hydroxynaph-
thalene and 2-hydroxynaphthalene], fluorene [FLUO, 
∑(3-hydroxyfluorene, 2-hydroxyfluorene)], phenanthrene 
[PHEN, ∑(3-hydroxyphenanthrene, 1-hydroxyphen-
anthrene, 2-hydroxyphenanthrene)], and pyrene [PYR, 
1-hydroxypyrene]. The eight individual species were the 
major metabolites with adequate detection limits (DLs 
between 2.0 and 5.9  ng/L; >95  % above DLs) and were 
reported in all four survey cycles included in this study. 
Their parent compounds are small PAHs with 2–4 aromatic 
rings and are mainly excreted in urine.

Occupational groups

Information about the participants’ current occupation 
was obtained from the occupational questionnaire, which 
was administered to participants older than 16  years of 
age (n = 206 for those aged between 16 and 17 years old, 
~5 % of the total study population). The current job types 
were coded by trained interviewers using the US Census 
Bureau’s Census Indexes of Industrial and Occupational 
Classification Source Codes. The 1999 and 2000 versions 
of the US Census Bureau occupational data coding systems 
were used for the 2001–2004 and 2005–2008 survey peri-
ods, respectively. The final publically available NHANES 
occupational variable contains 41 and 22 categories for 
2001–2004 and 2005–2008, respectively. While the clas-
sifications were different between the two periods, there 
were also large overlaps, making it possible to combine 
these occupational categories into one comparable system. 
We collapsed these categories into seven broad occupa-
tion groups (supplementary material, Table S1): operators, 
fabricators, and labors (OFL); extractive, construction, and 
repair occupations (ECR); farming, forestry, and fishing 
(agriculture); service; technical, sales, and administrative 

support (support); professional specialty (professional); 
and management.

Other covariates

Variations in OH-PAHs were also investigated with regard 
to the following covariates: sex, age, race/ethnicity, educa-
tion, poverty income ratio (PIR), body mass index (BMI), 
smoking status, alcohol use, and sampling season. Race/
ethnicity included two categories: non-Hispanic white and 
others, which include non-Hispanic black, Mexican–Amer-
ican, other Hispanic, as well as other races and multiracial 
participants. Education was grouped into three categories: 
less than, equal to, and greater than high school level, where 
high school was defined as having 12 years of primary and 
secondary school. PIR in NHANES was calculated by 
dividing family income by the poverty level issued by the 
Department of Health and Human Services according to 
family size, the appropriate year, and state. In this study, 
PIR was dichotomized by a cutoff of 1. Dichotomized 
alcohol use was based on positive answers to the question, 
“Have you had at least 12 alcohol drinks/1 year?” Dichoto-
mized smoking status was based on positive answers to the 
question, “Have you smoked at least 100 cigarettes in your 
entire life?” While NHANES also assessed ETS exposure 
(e.g., secondhand smoke) through household smoker ques-
tionnaires, we did not find overlaps between OH-PAHs and 
ETS exposure data in the study population. Alternatively, 
serum cotinine, a major metabolite of nicotine and a bio-
marker for both active and passive smoking, was included, 
which was available for a subset of the study population 
(n = 3009). Cotinine in serum was measured by an isotope 
dilution high-performance liquid chromatography/atmos-
pheric pressure chemical ionization tandem mass spec-
trometry (Bernert et al. 1997). Sampling season is a 2-level 
variable indicating whether the examination was performed 
from November 1 through April 30 or from May 1 through 
October 31.

Statistical analysis

The main models used to investigate the relationships 
between OH-PAHs and occupations were ordinary least 
squares regressions (OLS), with “management” as the ref-
erence group. PAH concentrations, urine creatinine, BMI, 
serum cotinine, and age were treated as continuous vari-
ables, and all but age were natural log-transformed due to 
their skewed-to-right probability distributions. To account 
for variation in dilution in spot urinary samples, creatinine 
was treated as an independent predictor in all the regres-
sion models as recommended by others (Barr et al. 2005; 
Ikeda et al. 2003; Scinicariello and Buser 2014). As creati-
nine was the most intense covariate of urinary PAHs (See 
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Results), volume-based PAH concentrations (in ng/L) were 
presented as creatinine-based concentrations (ng/g Creati-
nine). To account for the complex sampling design, sam-
pling weights were applied according to NHANES guide-
lines (NCHS 2013). For example, because urinary PAHs 
were measured in a one-third subsample, special sample 
weights were used to analyze these data. Weighted sum-
mary statistics were generated using proc surveymeans 
and proc surveyfreq procedures for continuous (e.g., PAH 
concentrations) and categorical (e.g., occupational types) 
variables, respectively. Relationships between occupations 
and the covariates such as survey cycles, sex, and age were 
investigated using weighted logistic regressions (proc sur-
veylogistic). Relationships between PAHs and occupations 
with and without adjusting for covariates were investi-
gated using weighted linear regressions (proc surveyreg). 
The fully adjusted model can be simplified as: log(OH-
PAH) =  f(occupational group, sampling period, sex, race, 
education, PIR, smoking, sampling season, age, log(BMI), 
log(creatinine)).

In addition, quantile regressions were used to examine 
the relative influences of occupational groups on OH-PAHs 
at 10, 25, 50, 75, and 90th quantiles. Quantile regression 
has the advantage of modeling the occupation–PAH asso-
ciations without assuming equal effects of occupational 
groups among different percentiles of OH-PAH levels. The 
regression coefficients (betas) from the quantile regression 
were compared with the regression coefficient (beta) from 
the OLS. While sample weights were used in the quantile 
regression, the current proc quantreg procedure does not 
take into account the NHANES complex survey designs.

Statistical analyses were performed using SAS software 
(version 9.3, Cary, NC). Both ordinary least square regres-
sion and quantile regression models were adjusted for age, 
sex, race, education, PIR, smoking, sampling season, BMI, 
and creatinine in the fully adjusted models. Further adjust-
ment for alcohol (data not shown) did not materially affect 
the estimates.

Results

Study population characteristics

The study population (n  =  4162) from NHANES 
2001–2008 (Table  1) had a mean age of 40.1  years 
(range = 16–83 years), and 54 % of them were male. Non-
Hispanic whites accounted for 71 % of the total study pop-
ulation. A majority (91  %) of the participants had family 
income level above the poverty threshold (PIR  >  1), and 
63 % of the participants had above high school educations. 
Smokers accounted for 46 % of the participants, and their 
geometric mean serum cotinine level was 5.9 ng/mL with 

a 95 % confidence interval (95 % CI) of (3.7, 9.4) ng/mL. 
Approximately 61 % of the sampling was conducted during 
the warm season from May 1 through October 31.

The sociodemographic profiles differ considerably 
across the seven occupations (Table  2). Compared to the 
reference group of “management” (60  %), males domi-
nated the “OFL” (80 %) and “ECR” (98 %) occupations, 
while the opposite was true for the “professional specialty” 
(47  %), “support” (36  %), and “service” (34  %) groups. 
The percentages of participants with below high school 
education levels were low in the “professional specialty” 
(2 %) and “management” groups (5 %), while were higher 
in the other occupations (ranged = 12–31 %). Compared to 
the “management” group (84 %), there were fewer whites 
in the remaining occupation groups (range =  61–78  %). 
Cotinine levels were similar among the “management,” 
“support,” “service,” and “agricultural” occupational 
groups, with the geometrical means ranging from 2.8 to 
8.2  ng/mL among smokers and from 0.03 to 0.08  ng/mL 
among non-smokers. The “professional” smokers group 
had significantly lower cotinine level (0.6 and 0.04 ng/mL 
for smokers and non-smokers, respectively) than the “man-
agement” group, while significantly higher cotinine con-
centrations were found in both “OFL” (23.2 and 0.15 ng/
mL for smokers and non-smokers, respectively) and “ECR” 
(16.8 and 0.34  ng/mL for smokers and non-smokers, 
respectively) regardless of the smoking status. Consistent 
with the serum cotinine trends, similar patterns were seen 
in the self-reported smoking status.

Distributions of urinary PAH metabolite concentrations

The overall geometric mean concentrations (95  % CI) of 
NAP, FLUO, PHEN, and PYR were 6927 (6396, 7502), 
477 (445, 512), 335 (319, 352), and 87 (82, 92) ng/L, 
respectively (Table S2). If adjusted by creatinine, these con-
centrations were 6389 (5948, 6863), 441 (415, 469), 309 
(297, 322), and 80 (76, 84) ng/g creatinine for NAP, FLUO, 
PHEN, and PYR, respectively, or 3.32 (3.09, 3.57), 0.23 
(0.22, 0.24), 0.16 (0.15, 0.17), and 0.042 (0.040, 0.044) 
μmol/mol creatinine based on the conversion by Hansen 
et  al. (2008). Concentrations of OH-PAHs varied during 
the 8 years (Fig. 1). Compared to 2001, the geometric mean 
concentrations of NAP and PYR in 2008 increased by 60 % 
from 4784 to 7651 ng/g creatinine (or by 50 % from 5377 
to 8075  ng/L) and by 161  %, from 45 to 117  ng/g cre-
atinine (or by 146  % from 51 to 124  ng/L), respectively. 
There was a statistically significant (p  <  0.001; data not 
shown) upward trend for both NAP and PYR from 2001 
to 2008, with the regression coefficients ranged from 0.27 
to 0.46 and from 0.59 to 0.95 for NAP and PYR, respec-
tively. These changes were equivalent to an average of 11 
and 29 % increase per survey cycle, or an average of 6 and 
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17 % annual increase for NAP and PYR, respectively. No 
significant time trend was found for FLUO and PHEN.

Concentrations of OH-PAHs also varied among the 
seven occupational groups (Fig. 2). The “ECR” group had 
the highest geometric mean concentrations for all four 
OH-PAH mixtures, followed by “OFL.” These two occu-
pational groups also had statistically significant (p < 0.01; 
data not shown) higher concentrations than the reference 
group of “management” for all four OH-PAH mixtures, 
with regression coefficients ranging from 0.23 to 0.56 for 
“ECR,” and from 0.17 to 0.51 for “OFL.” These changes 
were equivalent to an average of 53 and 43 % increases in 
the geometric mean concentrations for “ECR” and “OFL,” 
respectively.

Similar temporal and occupational trends were found 
when both survey periods and occupational groups were 
simultaneously considered (Fig.  3) and included in the 
regression model (data not shown). Concentrations of the 
four PAH metabolites also showed statistically significant 

differences (p < 0.05) between different strata of the covari-
ates while adjusting for creatinine levels (Table S2).

Associations between occupational types and urinary 
PAH metabolite concentrations

The influence of occupational types on PAH urine metabo-
lite concentrations was further explored in multiple regres-
sions adjusting for sampling periods and other covariates. 
In the fully adjusted models (Table 3), “ECR” continued to 
be the occupation group with elevated concentrations for 
all four OH-PAH mixtures, with approximately 21–42  % 
increases in the geometric mean concentrations than the 
reference group of “management.” In addition, “OFL” 
group had elevated (17–46  % increases) concentrations 
of FLUO, PHEN, and PYR. Compared to “management,” 
both “service” and “support” groups had approximately 
15–16  % increase in FLUO. The remaining occupations 
had similar PAH levels as those in the reference group.

Table 1   Characteristics of the 
study population (NHANES 
2001–2008)

Characteristics Percent (%) Standard error (SE, %) n

Sex

 M 54 1.0 2228

 F 46 1.0 1934

Race/ethnicity

 White 71 1.6 1965

 Others 29 1.6 2197

Education

 <High school (HS) 13 0.8 764

 =HS 24 1.2 871

 >HS 63 1.4 1997

Poverty income ratio (PIR)

 ≤1 9 0.6 547

 >1 91 0.6 3369

Smoking

 Yes 46 1.1 1633

 No 54 1.1 1998

Drinking

 Yes 79 1.1 2546

 No 21 1.1 814

Sampling season

 November–April 39 3.0 1926

 May–October 61 3.0 2236

Mean (95 % CI) N

Age (years) 40.1 (39.7, 40.6) 4162

Body mass index (BMI, kg/m2) 27.5 (27.3, 27.8) 4120

Cotinine (ng/mL)—all 0.6 (0.5, 0.8) 3009

Cotinine (ng/mL)—smoking: no 0.08 (0.06, 0.09) 1458

Cotinine (ng/mL)—smoking: yes 5.9 (3.7, 9.4) 1201
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Differences in PAH exposure associated with occu-
pation groups also varied along different quantiles of 
OH-PAH concentrations. In Fig.  4 (only “ERC” and 
“OFL” groups are shown), the regression coefficients 
of NAP, FLUO, and PHEN are generally all above 
zero and display increasing trends at higher quantiles 
than lower quantiles. This means that the “OFL” and 
“ECR” groups had elevated OH-PAH exposures than 

the “management” group, and the differences increased 
at elevated exposure levels. The occupation effect was 
most pronounced in the middle exposure range (~the 
50th quantile) for PYR.

Consistent with the temporal trend in bivariate analy-
ses, significant (p  <  0.001) temporal variations were only 
seen for NAP and PYR in the multiple regression models 
(Table  3). NAP and PYR experienced an approximate 17 

Table 2   Characteristics of study population by seven occupational groups

All but those marked with +   showed p value < 0.05, reference group = management. Weighted percent, weighted means (age) or geometric 
means (BMI and cotinine), and standard error (SE). HS = High School. BMI = body mass index; Professional = Professional specialty; Sup-
port =  technical, sales, and administrative support; Agriculture =  farming, forestry, and fishing; ECR =  extractive, construction, and repair 
occupations; and OFL = operators, fabricators, and labors

Management Professional Support Service Agriculture ECR OFL

Sex

 M (%) 60 47 36 34 74+ 98 80

 SE (n) 3 (222) 2 (273) 2 (387) 2 (325) 8 (67) 1 (453) 2 (501)

Race/ethnicity

 White (%) 84 78 70 66 65 72 61

 SE (n) 2 (250) 2 (358) 2 (497) 3 (377) 7 (31) 3 (222) 3 (230)

Education

 <HS (%) 5 2 12 14 31 22 27

 SE (n) 1 (28) 1 (15) 1 (162) 1 (170) 5 (38) 2 (133) 2 (218)

 =HS (%) 13 6 25 26 18+ 38 42

 SE (n) 2 (46) 1 (37) 2 (221) 2 (195) 6 (12) 3 (153) 3 (207)

Poverty income ratio

 ≤1 (%) 2 3+ 10 10 20 10 15

 SE (n) 1 (13) 1 (25) 1 (170) 1 (126) 5 (20) 1 (72) 2 (121)

Smoking

 Yes (%) 45 35 42+ 47+ 50+ 63 55

 SE (N) 3 (162) 2 (191) 2 (358) 2 (318) 7 (36) 3 (274) 3 (294)

Drinking

 Yes (%) 88 79 71 74 76+ 89+ 80

 SE (n) 2 (287) 2 (421) 2 (544) 3 (470) 8 (52) 2 (353) 2 (419)

Age (years)

  Mean (n) 43.9 (375) 42.0 (598) 38.7 (1080) 38.9 (922) 41.0+ (82) 38.2 (466) 40.3 (639)

  (95 % CI) (42.8–45.1) (40.8–43.2) (37.7–39.7) (37.4–40.4) (37.3–44.7) (36.8–39.5) (39.2–41.5)

BMI (kg/m2)

 Mean (n) 28.0 (369) 27.1+ (595) 27.3+ (1073) 27.6+ (912) 27.9+ (80) 27.5+ (457) 28.2+ (634)

 (95 % CI) (27.3–28.7) (26.6–27.7) (26.8–27.8) (27.0–28.2) (26.3–29.6) (26.8–28.1) (27.7–28.7)

Cotinine all (ng/mL)

 Mean (n) 0.4 (267) 0.1 (442) 0.5+ (758) 0.6+ (691) 0.4+ (44) 3.9 (335) 2.6 (472)

 (95 % CI) (0.2–0.7) (0.1–0.2) (0.4–0.7) (0.4–0.8) (0.1–1.8) (1.9–7.9) (1.5–4.4)

Smoking: yes (ng/mL)

 Mean (n) 2.8 (122) 0.6 (146) 6.8+ (257) 5.4+ (238) 8.2+ (19) 16.8 (195) 23.2 (224)

 (95 % CI) (1.1,7.5) (0.3,1.5) (3.8, 12.3) (2.8,10.6) (1.0, 70.4) (6.9, 40.8)) (12.7, 42.4)

Smoking: no (ng/mL)

 Mean (n) 0.06 (141) 0.04+ (281) 0.07+ (365) 0.08+ (333) 0.03+ (16) 0.34 (122) 0.15 (200)

 (95 % CI) (0.04, 0.09) (0.03, 0.05) (0.05, 0.09) (0.06, 0.11) (0.02, 0.05) (0.17, 0.71) (0.09, 0.25)
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and 35 % increase per survey cycle between 2001 and 2008 
(or 2 and 5 % annual increase), respectively.

The fully adjusted models also showed that PAH expo-
sure was disproportionately distributed among a few soci-
odemographic groups (Table  3). Levels of OH-PAHs 
decreased with increasing education (not significant for 
PHEN), and with increasing income levels, though only 
significant for PYR. In general, nonwhites had lower OH-
PAH concentrations than whites, and females tended to 
have higher OH-PAH concentrations than males. To further 
understand the influences of socioeconomic status (SES), 
race/ethnicity, and sex on the exposure, we ran models for 

the two high-risk job categories, i.e., “ECR” and “OFL” 
groups. The results (Table S3) showed that nonwhites con-
tinued to have significantly (p < 0.01) lower PAH exposure, 
while differences in PAH levels associated with education 
levels and sex became nonsignificant. The only significant 
associations between PIR and PAH were found in PYR, 
similar to the previous results (Table 3).

With everything else held constant, non-smokers had 
39–59 % reduction in the levels of OH-PAHs than smokers 
(Table 3). The associations between PAH and occupations 
in stratified analysis based on the smoking status (Table 
S4) found similar results, which showed “OFL” and “ECR” 
had generally higher PAH exposures than “management.” 
However, there were also some notable differences. The 
significantly higher NAP in the “OFL” and “ECR” groups 
than in “management” was only among smokers. Among 
smokers, whites had higher NAP than nonwhites, while the 
opposite was true among non-smokers. Among smokers, 
the “professional” group had a significantly lower FLUO 
exposure (β  =  −0.37, corresponds to ~31  % reduction, 
p = 0.003) than “management.” Non-smokers in the “ser-
vice” and “support” continued to have significantly higher 
FLUO exposure than “management,” which were not seen 
among smokers.

Discussion

While NHANES data are generally regarded as provid-
ing a national reference level of biomarkers such as PAHs, 
we found heterogeneous distributions of PAH urinary 
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metabolites among people with different job categories. 
This new finding suggests that occupation is a significant 
contributor to population-based reference PAH expo-
sures, in addition to the well-known smoking factor. On 
the other hand, it was not surprising to find elevated lev-
els of OH-PAHs, especially PYR, among people within 
the “ECR” and “OFL” groups, given that many industrial 
processes and activities in these two sectors have high PAH 
sources. A review of PYR studies from different countries 
by Hansen et al. (2008) found a wide concentration range 
of PYR among many occupational studies, with a major-
ity of workers from foundries and petrochemical industries 
ranging from 2 to 145  μmol/mol creatinine. The mean 
end-of-shift PYR was 2.49 μmol/mol creatinine in a cross-
industry occupational hygiene survey in the United King-
dom (Unwin et al. 2006). Among asphalt paving workers, 
the mean baseline PYR (after a weekend rest) was reported 
to be 0.4 μg/g or 0.21 μmol/mol creatinine (McClean et al. 
2004). In contrast, the geometric mean PYR in the high 
exposure occupational groups (0.06 and 0.05  μmol/mol 
creatinine for ECR and OFL groups, respectively) found in 
this study was generally low and is reflective of reference 
levels.

The upward temporal trends of NAP and PYR are dis-
concerting as they suggest that the exposure to PAHs 
as a whole may be on the rise at the national population 
level. The increase in the two high OH-PAH occupational 
groups (“ECR” and “OFL”) may be of particular con-
cerns. A recent review of the epidemiological evidence 
on high exposure to PAHs related to occupations showed 
an approximately 30 % excess risk for lung cancer in iron 
and steel foundry industries (Rota et  al. 2014). While it 
remains difficult to assess excess cancer risks associated 
with increase in PAH at low reference levels in the general 
environment among the general population, the significant 
increase in recent PAH exposure found in this study sug-
gests the need to reduce the overall PAH exposure in the 
general environment and workplaces, especially among 
those within the “ECR” and “OFL” occupational groups.

In contrast to the overall increase in NAP and PYR, 
FLUO and PHEN urine metabolites remained stable during 
the study period (2001–2008). It is unclear what contributes 
to this discrepancy, which deserves further investigations in 
future studies. Possible explanations include differences 
in exposure routes and/or metabolic patterns among these 
PAH metabolites and their parent compounds in various 
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sources. While PHEN has also been proposed as a bio-
marker of PAH exposures from all exposure routes (Bos-
trom et  al. 2002), studies have also suggested that PHEN 
is better suited as a biomarker for the metabolic activation 
of potentially carcinogenic PAHs rather than detoxification 
(e.g., excrete from urine) of PAHs (Bostrom et  al. 2002; 
Jacob and Seidel 2002; Kim et  al. 2005), thus less repre-
sentative of the recent overall exposure assessed by urinary 
metabolites. In addition, different from NAP and PYR, the 
mass sums of FLUO and PHEN available from the current 
NHANES data did not include all the urinary OH-PAHs of 
their corresponding parent compounds.

The influence of smoking on OH-PAHs was mostly 
reflected in NAP and FLUO. Exposure to naphthalene 
is primarily through inhalation in the general population 
(Li et  al. 2012), and the two naphthalene urine metabo-
lites are the dominant constituents of the total urinary 
OH-PAHs. In tobacco smoke, naphthalene is the dominant 
PAH species in both vapor and particulate phases, and 
fluorene is the second most abundant species in the vapor 
phase (Lu and Zhu 2007). In addition, FLUO, in par-
ticular 3-FLUO, has been shown to better correlate with 
their parent airborne compounds than PYR (Nethery et al. 
2012). Consistent with these findings, our results showed 
that the regression coefficients associated with smoking 
for both NAP and FLUO were larger than those of PHEN 

and PYR (Table 3). The significant increase in FLUO in 
both “service” and “support” groups (Table 3) may in part 
reflect that these two groups had higher airborne PAH 
exposure than the “management” group. Further, for these 
two groups, the exposure is likely related to secondhand 
tobacco smoke (SHS), as the associations were only sig-
nificant among the non-smoker group (Table S4). The 
result on the “service” group was consistent with findings 
from a recent study (Wei et al. 2014) based on NHANES 
1999–2008, which showed that the “service” group had 
one of the highest serum cotinine levels, indicative of 
elevated SHS exposure, among the eighteen occupational 
groups compared.

Our analysis of SES disparities adds new insights into 
the current environmental justice (EJ) research. A gen-
eral hypothesis in EJ is that individuals in low SES have 
greater burdens of environmental toxicants (Bell and Ebisu 
2012; Morello-Frosch and Jesdale 2006), which is in agree-
ment with our findings of elevated PAH exposures in indi-
viduals with low-education/income levels. However, our 
results showed nonwhites tend to have lower PAH levels 
than whites, which was in contrast to numerous EJ stud-
ies that tend to show low pollution exposure among whites 
(e.g., Hajat et  al. 2013; Jia et  al. 2014). It has been long 
hypothesized that race and SES should be distinguished in 
EJ analyses, despite the overrepresentation of minorities in 

Table 3   Regression coefficients 
of the associations between 
urinary PAH metabolites and 
occupation groups

Results from multivariable regression model: log(OH-PAH) = f(occupational group, sampling period, sex, 
race, education, PIR, smoking, sampling season, age, log(BMI), log(creatinine)). Sampling period was 
coded as a 4-level variable (1: 2001–2002, 2: 2003–2004, 3: 2005-2006, and 4 = 2007–2008). Education 
was coded as a 3-level variable (1: < high school (HS), 2: = HS, and 3: > HS). Significant associations 
were indicated in bold and with different p values: *, p < 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. Ref = Refer-
ence level

NAP FLUO PHEN PYR

Operators, fabricators, and labors (OFL) 0.18 0.38*** 0.16** 0.27***

Extractive, construction, and repair (ECR) 0.26** 0.35*** 0.19** 0.32***

Farming, forestry, and fishing (Agriculture) 0.18 0.26 0.11 0.28

Service 0.13 0.14* 0.06 0.06

Technical, sales, and administrative support (Support) 0.11 0.15* 0.09 0.06

Professional specialty −0.04 −0.10 0.003 −0.04

Management (Ref)

Sampling period 0.15*** −0.001 0.01 0.30***

Sex (ref: Male) 0.22*** 0.06 0.11** 0.14**

Race (ref: White) −0.04 −0.15** −0.15*** −0.06

Education −0.12** −0.12*** −0.04 −0.09***

Poverty income ratio (ref:PIR ≤ 1) −0.10 −0.12 −0.09 −0.14**

Smoking (ref: Yes) −0.77*** −0.89*** −0.32*** −0.49***

Sampling season (ref: Nov.–Apr.) 0.02 0.14* 0.15** 0.13*

Age 0.002 −0.004* 0.002 −0.01***

Body mass index (BMI) −0.27* −0.15 0.06 −0.09

Creatinine 0.86*** 0.90*** 0.88*** 0.89***

Sample Size 3372 3348 3365 3335
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low-SES subpopulations (O’Neill et al. 2003). Our analy-
ses provided such an example.

This study has several limitations. First, the current 
study, which is mainly a secondary data analysis, differs 
from the typical occupational studies in that NHANES 
sampling was not conducted in typical workplaces but was 
collected during the appointments in the mobile examina-
tion centers, and the exact time interval between urine sam-
ple collections and occupational exposure (e.g., directly 
after occupational exposure, on a vacation day, or after a 
period of rest since a regular working day) was unknown. 
Thus, our results should be interpreted with caution. Sec-
ond, the NHANES occupational data were classified only 
by broad occupation groups, while PAH exposures may 
vary among different industry groups or different job task 
groups within the same occupation classification. Differ-
ences in PAH exposures can occur under the same title. 
Third, misclassification might also have occurred when 
different occupation groups were summarized into the 

seven categories. While detailed occupation classifica-
tions may be desirable, insufficient sample size became an 
issue for such refined analyses. Forth, due to the relatively 
short half-lives of OH-PAHs (~hours to a couple of days) 
and the cross-sectional nature of the NHANES data, it is 
unclear whether the long-term PAH exposure level is also 
on the rise. Fifth, the urinary PAHs do not reflect expo-
sure to PAHs with more than four rings that mainly exist 
in particulate phase and detoxified through other routes. 
Finally, while some of the most important factors of PAH 
exposure, such as smoking, was accounted for, this study 
did not adjust other factors, such as diet (Alomirah et  al. 
2011; Levine et  al. 2015), urban/rural residence (Hansen 
et  al. 2005; Levine et  al. 2015; Tuntawiroon et  al. 2007), 
or time of the day of urine sample collection (Barr et  al. 
2005; Han et al. 2008), all of which could also affect our 
estimated population-based reference levels of OH-PAHs, 
and the relative influence of occupational types on the vari-
ations in PAH concentrations.

Fig. 4   Strengths of occupation–PAH associations. The analysis was 
based on the multivariable model: log(OH-PAH)  =  f(occupational 
group, sampling period, sex, race, education, PIR, smoking, sampling 
season, age, log(BMI), log(creatinine)). Results shown were for two 
occupational groups: the operators, fabricators, and labors (OFL); 
extractive, construction, and repair occupations (ECR)), with “man-

agement” as the reference. Quantile regression coefficients (betas 
and the 95  % confidence intervals, shaded areas) shown in curves 
are for the 10, 25, 50, 75, and 90th quantiles of OH-PAHs, and betas 
from ordinary least square regressions (also shown in Table 3) are in 
straight horizontal lines
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Conclusions

This study provides the first national reference levels of 
OH-PAHs by occupational groups between 2001 and 2008. 
The results, based on a large representative sample of the 
US general population, had meaningful implications, as 
they help to estimate the reference exposure levels, iden-
tify potential risk factors associated with PAH exposures, 
and provide scientific information for developing policies 
aimed at reducing PAH exposures in the general environ-
ment and workplaces. Our findings suggest that the effects 
of professional types should be considered in biomonitoring 
programs due to the heterogeneous distributions of PAH uri-
nary metabolites among different occupation types. Reduc-
tion priorities among people within the “ECR” and “OFL” 
occupational groups are necessary given that they experi-
enced significantly higher PAH exposure over time. In addi-
tion, reduction in ETS exposure is also recommended for the 
“service” occupational group in order to reduce their PAH 
exposure. Among the four PAH indicators used, both NAP 
and FLUO appeared to be good indicators of PAH exposure 
related to ETS. This study also observed independent effects 
of race and SES on exposure. Finally, this study may inform 
similar studies to examine occupational differences in expo-
sure to other chemicals measured in NHANES.
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