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of a saturated porous solid. A second-gradient theory
extending Terzaghi's effective stress principle
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Summary The principle of virtual power is used to derive the equilibrium ®eld equations of a
porous solid saturated with a ¯uid, including second density-gradient effects; the intention is
the elucidation and extension of the effective stress principle of Terzaghi and Fillunger. In the
context of a ®rst density-gradient theory for a saturated solid we interpret the porewater
pressure as a Lagrange multiplier in the expression for the deformation energy, assuring that
the saturation constraint is veri®ed. We prove that this saturation pressure is distributed
among the constituents according to their respective volume fraction (Delesse law) only if they
are both true density-preserving. We generalize the Delesse law to the case of compressible
constituents. If a material-dependent effective stress contribution is to arise, it is, in general,
nonvanishing simultaneously in both the solid and ¯uid constituents. Moreover, saturation
pressure, effective stresses and compressibility constitutive equations determine the exchange
volume forces. In a theoretical formulation without non-isotropic strain measures, second
density-gradient effects must be incorporated, not only to accommodate for the equilibrium-
solid-shear stress and the interaction among neighboring solid-matrix pores, but also to
describe internal capillarity effects. The earlier are accounted for by a dependence of the
thermodynamic energy upon the density-gradient of the solid, while the latter derives from a
mixed density-gradient dependence. Examples illustrate the necessity of these higher gradient
effects for properly posed boundary value problems describing the mechanical behaviour of the
disturbed rock zone surrounding salt caverns. In particular, we show that solid second-gradient
strains allow for the de®nition of the concept of static permeability, which is distinct from the
dynamic Darcy permeability.

Key words Principle of virtual power, second-gradient theory, saturated soil-water mixture, salt
rock, porosity, static permeability

1
Introduction
A saturated porous material is a mixture of a solid matrix with pores which are completely
®lled with a ¯uid, called the porewater ¯uid. The state of stress in a material point of this
mixture consists of two contributions; one contribution is the constraint pressure p due to
saturation, called in modern porous media theories the saturation pressure, in the soil science
literature, however, better known as the porewater pressure. This pressure is distributed be-
tween the two constituents: in older theories via a postulate (Delesse law, s. e.g. [1]), according
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to volume fraction occupied by the respective constituents, pa � pma, ma is the volume fraction
of constituent a; in newer theories by derivation. The other contribution to the stresses is
constitutive, and thus responsible for the strength of the material. It is customary in the solid
mechanics literature to refer to these second types of stresses as the effective stresses (note
plural) in the solid and ¯uid, respectively. In anticipation that the ¯uid is true density-pre-
serving, the solid carries all constitutive properties, and the term effective stress is only used in
the singular form referring to the solid matrix.

This understanding was that of Terzaghi and Fillunger, and the latter was the ®rst soil
engineer who clearly stated that a constitutive equation must be formulated only for the excess
over the weighted porewater pressure and not for the total stress, s. [1] p. 81±83. However, also
Terzaghi was of the opinion that the excess over the porewater stress ``has its seat exclusively in
the solid phase of the soil'' (according to [1] p. 83, quoting Skempton 1960). Moreover, both
Fillunger and Terzaghi postulate that solid volume fraction kinematically describes the strain of
the solid matrix.

According to the above statements three questions are raised and will be answered in this
paper: (1) Is the division of the porewater pressure between the solid and ¯uid constituents
truly according to ``pressure equilibrium'', pa � pma; or can it be different? (2) Is the concept of
effective stress one that must be restricted to the solid matrix as expected by Terzaghi or does it
apply for the solid and the ¯uid? (3) Is the solid volume fraction suf®cient to describe the solid
volume pore strain?

To answer these questions we will use the principle of virtual power applied to a binary
mixture of a solid saturated with a ¯uid. In order to simplify the required mathematical
formalism we will limit ourselves to consider equilibrium con®gurations of the considered
mixture. The ¯exibility in the underlying postulates will be assumed to be suf®ciently broad to
cover the conjectured properties. We will assume, therefore, that the two constituents may be
either compressible or true density-preserving, i.e. both situations can be imposed by spe-
cialization. Second, we shall assume the thermodynamic energy to depend both on the partial
densities of the constituents as well as on their gradients. Third, by postulating the thermo-
dynamic energy to depend on the density gradients an incompleteness of the solid matrix strain
description will be removed. The latter dependence will give rise to double gradients of the
densities in the constitutive relations for the pressure, which is why dependence on the density
gradients in the energy is called a second-gradient theory. Gradients higher than the ®rst are e.g.
needed to transmit nonspherical equilibrium stresses. In the application developed in the last
Section we show that second-gradient strains of the solid matrix allow the de®nition of a static
permeability, i.e. of a physical quantity measuring how under equilibrium conditions (in the
absence of ¯uid motion) a porous solid matrix offers resistance to the variation of the satu-
rating ¯uid volume fraction. Other dependencies could be incorporated but the intention is to
keep the theory as simple as possible.

The ®rst two questions raised above and modifying the Terzaghi-Fillunger conjectures can
be answered with a ®rst-gradient theory. It will be shown that, within the context of this
variational formulation, the porewater pressure is, in general, not distributed between the
constituents according to pressure equilibrium, as postulated by the Delesse law, and effective
stresses arise for both the solid and the ¯uid constituents. Moreover, in order that the equi-
librium equations derived from the variational principle be consistent mixture balances, the
constitutive relations for the thermodynamic energy, the effective stresses, the constituent
compressibilities and exchange volume force between constituents must be related by imposing
objectivity of the power expended by internal contact actions [2, 3]. The resultant relations
(s. the following Eqs. (20)±(22)) can be used in the framework of the present variational
formulation to prove the following statements:

� When both constituents are true density-preserving, the porewater pressure is distributed
among the constituents according to the ``pressure equilibrium'' postulate (Delesse law). On
the other hand, when the constituents are compressible, the Delesse law is no longer valid,
and the porewater pressure is distributed according to a prescribed formula.
� Fillunger's [25] statement that compressibility leads to a constitutive effective stress is

corroborated.
� The interaction force has a contribution proportional to the gradient of the solid volume

fraction. The coef®cient is, in general, not equal to the porewater pressure, but reduces to the
latter where the effective pressures vanish.
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� Effective stresses, in general, arise simultaneously in both constituents, and are related to the
mixture thermodynamic pressure. This statement is also in agreement with other formula-
tions of granular solid-¯uid mixtures such as [4]1 or [6].
� The second gradient effects must be incorporated in a theory ignoring a dependence of the

thermodynamic quantities on nonhydrostatic strain measures or rate-independent plastic
effects, in order to allow for equilibrium shear stresses. These effects are also needed to
describe the effects on stress in a material point related to the solid-matrix-pore deformation
in the neighbouring material points.

These results seem to be new. One advantage of the variational formulation over direct ap-
proaches to higher gradient theories is the fact that the minimization principle automatically
generates the natural boundary conditions. In other words, not only the dynamic equations
within the body relating the introduced ®elds are generated, but also the conditions which these
®elds must ful®ll at the boundaries of the body. In ®rst-gradient theories these boundary
conditions lend themselves easily through arguments of physics, for higher-gradient theories
they must fall out from the formulation, because this physical intuition is generally not
available. We adapt the arguments developed by [2, 3, 7±9], in order to physically interpret for
the considered system the deduced boundary conditions. Furthermore, we demonstrate their
appropriateness by solving a simple one-dimensional boundary value problem. It catches, at
least qualitatively, some physical properties, [10], of deformable salt rocks fully saturated by a
¯uid, which cannot be described without the introduction of second density gradients.

2
Conceptual prerequisites
Consider a binary mixture of a solid matrix with connected pores which are ®lled with a liquid.
This arrangement can be thought of as being a saturated soil or rock. We have in mind as an
application, however, a dome of salt which is saturated with a brine of given concentration.
Solidi®cation of salt from the brine to the solid matrix is excluded. Let the two components be
referred to as the solid and the porewater ¯uid and be indicated by the suf®ces s and f . Let,
moreover, qs; qf and vs; vf be the solid and ¯uid densities and velocities, respectively, in the
mixture. The mixture density and the barycentric velocity are then given by

q � qs � qf � q̂sms � q̂f mf � q̂sms � q̂f 1ÿ ms� � ; �1�
v � qs

q
vs �

qf

q
vf �: nsvs � nf vf ; �2�

in which ms is the solid volume fraction, mf the porosity; the saturation condition has been used
stating that the pore-¯uid ®lls the entire pore space, and q̂s, q̂f are the true densities of the solid
and the ¯uid.

We conceive this mixture to be nonreactive so that the balances of mass for the constituents
reduce to

oqa

ot
�r � qava� � � 0; a � s; f : �3�

In the ensuing analysis we shall restrict ourselves to purely mechanical processes; temper-
ature will play no role, and so the constituent momentum equations are the only additional
balance laws to be added to (3). Instead of a direct application of these laws, we shall use to
derive them the principle of virtual power, applied to the appropriate energy functional. Let w
be this functional, and assume it to depend on the ®elds qa and rqa, a � s; f ,

w � w�qa;rqa� : �4�
Other dependences could also be introduced, e.g. a temperature dependence and dependences
on tensorial strain measures; however, our interest is in the derivation of the most simple
Terzaghi-type effective stress theory including second gradient effects. Imposing objectivity,
Eq. (4) takes the form

w � w�qs; qf ; jrqsj2; jrqf j2; jrqs � rqf j� : �5�

1In the formulation of [5], the ¯uid stresses are absent in the reduced formulation, corresponding to this one due

to a slip in calculations.
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This form of the energy functional supposes that both the solid matrix as well as the ¯uid
exhibit second-gradient effects, and that the two also give rise to an interaction energy of the
two effects through the last variable in (5).

The principle of virtual power states that the variation of the total energy in the body related
to its motion equals the power of the external forces, i.e.

d

dt

Z
B

wdV

� �
�
Z

B
bs � vs � bf � vf

ÿ �
dV �

Z
oB
�Cs�vs;rvs� � Cf �vf ;rvf ��dS : �6�

Here, ba are the speci®c body forces which perform work on their constituent motions, indi-
cated by the velocity ®elds vs and vf ; respectively, while integrals of Ca are scalar-valued
bilinear functionals. They represent the power expended on the velocity ®elds and their gra-
dients by speci®c contact actions; this is so because, as in every second-gradient theory (s. e.g.
[2, 3] or [9]), contact forces exert power also on gradients of velocity ®elds. The variation of the
total energy on the left-hand side of (6) is

(i) referred to a barycentric motion in the following Sec. 3, and to constituent motions when
considering the second gradient terms added in Sec. 5;
and

(ii) calculated by independently varying the independent variables of the energy function
subject to the kinematic constraint that the body is saturated.
The latter condition is now incorporated by de®ning the energy according to

w � e� p ms � mf ÿ 1
ÿ � � e qa;rqa� � � p

qs

q̂s

� qf

q̂f

ÿ 1

 !
; �7�

in which q̂a are the true peculiar densities, assumed to be constants for density-preserving
constituents; note that qa � maq̂a, and p is a Lagrange multiplier which will be determined by
imposing the saturation constraint; the quantity e is the thermodynamic free energy. In the
case that entropy is the independent thermodynamic ®eld variable, e is the internal energy.
If this independent ®eld variable is the temperature, then e is the Helmholtz free energy.
Because we do not specify this, we are either concerned with isentropic or isothermal processes.
With the interpretation (7), the variation in (6) can be performed for unconstrained qa.

Finally, let us state that we do not require ab initio that the components be incompressible.
In fact, it will be supposed that the true densities q̂a may be affected by the composition of
the grains. At high porosity, q̂a will essentially be constant, at low porosity near the closest
packing, q̂a will itself increase. This dependence was clearly noted by Fillunger, and can
be accounted for by postulating a constitutive relation q̂a � q̂a�qa�: For the ®nal application,
we will assume that q̂f � const. and q̂s � q̂s�qs�:
3
The classical model
Consider, as a preliminary approach, a theory without second gradient effects. Then

w � e qb� � � p
qs

q̂s

� qf

q̂f

ÿ 1

 !
; �8�

thus

d

dt

Z
B

wdV

� �
�
Z

B
LwdV ; �9�

where

Lw :� ow
ot
�r � wv� � :

With

ow
ot
�
X

a

ow
oqa

oqa

ot
��3� ÿ

X
a

ow
oqa

r � �qava�;

r � wv� � �
X

a

wnar � va � wrna � va �rw � nava� � ;
�10�
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it is readily shown thatZ
B

LwdV �
X

a

Z
B
�ÿpar � va � �wrna ÿ

ow
oqa

rqa� � va �rw � nava�dV ; �11�

where

pa :� ÿwna � qa

ow
oqa

:

The ®rst term in the integrand of (11) can be transformed according toZ
B
ÿpar � vadV � ÿ

Z
B
r � pava� �dV �

Z
B
rpa � vadV

� ÿ
Z

oB
pava � ndS�

Z
B
rpa � vadV : �12�

With (11) and (12), the principle of virtual work (6), takes the form

X
a

Z
oB
ÿpan � vadS�

X
a

Z
B
r qa

ow
oqa

� �
ÿ ow

oqa

rqa

� �
� vadV

�
X

a

Z
B

ba � vadV �
X

a

Z
oB

Ca�va; 0�dS : �13�

This must hold for all ®elds va de®ned over the body B and on its boundary oB, thus leading to

ÿqar
ow
oqa

� �
� ba � 0; a � s; f in B ; �14�

ÿpan� Ca�va; 0� � 0; a � s; f on oB : �15�

In order to identify in the last equation the addends representing partial stresses and exchange
bulk force between the constituents, we impose the same Galilean invariance argument as done
in [2, 3] and [7]: it follows that

ÿrpa �ma � ba � 0; a � s; f in B;

ÿpan� ta � 0; a � s; f in oB ;
�16�

in which the exchange bulk forces ma are given by

ms � ÿmf � ÿ 1ÿ ns� �rqs

w
q
ÿ ow

oqs

� �
� 1ÿ nf

ÿ �rqf

w
q
ÿ ow

oqf

 !
; �17�

and ta is the linear part of Ca�va; 0� on va and represents a stress vector.
We remark explicitly that when the saturation constraint is not considered, and therefore p

in Eq. (8) vanish, Eq. (17) coincides with Eq. (4.6) in [6].
With qa � maq̂a, q̂a � q̂a�qa�, and w as given by (8), since rmf � ÿrms straightforward

arithmetics shows that

q̂arma � rqa 1ÿ ma
dq̂a

dqa

� �
; qa

ow
oqa

� ma q̂a

oe
oqa

� p 1ÿ ma
dq̂a

dqa

� �� �
; �18�

pa � ÿqa

w
q
� qa

ow
oqa

� Pa � pma 1ÿ ma
dq̂a

dqa

� �
; �19�
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ma � M rma; M :� p�
X

b

Pb

mb
1ÿ nb� � 1ÿ mb

dq̂b

dqb

� �ÿ1

: �20�

We cannot resist to point out here the close similarity between Eq. (19) and the well-known
formula

reff
m � rm � 1ÿ k0

ks

� �
P ; �21�

of soil mechanics (s. [11±13]), with the correspondence

reff
m $ ÿPa rm $ ÿpa P$ pma ;

where reff
m is the mean effective stress, rm the mean applied stress and P the pore pressure. The

factor of the second term on the right-hand side of (21) is called the Biot coef®cient, and k0; ks

are the moduli of compressibility of the drained soil and the rock material. It is tempting to
identify k0=ks with madq̂a=dqa; but this is no more than a suggestion.

The expression (19) holds modulo p�Pa ma ÿ 1�, which is zero, and the quantity

Pa :� qa

oe
oqa

ÿ e
q

� �
�22�

may be identi®ed with the thermodynamic pressure of the constituent a. Therefore, the
equilibrium equation (16)1 takes the form

�1� �2� �3�
ÿrpa �Mrma � ba � 0 :

�23�

Notice that Eq. (23) expresses a balance between the pressure gradient (1), the exchange force
(2) and the external body force (3), which necessarily must satisfy the basic postulates of the
mixture balance laws. We also mention that, for dq̂b=dqb � 0, the above expression for ma

coincides with that found with different methods in [4]. The quantity Pb=mb was denoted by bb

in [5].
Relation (20) serves as a restriction among constitutive equations: for instance, if q̂f and q̂s

are both constant, i.e. if the two constituents are true density-preserving, then (20) requires
that, once the constitutive quantity e and the pressure p are assigned, so is the exchange force
M: In particular, if e � 0 and dq̂b=dqb � 0, Eq. (23) reduces to

ÿr map� � � prma � ba � 0 ; �24�
or

ÿmarp� ba � 0 : �25�
The ®rst form shows that the partial pressures pa � pma are obtained from the saturation
(porewater) pressure by multiplying it with the constituent volume fraction, a property usually
referred to as ``pressure equilibrium''. On the other hand, the interaction force is simply given
by ÿprma: Such choices are the basis of a large number of porous solid theories (s. e.g.
[14±16]), but this choice is obviously very restrictive.

The above results show that
1. Fillunger [25] was essentially correct when conjecturing that an extension of the classical

theory exhibited by (24) can be obtained via compressibility assumptions of the constituents
solid and ¯uid, (s. [1], p. 82, footnote 8): indeed Eq. (22) de®ne the Filllunger±Terzaghi effective
partial pressures, and show that they are related to the compressibility constitutive relations
q̂b�qb�:

2. Both Fillunger and Terzaghi (s. again [1]) did not investigate the implications of the
balance of energy and of the second principle of the thermodynamics in the theory which they
were developing; in particular, they assumed that (using the notation of the present paper)

Ps 6� 0; Pf � 0; M � p ; �26�
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which clearly contradicts via (20) the principle of virtual powers on which we have based our
treatment.

4
Limits of the classical model
By adding over the constituents their force balances (23) an expression for the porewater
pressure can be found. Indeed, by assuming that the body forces are conservative and possess a
potentialX

a

ba � ÿr/ ; �27�

it is straightforward to show that

r
X

a

1ÿ m2
a

dq̂a

dqa

� �
p�Pa

� �
� /

( )
� 0 ; �28�

or, after integration,

p 1ÿ
X

a

m2
a

dq̂a

dqa

 !
�
X

a

Pa � / � k ; �29�

where k may be a function of time, which we take to be constant. This result shows that for
homogeneous ¯uid-saturated solid matrices and for a vanishing potential ®eld / (i.e. ba � 0 for
a � s; f ), the pressure ®eld p is constant if and only if one of the ®elds qa or ma is constant.
On the other hand, it is easy to verify that, under the same hypothesis on /, both Eq. (23)
are solved by constant ®elds qa, as can be checked immediately with the aid of (15). These
results hold, no matter what the geometry of the solid matrix may be, and irrespective of
whether the body be in equilibrium or in a dynamic Stokesian motion.

On the other hand, it is easy to conceive physical situations in which a solid matrix
saturated by a ¯uid shows a variable solid pore size distribution even in an equilibrium
con®guration, and, consequently, a spatially variable solid-volume fraction. An instance of
a physical system in which this occurs is given by the micro-cracked and permeable salt rock
in the disturbed zone surrounding a ¯uid ®lled cavity, [17]. It seems, therefore, useful to
formulate a model in which the micro-mechanical interactions among neighbouring pores are
described in such a way that the existence of a spatially varying equilibrium solid volume
fraction ®eld is permissible in the absence of body forces. This will be done in the next
Section, by introducing a second gradient theory.

5
A second-gradient theory
We choose now the thermodynamic energy in the form

e � e qa; fab� � � e qa; fab� �; fab :� rqa � rqb ; �30�
and thus need to complement the variation of

R
B wdV performed in Secs. 2 and 3 only by

the contributions due to the additional term involving the variables fab: Indicating this
contribution by the index ��add, we may write

d

dt

Z
B

edV

� �
add

�
X
a;b

Z
B

oe
ofab
rqb � rq0a

� �
dV ; �31�

in which rq0a denote the time derivatives following the motion of the solid and ¯uid,
respectively, viz.

��0a�
o��a
ot
�r��a � va : �32�
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Using (32) in (31) and employing the rule

ÿrqb � rq
0
a � rqa 
rqb � fabI� � : rvb � qb I
rqa� � ...rrvb ; �33�

obtained by recalling the balances of mass for the constituents, where no summation over
repeated indices is performed, we may derive the identity

d

dt

Z
B

edV

� �
add

� ÿ
X

b

Z
B

X
a

oe
ofab

rqa 
rqb � fabI� �
 !

: rvbdV

 

�
Z

B

X
a

oe
ofab

qb I 
 rqa� �
 !

..

.rrvbdV

!
: �34�

With the notations

Ab �
X

a

oe
ofab

rqa 
rqb � fabI� � ; �35�

Cb �
X

a

oe
ofab

qb I
rqa� �
 !

; �36�

the right-hand side of (34) can be regarded as the sum of terms possessing the structureZ
B
�Ab : rvb � Cb

..

.rrvb�dV ; �37�

which, through rearrangements of differentiations and the application of Gauss' theorem, may
be written as (s. [18], p. 19)Z

B
r � Abÿr � Cb� � � vbdV ÿ

Z
oB

vb � Abÿr � Cb� � � rvb : Cb� � � ndS : �38�

Adding the transformed Eq. (34) to the variation calculated in the previous Section we obtainX
a

Z
B
r qa

ow
oqa

� �
ÿ ow

oqa

rqa ÿr � Aaÿr � Ca� �
� �

� vadV

�
X

a

Z
oB

va � pan� Aaÿr � Ca� � � rva : Ca� �dS

�
X

a

Z
B

va � badV �
X

a

Z
oB

Ca�va;rva�dS : �39�

This identity proves that the expression on the right-hand side is a bilinear functional of the
velocity ®eld va and its gradient. Thus, we write

Ca�va;rva� � ta � va � da : rva ; �40�
and call ta surface traction vector and da surface double-force tensor of constituent a. Formula
(40) is nothing else than Cauchy's theorem extended to the second-gradient mixture theory
treated here.

Since (39) must be valid for all va and rva, we ®nally deduce the ®eld equations

r qa

ow
oqa

� �
ÿ ow

oqa

rqa ÿr � Aaÿr � Ca� � � ba � 0; in B ; �41�

and the boundary conditions
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ÿpaIÿ Aa ÿr � Ca� �� � � n � ta

Ca � n � da

�
on oB : �42�

The surface traction vectors ta and the surface contact double forces da for the constituent
stresses are to be externally prescribed at the boundary oB (with a unit normal n) of a mixture
body. In a ®rst-gradient theory, both Aa and Ca vanish, and Eqs. (42) reduce to (16)2:

As an illustration, we choose oe=ofab � 0, except for

oe
ofss
�:

ks

2
: �43�

Then the ®eld equations become

ÿrps �ms � bs �r � ksqs4qs �
ks

2
rqsj j2

� �
Iÿ ksrqs 
rqs

� �
� 0;

ÿrpf �mf � bf � 0 ;
�44�

and the boundary conditions take the form

ÿps � ksqs4qs �
ks

2
rqsj j2

� �
nÿ ks rqs 
rqs� � � n� ts � 0;

ÿpf n� tf � 0; ksqs

oqs

on
� d � 0 ;

�45�

in which

df � 0; ds � dI :

Following the results found in [19±21] for the constituent tractions, denoting pi the incumbent
pressure exerted on the saturated solid matrix at its boundaries, we choose

ts � aml
spin; tf � 1ÿ aml

s

ÿ �
pin ; �46�

where a and l are constitutive parameters describing the dynamic behaviour of the solid-matrix
¯uid interface. Moreover, we assume that

d � d�pi� �47�
is a given function of the incumbent pressure, which in ensuing application will be taken as
linear

d � Dpi :

Finally, it is easy to show that when Eqs. (44) are added we can generalize (28), and obtain

r
X

a

1ÿ m2
a

dq̂a

dqa

� �
p�Pa

� �
� /

( )

ÿr � ksqs4qs �
ks

2
rqsj j2

� �
Iÿ ksrqs 
rqs

� �
� 0 : �48�

6
Linearized constitutive equations
In this Section we consider the constitutive equations for the energy e and true densities q̂a in
the neighbourhood of an equilibrium con®guration �q0

s ; q
0
f � which is stress free. Having in

mind the application to the study of equilibrium con®gurations of cracked salt rocks saturated
with a ¯uid, the constitutive postulate (49) on e can be interpreted as follows: the rock has been
damaged and, having an apparent density q0

s ; can be saturated by a ¯uid of a given true density
q̂0

f and apparent density q0
f without any change of deformation. Therefore, in what follows the
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densities �q0
s ; q

0
f � are assumed to be constitutive quantities describing the state of damage of the

considered rock. Therefore, we assume for e the following expansion:

e�qs; qf � �
1

2

o2e
oq2

s

����
q0

s ;q
0
f

qs ÿ q0
s

ÿ �2 � 1

2

o2e
oq2

f

�����
q0

s ;q
0
f

qf ÿ q0
f

� �2

� o2e
oqf oqs

�����
q0

s ;q
0
f

�qs ÿ q0
s � qf ÿ q0

f

� �
� O�3� : �49�

A constant and a linear term are omitted to avoid pre-stresses in the natutal reference
con®guration. Moreover, the reference state is assumed to be saturated, so that

q0
s q̂

0
f � q0

f q̂
0
s � q̂0

f q̂
0
s : �50�

Note, that in a ¯uid ®lled cavern of a salt-rock formation the applied ¯uid pressure in the
cavern generates openings of the grain boundaries between the salt crystallites in the imme-
diate vicinity of the cavern wall. As a result, its permeability and drainage properties change.
For more details see Chapter V of SMRI 1998 Technical Class [22]. We do not model here this
damage process but deal only with an equilibrium situation.

As a consequence, we have for the pressures Pa the expansions

Ps�qs; qf � � q0
s

o2e
oq2

s

����
q0

s ;q
0
f

�qs ÿ q0
s � � q0

s

o2e
oqf oqs

�����
q0

s ;q
0
f

�qf ÿ q0
f � � O�2�;

Pf �qs; qf � � q0
f

o2e
oq2

f

�����
q0

s ;q
0
f

�qf ÿ q0
f � � q0

f

o2e
oqf oqs

�����
q0

s ;q
0
f

qs ÿ q0
s

ÿ �� O�2� ;
�51�

which we will write in the compact form

Pa �
X

b

Aab qb ÿ q0
b

ÿ �
: �52�

For compressible constituents, we assume the linear relation

q̂b � q̂0
b � cb qb ÿ q0

b

ÿ �
; �53�

where the positive material constant cb represents the compressibility of the constituent b: It
vanishes for a density-preserving constituent.

The constitutive part of volume exchange force

X
b

Pb

mb
1ÿ nb� � 1ÿ mb

dq̂b

dqb

� �ÿ1

�54�

can now be linearized: we will introduce the denotation

M � p�M0 �
X

b

Mb qb ÿ q0
b

ÿ �
; �55�

where the constants M0 and Mb are easily de®ned in terms of the constants Aab; cb; q̂0
b and q0

b.
Their expressions are rather long and will be omitted here.

7
A one-dimensional pressure-driven fluid penetration problem
In this Section, we consider a homogeneous solid matrix saturated by a ¯uid occupying the
halfspace x > 0. We will assume that all considered ®elds depend only on the variable x; that
the potential / vanishes, and the boundary of the solid matrix is located at x � 0: Here, the
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saturated solid matrix is in contact with the saturating ¯uid, which is kept at a ®xed pressure:
the properties of the interface between the saturated solid matrix and the ¯uid are constitu-
tively modelled by the coef®cients a and l appearing in (46) and introduced in [20], and by the
coef®cient D introduced in the following formula (56)3: These coef®cients, respectively, de-
termine the part of the ¯uid pressure transmitted to solid matrix, to the saturating ¯uid and the
contact double force exerted by the ¯uid on the solid matrix. The boundary conditions at
x � 1 are obtained by assuming that, at this boundary, the saturated solid matrix is in contact
with an impervious solid.

7.1
The general case of compressible constituents
The boundary conditions (45) at x � 0 and at x � 1; implied by (46) and (47), and valid when
a � 1 and l � 1; are, respectively, at x � 0

ÿ Ps � pms 1ÿ ms
dq̂s

dqs

� �� �
� ksqs

d2qs

dx2
ÿ ks

2

dqs

dx

� �2

� ÿms�0�pi;

Pf � pmf 1ÿ mf

dq̂f

dqf

 !
� mf �0�pi;

ksqs

dqs

dx
� Dpi ;

�56�

and at x � 1

ÿ Ps � pms 1ÿ ms
dq̂s

dqs

� �� �
� ksqs

d2qs

dx2
ÿ ks

2

dqs

dx

� �2

� ÿms�1�pi;

Pf � pmf 1ÿ mf

dq̂f

dqf

 !" #
� mf �1�pi;

ksqs

dqs

dx
� 0 :

�57�

In the considered instance, adding (44)1;2 together and integrating the emerging equation yields

p 1ÿ
X

a

m2
a

dq̂a

dqa

 !
� ÿ

X
a

Pa � ksqs

d2qs

dx2
ÿ ks

2

dqs

dx

� �2
" #

� pi ; �58�

where for determining the integration constant the boundary conditions (56)1 and (56)2 were
used. On the other hand, Eq. (15) for a � f admits the following ®rst integral:

oe
oqf

� p

q̂f

1ÿ qf

q̂f

dq̂f

dqf

 !
� c ; �59�

where c is an integration constant. Eliminating p from Eqs. (58) and (59) yields an ordinary
differential equation, which posseses the normal form

ksqs

d2qs

dx2
ÿ ks

2

dqs

dx

� �2

� F�qs; qf ; c� � pi ; �60�

F�qs; qf ; c� �
X

a

Pa � 1ÿ
X

a

m2
a

dq̂a

dqa

 !
1ÿ qf

q̂f

dq̂f

dqf

 !ÿ1

cÿ oe
oqf

 !
q̂f : �61�

Differentiating (60) yields

d

dx
ksqs

d2qs

dx2
ÿ ks

2

dqs

dx

� �2
" #

� ksqs

d

dx

d2qs

dx2

� �
� d

dx
F�qs; qf ; c� ; �62�
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which implies

ks
d2qs

dx2
� G�qs; c� � g1�c; pi;D� ; �63�

where

G�qs; c� :�
Z

1

qs

d

dqs

F�qs; �qf �qs�; c�dfs �64�

and the function �qf �� � is implicitly de®ned by the saturation constraint

qsq̂f �qf � � qf q̂s�qs� � q̂f �qf �q̂s�qs� : �65�

The integration constants c and g1�c; pi;D�, together with the further two integration constants
of (63), are determined by using the boundedness of the solution (57) as x!1; and (56)2;3 for
x � 0:

7.2
Incompressible constituents
To show some of the qualitative features implied by (63)±(65) we assume that

dq̂a

dqa

� 0; qsq̂
0
f � qf q̂

0
s � q̂0

f q̂
0
s : �66�

The boundary conditions at x � 0 are

ÿ Ass�qs ÿ q0
s � � Asf �qf ÿ q0

f � � p
qs

q̂0
s

� �
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pi;

ksqs

dqs
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� Dpi ;

�67�

and Eq. (58) reduces to

p � ÿ
X

a

Pa � ksqs

d2qs

dx2
ÿ ks

2

dqs

dx

� �2

�pi : �68�

Replacing the expression for p in (67)2, we get at x � 0

Aff �qf ÿ q0
f � � Afs�qs ÿ q0

s � � ÿ
X

a

Pa � ksqs

d2qs

dx2
ÿ ks

2

dqs

dx

� �2
" #( )

1ÿ qs

q̂0
s

� �
� 0 :

�69�
On the other hand, Eq. (59) takes the form

Aff

q0
f

�qf ÿ q0
f � �

Afs

q0
f

qs ÿ q0
s

ÿ �� p

q̂0
f

� c : �70�

By eliminating p from (68) and (70), we obtain the ordinary differential equation for qs

ÿAff

q0
f

�qf ÿ q0
f � ÿ

Afs

q0
f

�qs ÿ q0
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" #
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which has the normal form

ksqs

d2qs

dx2
ÿ ks

2

dqs

dx
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f
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f

q0
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f �: F�qs; qf ; c� : �72�

Because of (62)2, it implies

ks
d2qs

dx2
� L ln

qs

q0
s

� g ' L
qs ÿ q0

s

q0
s

� �
� g � L

qs

q0
s

ÿ Lÿ g� � ; �73�

where

L � Ass ÿ Afs

q̂0
f

q0
f

ÿ Aff 1ÿ q̂0
f

q0
f

 !
� Asf

" #
q̂0

f

q̂0
s

: �74�

It possesses the dimension of energy per unit mass, and may, according to its de®nition, be
positive or negative, depending on the relative magnitude of the coef®cients Aab: This may give
way to a branching solution. However, in anticipation that Ass is much larger than Aff , Asf or
Afs; L is likely positive, and the solution of the ordinary differential equation (73) is decaying in
x: In this spirit, therefore,

qs x� � � q0
s

Lÿ g

L

� �
� C1e

�����
L

q0
s ks

q
x

� C2e
ÿ
�����

L

q0
s ks

q
x

: �75�

Now we impose that

1. At x!1, the boundary conditions (57) hold. In particular, (57)3 implies that

C1 � 0 ) d2qs

dx2

����
x�1
� 0 and

dqs

dx

����
x�1
� 0 ; �76�

and, therefore, with simple algebra, (57)1;2 become

Pajx�1� 0 ) qa 1� � � q0
a a � s; f� � ) g � 0 : �77�

In this deduction one also must use p�1� � pi, which is the result of global equilibrium.
2. At x � 0,

dqs�0�
dx

� Dpi

ksqs 0� � ; �78�

which implies

C2 q0
s � C2

ÿ � � ÿDpi

�������
q0

s

ksL

s
: �79�

Because of the linearization procedure, which we have used, the only meaningful solution for
C2 is given by

C2

q0
s

� ÿ 1

2
� 1

2

�����������������������������������������
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In conclusion we have

qs x� � � q0
s ÿ

Dpi

q0
s

�������
q0

s

ksL

s
e
ÿ
�����

L
q0

s ks

q
x

: �81�

8
Static permeability of porous solid matrices and conclusions
Formula (81) shows that the second-gradient theory, which has been introduced in this paper,
features important differences when compared with the classical theory of Fillunger and
Terzaghi.

Indeed, when ks � 0 the apparent solid density is constant and independent of the pressure
pi: On the other hand, when the second-gradient strain has an in¯uence on the stress, and,
hence, ks 6� 0; then (81) shows that the length

x0 :�
���������
q0

s ks

L

r
; �82�

plays the role of an attenuation length for the apparent solid mass density.
We will, henceforth, call the quantity x0 static permeability of the solid matrix as it is this

characteristic length of the exponential decay (81) that measures the amount of saturating ¯uid
which has penetrated into the solid porous matrix under equilibrium conditions. It is evident
that the introduced static permeability is quite different from the dynamic Darcy permeability,
which is de®ned in terms of relative velocities driven by pressure jumps or gradients.

The density variation

Dqs :� Dpi

q0
s

�������
q0

s

ksL

s
; �83�

which depends on the contact double-force coef®cient D; measures the intensity of the pi-
induced drop of the apparent solid mass density, and can be called static permeability of the
solid matrix boundary.

To conclude, we remark that:

1. The expression (58), which is valid under equilibrium conditions, shows that in the gen-
eralized model the saturation pressure can no longer be interpreted immediately as a
porewater pressure; indeed, under equilibrium conditions, the ¯uid pressure in a connected
region is constant but p is not.

2. Again (58) shows that the compressibility of the saturating ¯uid and solid matrix greatly
in¯uence the values of the saturation pressure.

3. The expressions for static permeabilities, which are found in this Section, are valid only for
the case of incompressible solid and ¯uid constituents.

4. Although found for a one-dimensional case and, therefore, apparently far from engineering
applications, formula (81) gives a ®rst interesting applicable answer to the problems raised
recently in [22±24].
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