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Steady-state vibrations of an elastic beam
on a visco-elastic layer under moving load

A. V. Metrikine, K. Popp

Summary The steady-state response of an elastic beam on a visco-elastic layer to a uniformly
moving constant load is investigated. As a method of investigation the concept of “equivalent
stiffness” of the layer is used. According to this concept, the layer is replaced by a 1D con-
tinuous foundation with a complex stiffness, which depends on the frequency and the wave
number of the bending waves in the beam. This stiffness is analyzed as a function of the phase
velocity of the waves. It is shown that the real part of the stiffness decreases severely as the
phase velocity tends to a critical value, a value determined by the lowest dispersion branch of
the layer. As the phase velocity exceeds the critical value, the imaginary part of the equivalent
stiffness grows substantially. The dispersion relation for bending waves in the beam is studied
to analyze the effect of the layer depth on the critical (resonance) velocity of the load. It is
shown that the critical velocity is in the order of the Rayleigh wave velocity. The smaller the
layer depth, the higher the critical velocity. The effect of viscosity in the layer on the resonance
vibrations is studied. It is shown that the deeper the layer, the smaller this effect.

Key words Moving load, wave radiation, steady-state response, dispersion curves, critical
velocity

1

Introduction

The velocity of modern high-speed trains can be in the order of the Rayleigh-wave velocity in the
subsoil of a railroad track, especially if the trains move over soft soils, where the surface waves
propagate with a velocity of 200-250 km/h. These waves, being radiated by the train, can
strongly affect the dynamic behavior of the track. In developing a mathematical model of the
track, this phenomenon has to be taken into account by including a 3D model of the subsoil. This
was first done in [5], where the dynamic response of a beam on an elastic half-space to a moving
constant load was considered. It was found that the load motion with the Rayleigh wave velocity
causes resonance in the system. Later on, by means of the same model, it was shown in [8] that
axial stresses in the beam reduce the critical velocity (this was first discovered in [6] in the frame
work of a 1D model). Recently, the problem was reconsidered in [2] and it was found that
there are two critical velocities of the load: one is equal to the Rayleigh wave velocity, and the
other one is slightly smaller and equal to the minimum phase velocity of the waves in the beam.

Received 22 March 1999; accepted 26 July 1999

A. V. Metrikine (D<)

Delft University of Technology,

Faculty of Civil Engineering and Geosciences Stevinweg 1,
2628 CN Delft, The Netherlands

Tel.: 015 27844749; Fax: 015 2785767

E-mail: A.Metrikine@CT.TUDelft.nl

K. Popp

Faculty of Mechanical Engineering, Institute of Mechanics,
University of Hannover, Appelstrasse 11, D-30167 Hannover,
Germany

Tel.: +49 511 7624161; Fax: +49 511 7624164

E-mail: popp@ifm.uni-hannover.de

The paper contains results of investigations sponsored by the
Alexander von Humboldt Foundation (Germany). This support is
highly appreciated.

399



400

In all the above mentioned papers, the subsoil was modeled by a purely elastic half-space. It
is evident, however, that the real subsoil possesses a viscosity and may be bounded. An attempt
to consider the effect of viscosity was done in [1], where viscosity was included into model
[5]. A solution was found for the problem, but no physical interpretation was given there. In
[10], the subsoil was modeled as an elastic layer, taking into account a rigid boundary in the
ground. There were considered, however, only the natural frequencies of the railroad track,
paying no attention to its response to a moving load.

In this paper, we investigate vibrations of the beam on a visco-elastic layer under the action of
a moving load. The goal of the study is to find the critical (resonance) velocities of the load, and
to analyze the effect of the depth of the layer and its viscosity on the resonance vibrations.

The analysis is carried out using the “equivalent stiffness” concept, [2]. According to it, the
layer is exactly replaced by an equivalent stiffness, continuously distributed along the beam.
The equivalent stiffness is a complex function of the frequency and the wave number of waves
in the beam. The dependence of the equivalent stiffness on the phase velocity of waves in the
beam is carefully studied. This gives important preliminary information about the system
response, since the phase velocity of waves excited by the load in the beam (in a steady state) is
equal to the velocity of the load.

The dispersion relation for the bending waves in the beam is derived and analyzed. Using
this relation and by means of a graphical analysis, see [3], the effect of the layer depth on the
critical velocity of the load is determined.

Finally, by analyzing the beam is displacement under the load, the influence of the layer
viscosity on the resonance vibrations is studied.

2

The model and governing equations

We consider a uniform x = V¢ motion of a constant load P along an Euler-Bernoulli beam on a
visco-elastic layer of thickness H, as depicted in Fig. 1. The equations of motion of the layer can
be written as, [7],

R T - Y

where U(x,y,z,t) = {Uy, U, W} is the vector of displacements, p is the mass density of the
layer, A = A+ A"0/0t and i = u + u*0/0t are operators, which are used instead of Lamé’s
constants A and p to describe a visco-elastic behavior of the layer.

The layer is fixed at its bottom, the boundary conditions at z = H read therefore

l_f(x,y, H,t)=0 . (2)

It is assumed that (a) the beam has a finite width 24, (b) both the load and the normal stresses
0., are uniformly distributed over the width of the beam, and (c) the contact between the
beam and the layer is smooth, hence the shear stresses 7., and t,, are zero at the interface.
Then, the balance of stresses at the surface of the layer can be written as

owe *we
200, (x,y,0,t) = <m a2 + EI o + Po(x — Vt))@(a =y,

sz(xay703 t) = sz(xaya(), t) =0 )

(3)

Fig. 1. Load motion along a beam on
h 4 a 3D layer




where W°(x, t) is the vertical beam displacement, m and EI are the mass per unit length and the
bending stiffness of the beam, ©(...) is the unit step function, J(...) is the Dirac delta-
function.

Assuming that the centerline of the beam and the halfspace are always in contact, we write
the compatibility condition as

W(x,0,0,t) = W°(x,¢t) . (4)
The equations of the layer motion (1) are satisfied by letting

o , Oy o , Oy o Y o
Us—"tog—1 V=—ctjp_—t W=—tgp_L_ V4, 5 401
Ox + 0x0z oy * 0y0z 0z 0z? 4 5)
provided that the two scalar functions ¢(x, y, z, t) and Y (x, y, z, t) are solutions of the following
equations:

— g . o
(2+20)Vip = pa—t(f , AV = pa—;f : (6)

Expressions (5) and (6) are written in analogy to substitutions used by Lamb, [9], for a purely
elastic solid. In terms of functions ¢ and i the stresses in the layer become

sz:2ﬁ<a%o+ aw) o'y 2~<azq) asw>_p oy
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Equivalent stiffness of the layer
To analyze the problem, we will follow the concept of the “equivalent stiffness”, [2]. According
to this concept, firstly, an equivalent stiffness of the layer interacting with the beam has to be
found. This allows an exact reduction of the initial 3D model to a one-dimensional model,
namely to the load motion along the beam on a foundation with frequency- and wave number-
dependent complex stiffness yt ', see Fig. 2.

To obtain an expression for the equivalent stiffness we apply the following Fourier trans-
forms with respect to time and horizontal spatial coordinates:

fki,ky,z, ) = / / / o(x,y,2,7) expli(wt — ky1x — kyy)|dt dx dy,
gk, kay z,0) = / / / | W(x,y,2,7) expli(wt — kyx — kyy)|dt dx dy, (8)
h(k;,w) = / / WO(x, t) exp(iwt — ik x)dt dx ,

where variables of integration m, k; and k;, respectively, represent the frequency and the wave
numbers in the x- and y-directions of waves propagating in the system.
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Fig. 2. Load motion along a 1D beam on an
equivalent foundation
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Application of Eq. (8) yields the following equations in the Fourier domain:

e For the layer motion, from Eq. (6),

af aZg C{)Z
T (Z-k-r)-o Eu(S-k-8)s-0. o)

where

are complex values in which ¢, = /(1 + 2u)/p and cr = \/p/p are the velocities of the
dilatational and shear waves in the layer, respectively.
e For the displacements at the bottom z = H, from Eq. (2), using Eq. (5),

0g of g  ?
==0, =—+—+5g=0. 10
f+az " % 2 Tg (10)
e For the stress balance at the surface z = 0, from Eq. (3), using Eq. (7)

2
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2

where
D(w, k) = —maw* + EIk}

is the dispersion relation for the vertical vibrations of a free beam.
e For the compatibility condition, from Eq. (4)

h(w, k) —%/ wiki ks, 0, )dk, | (12)

o0

where

w(ky, ky,z, ) = / / / W(x,y,z,t)exp(i(wt — kix — kyy))dt dx dy

is the Fourier image of the layer vertical displacement.

The general solutions of Egs. (9) are
f=5B sinh(zﬁL) + B, cosh(zﬁL),
g=2>0Bs sinh(zﬁT) + B4 cosh (zﬁT) ,

where

- w?
RL,T = k2 + k2 &2
LT

Substituting Eq. (13) into boundary conditions (10), (11), and then solving the system of linear
algebraic equations thus obtained with respect to B; (j = 1...4), one finds



A = (u— iop")* [4K*yRy Ry + K2 (4RZR% + 9*) sinh(HR, ) sinh(HRy)
—RyRr(4K* +7*) cosh(HR;) cosh(HR7)] ,
4y = Fy( — iop*) [RiRy sinh(HR; ) cosh(HR7) — K* sinh(HRy) cosh(HR;)]
Ay = —iop") [ZKzﬁLﬁT + yK? sinh(HﬁL) sinh(HﬁT) — yRy Ry cosh(HﬁL) cosh(HﬁT)] ,
A3 = FRL( — ioy*) [y + 2R Ry sinh(HRy ) sinh(HRy) — 2K* cosh(HR;) cosh(HR7)] |

Ay = 2FR; (1 — iop*) [K* sinh(HRr) cosh(HR;) — Ry Ry sinh(HR; ) cosh(HRr)] |
2

K—R4K, y=2K— (2’_2T’ F = [h(w, k1)D(w, ki) + 27P6(w — k1 V)] Slna(lfzkz)

To obtain an equation of motion for the beam in the Fourier domain one has to apply the
compatibility condition. According to Eq. (5), the Fourier image of the vertical beam dis-
placement reads

of g [0% 2 g2 of 2 g2
w(kl,kz,z,w) —a—+@— [ﬁ_ (k +k )g :&—F (kl +k2)g .
Employing Eq. (14) and letting z = 0, one obtains
FRw .
w(ky, k2,0, ) = ia (,u iou”)
x [K? sinh(HRr) cosh(HR;) —R R sinh(HR; ) cosh(HR7)] . (15)

Substitution of Eq. (15) into the compatibility condition (12) gives finally the following
equation of the beam motion in the Fourier domain:

h(w, ki) [=ma? + EIK} + 7 (0, k)] = —27PS(0 — ki V) (16)
where

. 2 . °° - Num(k;) sin(ak -
(k) = - 8 o) ([ R g ) (17)

is the equivalent stiffness of the layer interacting with the beam and the following notation has
been introduced:

Num(k,) = K? sinh(HRy) cosh(HR;) — R Ry sinh(HR, ) cosh(HR7),
Den(k,) = 4K*yR; Ry + K* (4R} R} + 9°) sinh(HR; ) sinh(HRy)
— Ry R7(4K* + 7*) cosh(HRy) cosh(HRy) .

As one can see from Eq. (17), the equivalent stiffness of the layer is a functlon of the
frequency o and the wave number k; of the waves in the beam. To analyze yeq “(w, ky), it is
suitable, especially for the moving load problem, to introduce in Eq. (17) the following
variable of integration and parameters: ratio ¢ = k,/k; of the wave numbers in the y and x
directions; phase velocity V,;, = w/k; of the waves in the beam; the ratios f; ; = Vpn/cr s the
dimensionless wave number k = ak; of the waves in the beam; the ratio d = H/a of the layer
depth and the half-width of the beam. In terms of these parameters, the equivalent stiffness
reads
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—_— * o Num(¢)sin(ke) |\~
Xleqy (Vph,k) = —27'C,u<1 - 1kVph;) <ﬁ§" /_OO RL Den(é) ké dé) ) (18)

where

Num(¢) = (1 + &) sinh(kdRr) cosh(kdRy) — Ry Ry sinh(kdR; ) cosh(kdRy) ,

Den(¢) = 4(1 + &)p(E)ReRr + (1 + E)4RIRE + y(¢)? sinh(kdR, ) sinh(kdRr)
— Ry Rr4(1+ 62)4 +9(&)* cosh(kdRy) cosh(kdRy),

Von W
Rir=\/1+& =7 (&) =2+28—p3, Pr=-=——7 .
cLT k1CL,T

To analyze the equivalent stiffness, one has to evaluate the integral in Eq. (18). It can be done
either by the contour integration method or by direct numerical integration. The latter way
seems to be more applicable here, since the integrand in (18) has no singularities due to the
viscosity in the layer. So, we will proceed using the direct integration. Results of this integration
are depicted in Fig. 3, where the equivalent stiffness is plotted as a function of the phase
velocity Vpp, for a constant wave number k. Calculations were carried out for the following
parameters of the system: Poisson’s ratio of the layer v = 0.3; Lamé’s constant of the layer
@ = 3.8 % 10’ N/m?; the layer density p = 1.5 * 10° kg/m?; the viscosity parameters
/% = u* = 1.44 % 10* Ns/m?; the layer depth H = 9 m; the beam width 2a = 2.6 m. Parameters
of the layer are chosen to describe a realistic, though arbitrary, ground and the width of the
beam represents the length of the sleepers.

The following conclusions can be drawn from Fig. 3:

1. The equivalent stiffness is a complex function. By definition, its real part reflects the elastic
and the inertial properties of the equivalent foundation, while the imaginary part is related to
the energy dissipation in the foundation.

2. The imaginary part of the equivalent stiffness becomes significant when the phase velocity
exceeds the critical value V7, , which is indicated in Fig. 3. This critical value depends on the
wave number k as shown in Fig. 4. This dependence represents the phase velocity variation
in the lowest dispersion branch of the elastic layer, see [4]. The reason for the imaginary part
of 7&* to significantly grow for Vyy, > V7, is the radiation into the layer. These waves,
extracting energy from the beam, provide substantial equivalent attenuation of waves in the
beam.

3. Both the real and the imaginary part of the equivalent stiffness have a set of minima for
Vph > V3. These minima arise when, for a given value of the wave number k, Vyy, is close to
the group velocity of one of the higher modes of the layer vibrations. If the layer had no
viscosity, the equivalent stiffness in these points would be zero.

4. When the phase velocity tends to V},, the equivalent stiffness becomes rather small (both
the real and the imaginary part). One has to keep this in mind, since the decrease of the
equivalent stiffness is, in fact, the basic reason for resonance in a system subjected to a
moving load, see, e.g., [2].

Thus, waves with phase velocities smaller than V, can propagate in the beam with almost
constant amplitude (losses are quite small since the imaginary part of the equivalent stiffness

e 107 k=06
400 real part
Vph /CT
0.00 T / T e ——
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4 imaginary part

Fig. 3. Equivalent stiffness of the layer as a
function of phase velocity of waves in the beam
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is small). This fact gives us an idea that critical velocities of the load can occur related to what is
known as the “wave resonance”, see [3, 11]. This resonance arises when the velocity of a load is
equal to the group velocity of waves radiated by the load.

These velocities will be investigated in the next section by analyzing the beam dispersion.

4
Dispersion curve of the beam and critical velocities of the load

To analyze the wave propagation in the beam, we will temporarily suppose that the viscosity in
the layer is zero. In this case waves can propagate in the beam with constant amplitude.
However, even in the absence of viscosity, not all waves in the beam (with an arbitrary fre-
quency and wave number) will be undamped, but only those that excite no waves in the layer.
As discussed in the previous section, such waves should have phase velocities smaller than V,
(the phase velocity of the lowest mode of the layer). Therefore, in order to find propagatmg
waves in the beam, we will analyze the dispersion equation of the layer, see Eq. (16),

—mo’ + EIk} + 10 (w,k1) = 0 (19)

in the range V,, < V7. In this range, the equivalent stiffness can be calculated by direct
integration, since the integrand in Eq. (18) has no singularities even for vanishing viscosity in
the layer. Results of the numerical evaluation of Eq. (18) are depicted in Fig. 5a,b. In these
figures the dispersion curves of the beam are plotted for two different depths of the layer.
The curves represent real pairs {w, k;}, which are solutions of Eq. (19). The parameters of
the layer are taken as in the previous section (only A* = y* = 0), and the parameters of the
beam are as follows: the beam mass per unit length m = 1700 kg/m (we included the mass of
the rails, sleepers and ballast); the beam flexural rigidity EI = 1.3 108 Nm?, the beam width
2a =3m.

The dispersion curves in the figures are denoted bold. The dashed lines represent the lowest
dispersion branch of the layer. The straight line shows the phase velocity equal to the Rayleigh
wave velocity in the layer as H — oo (the dispersion branches of the layer tend to this line, as k;
grows). The figures show the following:

1. The dispersion curves of the beam (note that these curves show only waves propagating
without energy losses) exist only in intervals of relatively small wave numbers. The curves
disappear as they cross the lowest dispersion branch of the layer, since beam vibrations
begin generating waves in the layer.

2. The dispersion curves of the beam are close to the lowest dispersion curve of the layer. This
shows that the effect of the beam itself on the dispersion properties of the whole system is
relatively small (even in the case plotted in the figures, where the beam represents the rails,
the sleepers and the ballast). The larger the layer depth, the closer the beam dispersion curve
to the lowest branch of the layer.

It is of particular importance that Fig. 5 allows determination of the critical (resonance)
velocity of a constant load moving along the beam with a constant velocity. Under the
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motion with such a velocity, the steady-state beam displacement becomes infinite in the
absence of viscosity. The viscosity limits the value of the resonance displacement. The critical
velocity can be determined from Fig. 5 in the following way: one has to find the slope of a
straight line, which, crossing the origin, is tangential to the dispersion curve of the beam (see
[3, 11]). The slope of this line equals to the ratio of the critical velocity and the shear wave
velocity cy. The physical significance of this graphical determination is quite simple: if the
line is tangent to the dispersion curve, then the velocity of the load is equal to the group
velocity of a wave radiated by the load. Therefore, the energy radiated by the load moves
with the load and increases in time, since the radiation is a continuous process. Evidently,
this process will lead to an infinite growth of the beam displacement. Of course, if there is
viscosity in the layer, other damping mechanisms or some nonlinearities, the resonance will
be limited or even avoided.

As one can see from Fig. 5, the critical velocity of the load is close to the Rayleigh wave
velocity cg. However, as the layer depth decreases, the critical velocity slightly increases. This
qualitative conclusion will be verified in the next section, where the beam displacement will be
calculated and the effect of viscosity on the beam vibrations will be analyzed.

5

Steady-state response of the beam to the load

To determine the steady-state beam displacement caused by the moving load, one has to apply
to Eq. (16) the inverse Fourier transforms with respect to frequency w and wave number k;,
which yields

1 o0 oo
Wo(x,t) = 42/ / h(w, k) exp(ikix — iot)dw dk;
B / /Oc 0(w — ki V) exp(ikix — iwt)
0o —mw? + EIk} + ,glayer(co, ki)
explik; (x — Vt)]

= 1 -
b3 layer dk (20)
2 —mk}V?2 + EIk} + Jeq. (k1 V, ki)

dw dk;




Using the following symmetry properties of ze® (ky V', ky):
Re [leg'er(kl v, kl)] =Re {xle?'er(—kl v, —kl)};

Im [ 25y V. k)| = —Im [ 2 (< v, k)]

one can rewrite Eq. (20) in the form

WO(x, ) — _S/OOC { Ay (ky) coslki(x — Vit)] 4+ Ay(ky) sin[k; (x — V)]

dky
2 2 ’
—mI3V? + BT+ Re | 283 (kv k)] |+ m [ (v, k)| 407

(21)

where

Al(kl) = —mkfvz + EIk‘ll + Re [Xlezyer(kl ‘/7 kl):|, AZ(kl) — Im [Xiaqyer(kl V, kl):| ]

The integrand in Eq. (21) tends to zero proportionally to 1/k} (i.e. fast) as k; — oo, and has no
singularities on the integration path. Therefore, it is not a problem to calculate the integral in
Eq. (21) numerically. The corresponding results are depicted in Fig. 6, where the beam dis-
placement under the load (x = Vt) is plotted as a function of the load velocity. The dis-
placement is depicted for different depths of the layer. The other parameters of the system are
taken as in the previous section (v = 0.3; 4 = 3.8 * 10’ N/m? p = 1.5 x 10> kg/m’;

m = 1700kg/m; EI = 1.3 % 108 Nm?; 2a = 2.6 m); additionally, the viscosity parameters of the
layer are 1" = u* = 1.44 % 10* Ns/m?.

One can see from Fig. 6 that, according to results of the previous section, the resonance
velocity of the load, which gives a maximum amplification in the displacement, decreases
slightly as the depth of the layer increases. The dependences are rather different if the depth is
relatively small (compare the curves for H = 1.7m and H = 4.7 m). For larger depths, the
curves are almost the same, and only near the resonance velocity a small difference can be seen.

The most important result reflected by Fig. 6 is that the resonance amplification is sub-
stantially smaller when the depth of the layer is smaller. This brings the following idea, which
can be interesting for practical applications. To make the dynamical amplification of the track
vibrations at the critical train velocities smaller, one can put a stiff strip under the track,
providing an artificial boundary. This boundary will slightly increase the critical velocity of the
train and make the influence of the viscosity in the subsoil more effective. Such a stiff strip can
be especially useful for soft subsoil where the critical velocity of the train is quite small since the
Rayleigh wave velocity is in the range of 200-250 km/h.

“O w=107/p
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6

Conclusions

In this paper, the steady-state vibrations of an elastic beam on a visco-elastic layer under a
uniformly moving constant load have been investigated. First, the 3D layer has been exactly
replaced by a 1D equivalent foundation, continuously distributed along the beam. It was shown
that the equivalent stiffness of this foundation is a complex function dependent on the fre-
quency of the beam vibrations and the wave number of waves in the beam. The real part of the
equivalent stiffness reflects elasto-inertial properties of the layer, and the imaginary part is
responsible for the attenuation of the beam vibrations. This attenuation can happen due to the
viscosity in the layer and as a result of the radiation of waves into the layer. Analyzing the
equivalent stiffness, it was found that its imaginary part becomes substantially larger when the
phase velocity of waves in the beam exceeds a critical value V. This critical phase velocity is
determined by the lowest dispersion branch of the layer, and the increase of the imaginary part
is related to the wave radiation in the layer caused by the beam vibrations. Since the layer is a
dispersive system, V7, is a function of the wave number of waves propagating along the beam.
The real part of the equivalent stiffness dramatically decreases, as the phase velocity of waves
in the beam approaches V7.

In the range V,;, < V7 of the phase velocities, waves in the beam can propagate with almost
constant amplitudes, slightly attenuated only by the viscosity in the layer. Therefore, the
analysis of the dispersion properties of the beam has a physical significance in this range. It was
shown that the dispersion curve of the beam is located close to the lowest dispersion branch of
the layer, and exists only for relatively long waves in the beam. The deeper the layer, the closer
this dispersion curve to that given by the lowest branch of the layer.

The steady-state beam displacement under the moving load has been investigated. It has
been shown that there exists a critical (resonance) velocity of the load, which gives a substantial
dynamical amplification of the beam vibrations. This critical velocity is close to the Rayleigh
wave velocity in the layer. As the depth of the layer grows, the critical velocity becomes slightly
smaller. On the other hand, the effect of viscosity in the layer on the resonance vibrations of the
beam increases as the layer depth decreases.
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