
Shakedown analysis of defective pressure vessels
by a kinematic approach

V. Carvelli, Z. Z. Cen, Y. Liu, G. Maier

Summary In this paper, a kinematic approach and an iterative procedure, earlier proposed for
limit analysis, are adopted for shakedown analysis under variable repeated loading. Reference
is made to three-dimensional structures of engineering relevance, such as pressurized pipelines
and vessels with ¯uctuating pressure and with slot damages due, e.g. to pitting corrosion. The
numerical performance of the solution algorithm is investigated, and the cost-effectiveness of
the proposed direct shakedown analysis method is assessed and compared to that of time-
marching solutions by up-to-date codes.
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1
Introduction
Ductile structures subjected to variable repeated (in particular, cyclic) external actions are
exposed to structural failures which mature as time elapses, either by incremental collapse (or
ratchetting) or by alternating plasticity (or low cycle fatigue). The contrary events, named
shakedown or ``adaptation'' in the plasticity literature (as probably proposed by William
Prager), is characterized by the circumstance that plastic yielding eventually ceases, namely by
bounded cumulative energy dissipation. The abundant literature on shakedown theory, anal-
ysis and design, pioneered by Melan in this Journal, [21], will not be surveyed herein; fairly
comprehensive critical reviews can be found, e.g. in [14] and in treatises on plasticity such as
[8, 18]. While Melan's static approach gave rise to many developments in computational
mechanics, numerical solutions based on Koiter's kinematic theorem [12, 15] are still rare. The
main reasons lie in the dif®culty of handling admissible plastic strain cycles and the time
dependence embodied in Koiter's original statement. In previous kinematic shakedown
analyses, linear programming techniques were developed by using piece-wise linear (Tresca) or
linearized yield criterion, e.g. [11, 23]. The application of von Mises criterion leads to a
nonlinear mathematical programming problem, the solution of which in practical engineering
applications with complex structures and loading still represents a challenge.

The contents and purposes of this paper are as follows: the shakedown (henceforth SD)
analysis is formulated in Sec. 2 for 3d continua by a kinematic approach based on classical
concepts and theorems due to Symonds and Neal [24] and Koiter [12]. Linear kinematics
(``small deformations'') and Drucker's stability of materials are assumed as basic hypotheses
von Mises elastoplastic model is adopted as a specialization in view of the ductile metal
structures considered in the examples; the removal of time is performed, leading to an
unconstrained minimization in convex ``nonsmooth'' mathematics. The ®nite element space-
discretization, described in Sec. 3, leads to a mathematical programming problem
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characterized by nonsmoothness of the objective function and by equality constraints. The
iterative solution algorithm proposed for limit analysis in [25] is expounded in Sec. 4 with
adjustments dictated by earlier, [16], and present peculiarities of the tackled problems. The
computational tests outlined in Sec. 5 lead to an understanding of potentialities and limitations
of the main provisions of the algorithm adopted, namely penalization, Lagrange multipliers,
user-available tolerances. Evolutive step-by-step analyses of the same situations permit a rather
meaningful comparative assessment of computational merits of the proposed direct (``sim-
pli®ed'') method, which turns out to be signi®cantly advantageous in many real-life engineering
situations. In general, it should be kept in mind that time-marching solutions may be not only
expensive (and even prohibitive for parametric studies in design processes), but also unreliable
when the loading history cannot be a-priori predicted with any accuracy. Concluding remarks
are gathered in the last Section.

2
Problem formulation by a kinematic approach

2.1
Assumptions
The considered solid occupies the volume V with boundary surface S and is subjected to
tractions pi on part St of the boundary surface (assumed for brevity as the only external
actions) and prescribed displacements on the remaining part Su � Sÿ St ( i runs over the axes
of a cartesian reference frame x1, x2, x3).

The following hypotheses are assumed: displacement gradients are regarded as ``small'', so
that the kinematic relations are linear; the loads vary slowly in time (i.e. give rise to a quasi-
static structural response); the material is elastic-perfectly plastic and stable in Drucker's sense.

The last hypothesis concerning the constitutive models materializes in the following cus-
tomary relationships, [8, 18]:

eij � ee
ij � ep

ij; ee
ij � Cijkhrkh ; �1�

/�rij� � 0 ; �2�

_ep
ij � _k

o/
orij

; _k � 0; / _k � 0 : �3�

Equation (1a) expresses the assumed additive decomposition of the strain tensor eij

(i; j; k; h � 1; 2; 3); the elastic addend ee
ij is linearly related to the stress tensor rij through the

elastic compliance tensor Cijkh endowed with the usual symmetries. The convex yield function
/ de®nes the material strength by inequality (2); it is involved in the ``normality rule'', Eq. (3a),
of plastic strains _ep

ij through its gradient and in ``Prager consistency'' of plastic ¯ow in Eq. (3)
through its complementarity relation with the plastic multiplier rate _k.

A single yield mode is considered herein (/ is ``smooth'': no ``corners''), a restriction easily
removed whenever necessary.

Plastic work rate or dissipation per unit volume reads

D
ÿ

_ep
ij

� � rij _e
p
ij : �4�

Drucker's postulate of material stability (with consequences of primary importance here, and
generally, in the plasticity theory) is expressed by the inequalityÿ
rij ÿ r�ij

�
_ep
ij � 0 8 r�ij : /

ÿ
r�ij
� � 0 ;

where rij is the stress on the yield surface in the presence of the plastic strain rate _ep
ij and r�ij is any

stress state not outside the elastic domain. As a consequence, in any in®nitesimal inelastic process

_rij _e
p
ij � 0 :

Henceforth, von Mises' criterion will be adopted. Then, denoting by r0 the yield stress in
uniaxial tests and by J2 the second stress invariant, the yield function reads
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/ rij

ÿ � � ����
J2

p
ÿ r0=

���
3
p

: �5�

In view of associative ¯ow rule (3a) and von Mises' yield function (5), the plastic dissipation (4)
is expressed by, [8, 18]

D
ÿ

_ep
ij

� � ��
2
3

q
r0

��������
_ep
ij _e

p
ij

q
: �6�

2.2
Shakedown analysis concepts
Whenever a ductile structure is designed to sustain variable repeated loads (possibly beyond
the elastic range in exceptionally severe conditions), structural safety requires to ensure that
stabilization of plastic deformations, i.e. SD, will eventually occur. In the absence of SD, the
structural response may imply either incremental collapse or alternating plasticity, having in
common the circumstance that the dissipated energy cumulative in space appears to grow
unboundedly in time.

Incremental collapse means that plastic deformations accumulate along the load history so
that displacements become large enough to make the structure unserviceable. Alternating
plasticity is characterized by the fact that the con®guration changes remain small, but locally
dissipative plastic processes do not stop leading to material failure.

In many engineering situations step-by-step evolutive elastic-plastic analysis turns out to be
inadequate, primarily because detailed information on the load histories is not available, so that
the number of loading paths to be accounted for often becomes prohibitively high.

Nonevolutive ``direct'' methods that consider once for all the whole set of load variations
represent, in principle, a valuable and potentially cost-effective alternative. Such methods are
based on the static and kinematic SD theorems, see e.g. [14, 15, 20].

By de®nition, ``load domain'' X represents a region in the space of the variables which
govern the loading history: this time history being not a-priori predictable, any point belonging
to X is assumed to represent a combination of external actions, which can be attained again and
again, an unbounded number of times at unknown instants according to an unknown se-
quence. External actions will be tractions on St only; whenever necessary, body forces, imposed
displacements on Su and imposed (such as thermal) strains in V can be easily allowed for.

Let all possible load combinations be multiplied by a common ampli®cation factor l (load
factor), namely: let the region X in the space of load variables be affected by an homotetic
transformation, with the reference frame origin acting as pole. The central objective of the SD
theory is to compute the ``safety factor'' s, i.e. the value of the load domain ampli®cation factor
l such that for l < s the structure does not collapse due to incremental collapse or alternating
plasticity. It does, if l > s.

2.3
Kinematic shakedown theory: fundamentals
In any elastic-plastic body subjected to external actions in a ``small'' deformation regime, the
stress ®eld can always be conceived as the sum of two addends: rij � re

ij � qij, where re
ij denotes

the elastic stress response to the given external actions in a ®ctitious hypothetical purely elastic
structural response and qij is the ®eld of residual stresses, i.e. the (unique) elastic response to
plastic strains, satisfying self-equilibrium equations and homogeneous static boundary con-
ditions. Accordingly, the actual displacement ®eld ui can be split into two addends:
ui � ue

i � ur
i ; u

r
i being residual displacements.

Koiter's kinematic SD theorem [12, 15, 18] is based on the concept of admissible plastic
strain rate cycle, say _~ep

ij�xi; t�, de®ned as follows:

D~ep
ij�xi� �

Z T

0

_~ep
ij�xi; t�dt; D~ep

ij � 1
2�D~ur

i;j � D~ur
j;i� : �7�

Equation (7b) expresses geometric compatibility of the cumulative plastic strains at the end of
the cycle over the time interval [0, T], denoting by D~ur

i the cumulative residual displacement
®eld at time T due to _~ep

ij with homogeneous kinematic boundary conditions on Su at any t in [0,
T]. Using this de®nition, Koiter's theorem can be stated as follows:
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A structure subjected to a given load domain X ampli®ed by l will not shake down if there
exists an admissible plastic strain rate cycle _~ep

ij and a load history within X, such that over a
time interval [0, T]

l
Z T

0

Z
St

pi
_~ur

i dS dt >

Z T

0

Z
V

D
ÿ
_~ep

ij

�
dV dt : �8�

The structure will shake down within the load domain X ampli®ed by load factor l, if for
all loading paths within X and for all admissible plastic strain rate cycles _~ep

ij, the following
inequality holds:

l
Z T

0

Z
St

pi
_~ur

i dS dt <

Z T

0

Z
V

D
ÿ
_~ep

ij

�
dV dt : �9�

The principle of virtual work applied to the left-hand side of Eq. (8) and (9) providesZ T

0

Z
St

pi
_~ur

i dS dt �
Z T

0

Z
V

re
ij

ÿ
_~ep

ij � Cijkh
_~qkh

�
dV dt �

Z T

0

Z
V

re
ij
_~ep

ij dV dt : �10�

Here, re
ij denotes the linear elastic stress response to the current external actions (pi), and _~qij is

the residual stress rate response to the admissible plastic strain rate cycle _~ep
ij, interpreted as

imposed in a linear elastic regime. Since Cijkhre
kh represents a compatible strain ®eld and _~qij is

self-equilibrated, the relevant integral in Eqs. (10) vanishes.
By means of Eqs. (10) and by other considerations herein omitted (also on stability of the

system with respect to in®nitesimal perturbation), the above Koiter's statements can be
reformulated in the following uni®ed fashion:

The SD limit ampli®cation factor s is the minimum of the following optimization problem:

s � min l
l � R T

0

R
V D�_~ep

ij�dV dt; for all admissible plastic strain rate cycles _~ep
ij

such that
R T

0

R
V re

ij
_~ep

ij dV dt � 1

( )
:

�11�

On the basis of the above de®nition of the admissible plastic strain rate cycle and of the present
assumption of Mises yield criterion, Eqs. (5, 6) throughout the volume V, adopting matrix
notation (bold-face symbols for matrices and vectors; engineering de®nition of strains; tilde
dropped for brevity), the minimization (11) can be given the following expression:

s � min
_ep;Du

��
2
3

q
r0

Z T

0

Z
V

��������������
_epTX_ep
p

dV dt ; �12a�

subject to:Z T

0

Z
V

reT _ep dV dt � 1 ; �12b�

YT _ep � 0 in V; 8 t ; �12c�

Dep �
Z T

0

_ep dt � R�Du� in V ; �12d�

Du � 0 on Su ; �12e�
where R is the (linear) compatibility differential operator and Eq. (12c) expresses plastic
incompressibility implied by von Mises' model. In Eq. (12) it has been set:
YT � f 1 1 1 0 0 0 g and X � diag�I; 1

2I�, I being the identity matrix of order three.
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3
Discretizations

3.1
Removal of time
The presence of time integrals in the direct formalization of Koiter theorem (see the preceding
section) turns out to be computationally troublesome. With piecewise linearization of the yield
criterion, by means of the concept of envelope of linear elastic response, it was proved in [19]
that Koiter's kinematic approach is amenable to a minimization problem which does not
involve time as variable.

With nonlinear yield criteria, a computationally convenient removal of time has been shown
in [13] to be achievable under the weak assumption that the loading domain X consists of all
loading conditions resulting from a convex linear combination of m assigned load distributions

p�x� �
Xm

k�1

hkpk�x�; such that:
Xm

k�1

hk � 1; hk � 0; k � 1; . . . ; m : �13�

In other terms, X can be interpreted in the functional load space as a hyper polyhedron de®ned
by points p1; . . . ; pm which, therefore, will be referred to as vertices and by p0 � 0 (unloaded
situation). On this basis it can be stated that [9, 10, 13]:

If a structure shakes down under any sequence of vertex loads within the set of vertices pk�k � 1; . . . ; m�, then it shakes down under the whole (polyhedral) load domain X de®ned by
those vertices.

The above statement allows to consider only loading processes, along which the load dis-
tribution p�x� equals successively the vertex distributions pk�x�, k � 1; . . . ; m, and remains
constant over a time interval sk during which the admissible plastic strain cycle generates the
plastic strain increment:

ep
k�x� �

Z
sk

_ep�x; t�dt; so that: Dep �
Xm

k�1

ep
k : �14�

As a consequence of the above statement, the minimization (12) concerning the elastic-plastic
continuum can be cast into the form

s � min
ep

k
;Du

��
2
3

q
r0

Xm

k�1

Z
V

��������������
epT

k Xep
k

q
dV ; �15a�

subject to:

Xm

k�1

Z
V

reT
k ep

k dV � 1 ; �15b�

YTep
k � 0 in V; k � 1; . . . ; m ; �15c�

Dep �
Xm

k�1

ep
k � R�Du� in V ; �15d�

Du � 0 on Su : �15e�
It is worth noting that the plastic incompressibility, being a constitutive feature, is enforced at
each vertex for the relevant plastic strain subincrement, Eq. (15c), while geometric compati-
bility is imposed on the cumulative plastic strains of the admissible cycle, Eq. (15d).

3.2
Finite element modelling
The discretization in space of problem (15) can be carried out by standard ®nite element
procedures, say by setting over each element e
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Due�x� � Ne�x�DUe; Dep
e�x� � Be�x�DUe ; �16�

where DUe is the vector of nodal displacements, Ne is the shape function matrix and Be the
consequent compatibility matrix. Now let the assemblage of ®nite elements in the aggregate be
performed; let the kinematic boundary conditions (here, assumed homogeneous) be enforced
on constrained nodes and the integrals be approximated by Gauss formulae. Then the following
algebrized version of the kinematic SD analysis (15) is achieved:

s � min
ep

kr
;DU

��
2
3

q
r0

Xm

k�1

Xn

r�1

Wr Jj jr
���������������
epT

kr Xep
kr

q
; �17a�

subject to

Xm

k�1

Xn

r�1

Wr Jj jrreT
kr e

p
kr � 1 ; �17b�

YTep
kr � 0; r � 1; . . . ; n; k � 1; . . . ; m ; �17c�

Dep
r �

Xm

k�1

ep
kr � BrDU; r � 1; . . . ; n ; �17d�

where index r runs over the set G of the n Gauss integration points (r � 1; . . . ; n), W and Jj j
represent the Gauss integration weight and the determinant of the Jacobian matrix of the map,
respectively, vector DU contains all unconstrained nodal displacements of the ®nite element
model, Br is the assembled compatibility matrix for strains at Gauss point r.

The above outlined discretizations with respect to time and space reduce the optimization
problem (12) to an algebraic (mathematical programming) problem in ®nite-dimensional
vector space. It might be proven, like in [19] for piecewiselinearized yield criteria, that duality
theory of mathematical programming provides a meaningful link between the kinematic for-
mulation (12) of the SD analysis and the static formulation based on Melan theorem, which was
presented in this Journal in 1938, [21].

4
Solution algorithm

4.1
Unconstrained minimization and optimality conditions
As expected, problem (17) is mathematically similar to, and a generalization of, the mathe-
matical problem arising in rigid plastic limit analysis by a kinematic approach, [16]. Its peculiar
features are: linear equality constraints, objective function nondifferentiable (non-smooth) in
the origin, possible ``locking'' phenomena due to the combination of incompressibility re-
quirement and displacement modelling.

The algorithm proposed and successfully tested for limit analysis in [16, 17] is adopted
herein and outlined below. Its basic features are: (a) plastic incompressibility, Eq. (17c), is
enforced in a ``soft'' way by penalization, suitably choosing a single penalization factor, say a;
(b) the normalization constraint, Eq. (17b), and the geometric compatibility, Eq. (17d), are
dealt with by Lagrange multipliers, say k and Lr (index r running over the Gauss points set G:
r 2 G).

The Lagrangian function arising from problem (17), to be tackled in accordance with (a) and
(b), reads

L�ep
kr;DU; k; Lr� �

��
2
3

q
r0

Xm

k�1

Xn

r�1

Wr Jj jr
���������������
epT

kr Xep
kr

q
� k 1ÿ

Xm

k�1

Xn

r�1

Wr Jj jrreT
kr e

p
kr

 !

�
Xn

r�1

LT
r

Xm

k�1

ep
kr ÿ BrDU

 !
� 1

2
a
Xm

k�1

Xn

r�1

Wr Jj jrepT
kr YYTep

kr : �18�
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The Kuhn-Tucker stationarity conditions characterizing the solution to problem (17) ¯ow from
Eq. (18) in the form

oL
oep

kr

�
��
2
3

q
r0Wr Jj jr

Xep
kr���������������

epT
kr Xep

kr

q ÿ kWr Jj jrre
kr � Lr � aWr Jj jrYYTep

kr � 0;

r � 1; . . . ; n; k � 1; . . . ; v ; �19a�

oL
oDU

�
Xn

r�1

BT
r Lr � 0 ; �19b�

oL
ok
�
Xm

k�1

Xn

r�1

Wr Jj jrreT
kr e

p
kr ÿ 1 � 0 ; �19c�

oL
oLr
�
Xm

k�1

ep
kr ÿ BrDU � 0; r � 1; . . . ; n : �19d�

4.2
Iterative scheme
The nonlinear equations (19) in the unknowns ep

kr; DU; k; Lr (r � 1; . . . ; n, k � 1; . . . ; m) ex-
hibit nonlinearity con®ned to the denominators in Eq. (19a) and, hence, provide linear
equations at iteration h if these denominators indicated henceforth by Dkr are computed on the
basis of results from iteration hÿ 1, namely

Dhÿ1
kr � epThÿ1

kr Xephÿ1

kr

� �1=2
:

These remarks suggest an iterative solution procedure centered on the following equation
system derived from Eqs. (19):

Hhÿ1
kr eph

kr ÿ khre
kr � �Wr Jj jr�ÿ1Lh

r � 0; r � 1; . . . ; n; k � 1; . . . ; m ; �20a�
Xn

r�1

BT
r Lh

r � 0 ; �20b�

Xm

k�1

Xn

r�1

Wr Jj jrreT
kr e

ph

kr � 1 ; �20c�

Xm

k�1

eph

kr � BrDUh; r � 1; . . . ; n ; �20d�

having set

Hhÿ1
kr �

��
2
3

q
r0X Dhÿ1

kr

ÿ �ÿ1� aYYT : �21�

Each one of denominators Dhÿ1
kr is proportional to the plastic dissipated energy density at Gauss

point r related to the ®ctitious yielding process concerning load domain vertex k.
At the end of iteration hÿ 1, for each vertex k, let the set of Gauss integration points G be

subdivided into a subset Phÿ1
k (``plastic zone'') of the points where dissipation occurs and

the complementary subset Rhÿ1
k (``nonyielding zone'') of the points where the computed plastic

strains are such that the denominator Dhÿ1
kr is below a suitable chosen tolerance b� 1. Fol-

lowing [25], we select another available parameter c� 1 and set
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Dhÿ1
kr �

������������������������
epT

kr

hÿ1
Xephÿ1

kr

q
8 r 2 Phÿ1

k ,

c 8 r 2 Rhÿ1
k .

(
�22�

At each iteration h, denoting by N the number of nodal degrees of freedom, the
�6nm � 1 � N � 6n� linear equations (20) must be solved in the unknowns eph

kr ;DUh; kh; Lh
r

(r � 1; . . . ; n, k � 1; . . . ; m). Note that at each Gauss point r the Lagrange multiplier vector Lr

contains six components which are the same for all m vertices run by index k.
The following manipulations of Eqs. (20) lead to a decoupled and easier-to-solve system:

(a) subtract the equation sets (20a) corresponding to a vertex, say m, from all the other
equations (20a) to obtain

eph

kr � Hhÿ1
kr

ÿ �ÿ1
kh re

kr ÿ re
mr

ÿ ��Hhÿ1
mr eph

mr

n o
; �23�

(b) substitute Eq. (23) into Eq. (20d), so that the latter reads

eph

mr � Hhÿ1
mr

ÿ �ÿ1 Xm

k�1

Hhÿ1
kr

ÿ �ÿ1

 !ÿ1

BrDUh � kh
Xm

k�1

Hhÿ1
kr

ÿ �ÿ1
re

mr ÿ re
kr

ÿ �( )
;

m � 1; . . . ; m ; �24�

(c) substitute Eq. (24) into Eq. (20a) and, subsequently, this into Eq. (20b) to obtainXn

r�1

Wr Jj jrBT
r

Xm

k�1

Hhÿ1
kr

ÿ �ÿ1

 !ÿ1

Br

( )
DUh

� kh
Xn

r�1

Wr Jj jrBT
r

Xm

k�1

Hhÿ1
kr

ÿ �ÿ1

 !ÿ1Xm

k�1

Hhÿ1
kr

ÿ �ÿ1
re

kr ; �25�

(d) substitute Eq. (24) into Eq. (20c) which thus becomesXm

k�1

Xn

r�1

Wr Jj jrreT

kr Hhÿ1
kr

ÿ �ÿ1 Xm

m�1

Hhÿ1
mr

ÿ �ÿ1

 !ÿ1

� BrDUh � kh
Xm

m�1

Hhÿ1
mr

ÿ �ÿ1
re

kr ÿ re
mr

ÿ �( )
� 1 ; �26�

(e) denoting by Vh a new vector of N unknowns, substitute DUh � khVh into Eq. (25), the
solution of which numerically provides vector Vh, say �Vh,

(f) substitute now DUh � kh �Vh into Eq. (26) to obtain the scalar kh, say �kh,
(g) ®nally, with �kh and �Vh inserted in it as data, Eq. (24) provides the remaining unknowns eph

mr

(r � 1; . . . ; n; m � 1; . . . ; m).
The initialization of the iterative procedure (for h � 1) can be performed, like in [16, 25], by
assuming that the whole solid is in a plastic state and, hence, by setting:
D0

kr � 1 �r � 1; . . . ; n; k � 1; . . . ; m�.
Each iteration provides a value, say sh, of the SD factor through Eq. (17a):

sh �
��
2
3

q
r0

Xm

k�1

Xn

r�1

Wr Jj jr
�����������������
epTh

kr Xeph

kr

q
: �27�

The iterative procedure ends when a convergence criterion is satis®ed, such as either
jshÿ1 ÿ shj=shÿ1 � d1 or kDUhÿ1 ÿ DUhk=kDUhÿ1jj � d2, where d1, d2 are suitable tolerances
and k . . . k means Euclidean norm.

4.3
Remarks
The preceding kinematic formulation of the SD analysis and the above adopted solution al-
gorithm give rise to the following re¯ections:
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(i) The solution technique of Sec. 4.2 basically rests on the approach proposed in [26].
Noteworthy variants are: von Mises' material model which implies plastic incompressibility,
instead of the ellipsoidal yield criterion, [26]; three-dimensional implementation for the SD
analysis of technically meaningful structures, see Sec. 5.

(ii) The penalization adopted for the plastic incompressibility constraint exhibits some clear
pros: ``locking'' phenomena are avoided because of the approximate ``soft'' enforcement of the
constitutive kinematic constraints; no additional unknowns are involved. The main cons are:
no general a-priori criterion is available for the choice of penalization parameter a, [3]; rela-
tively small values a are expected to entail poor approximation of incompressibility; large
values of a may imply numerical dif®culties, in general, [27], and, speci®cally, may cause
illconditioning of matrices Hkr to be inverted, see Eq. (21); in fact, it is easily seen on the basis
of Eq. (21) that the condition number of Hkr increases linearly with a. The above trade-off can
be only resolved on an empirical basis for each class of problems and, hence, motivates
numerical investigations such as those in Sec. 5. Alternative anti-locking provisions can be
found in literature, see e.g. [4].

(iii) Other user-available quantities, besides the convergence tolerances d1, d2, require
problem-oriented numerical tests for suitable choices. These quantities are: parameters b for
screening and splitting the Gauss point set G; parameter c assumed to avoid singular coef®-
cients.

(iv) The kinematic approach to SD leads to an assessment of the safety factor and a collapse
mechanism de®ned by the resulting optimal vectors. The iteration sequence may be reduced by
initializations of the adopted procedure based on conjectures concerning the collapse mech-
anism, frequently suggested by engineering judgement and/or by previous numerical experi-
ence.

5
Applications and comparisons

5.1
Validation by two-dimensional analyses
First, some SD analyses available in the literature are used below for comparisons with the
present method. For the case with geometry, ®nite element mesh and loading domains (m � 4
vertices) illustrated in Fig. 1, the main assumptions are: plane-stress states; von Mises' elastic-
plastic material model; displacement modelling by 200 four-node isoparametric ®nite elements;
chosen available parameters b � c � 10ÿ10, Eq. (22), for screening Gauss points and de®ning
yielding and nonyielding zones; convergence tolerances d1 � d2 � 10ÿ5. The plane stress hy-
pothesis makes the plastic incompressibility constraint implicit and, therefore, penalization
and the relevant factor a do not apply.

Some results of numerical tests based on the above data are illustrated in Fig. 2. The SD
domain in Fig. 2a is the envelope of all load domains in Fig. 1c for varying pmax

1 and pmax
2�0 � p1 � pmax

1 ; 0 � p2 � pmax
2 �, ampli®ed to the computed SD limits. Reasonable agreement is

observed in Fig. 2a with the counterpart result in [6], achieved by piecewise linearization of the
yield criterion and linear programming starting from the same data. Some numerically detailed
comparisons with earlier works are as follows: for pmax

1 � pmax
2 (for pmax

2 � 0 the results are in

p2
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Fig. 1. Thin plate with a central hole: (a) geometry; (b) ®nite element mesh; (c) loading domain
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parentheses) we get s � 0:518 (0.696) by the present method; s � 0:502 (0.654) in [6]; s = 0.431
in [2] by a static approach; s = 0.556 in [1] by a kinematic approach; s = 0.478 (0.653) in [7].

Figure 2b shows a typical behaviour of the load factor sequence sh as a function of the
iteration number h and its convergence on the sought SD limit for c � 10ÿ10. In this case, c is
the only available parameter; other numerical tests have been performed for c � 10ÿ6=10ÿ12

with negligible consequences both on the optimal value s and the convergence speed. Whereas
c � 10ÿ16 gives rise to numerical troubles which materialize in early interruption of the iter-
ation sequence.

5.2
Damaged pipelines with fluctuating pressure
In certain circumstances, pressure vessels and pressurized pipelines are exposed to damages
(caused, e.g. by pitting corrosion), which materialize in part-through cavities or slots. The
idealized geometry of the considered defective cylinders and the relevant parameters are de-
®ned in Fig. 3.

For the present computational tests, like for limit analysis in [16], the following geometric
data (in mm) have been adopted with reference to Fig. 3: Re � 120, Ri � 100, t � 20; b � 13;
spherical slot: L � 300, c � 20, w � 20; circumferential ellipsoidal slot: L � 300, c � 10,
w � 30; axial ellipsoidal slot: L � 300, c � 60, w � 20; rectangular ellipsoidal slot: L � 420,
c � 140, w � 20.

The material model assumed is the usual von Mises' elasto-plasticity, now with the pa-
rameters E � 2:1� 105 MPa; m � 0:3; r0 � 200 MPa.

The external actions consist of internal pressure p, ¯uctuating between 0 and pmax, and of
axial tensile traction uniformly acting on plane x3 � L with resultant equal to pR2

i p (load
domain with m � 2 vertices, one of which is the unloaded situation). The assumed symmetries,
including one with respect to the axial horizontal plane x2 � 0, are exploited as shown in Fig. 3.
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The space discretization is performed by isoparametric eight-node ®nite elements with eight
Gauss points, their number is varying between 600 and 850, depending on the slot geometry; a
typical mesh is depicted in Fig. 4.

The following results of the parametric analyses carried out in this study are worth to be
pointed out.

For the various slot geometries considered, Table 1 exhibits the collapse pressures provided
by: (1) the present method (®rst column); (2) the commercial code ABAQUS (second one);
(3) the present method, specialized to limit analysis (third), [16]; (4) the code ABAQUS,
assuming monotonic increasing pressure like for the limit analysis (fourth column).

Evolutive time-marching analyses performed by a nonlinear commercial code (such as
ABAQUS), if used to establish the SD limit s, provide an abundant amount of irrelevant
information. They must be carried out over a number of loading cycles, and repeated by trial-
and-error for increasing peak pressures, by monitoring the cumulative dissipated energy, as
shown in Fig. 5, in order to capture the threshold between bounded and unbounded cumulative
dissipation. Clearly, such computational exercises turn out to be expensive. Typically quanti-
®ed by the following representative computing CPU times (in sec., on a HP workstation) they
emerge from the present study as follows: for the spherical slot 120000 vs. 500; for rectangular
ellipsoidal slot 170000 vs. 500, (the former ®gures concern the evolutive analyses by ABAQUS,
the latter the direct SD analyses).

Figure 4 shows, for the axial ellipsoidal slot geometry, the incremental collapse mechanisms
provided by direct kinematic SD analysis, Fig. 4a, and by the time-marching analysis, Fig. 4b.
In the former method, this mechanism is de®ned straightforwardly by the optimal vector of the
minimization problem; in the latter analysis the same information can be derived approxi-
mately from the increments of residual displacements over some loading cycles.

In Fig. 6, the plastic collapse pressure is compared to the incremental collapse pressure, both
made dimensionless by relating to the limit pressure of the undamaged vessel, as functions of
longitudinal length c of the slot, having set w � 20 mm and Ri, Re, b, t, L equal to the above-
assumed values. It is worth noting that inadaptation by incremental collapse occurs for

ba

Fig. 4a, b. Pressure vessel with axial ellipsoidal slot. Incremental collapse mechanism from a present
method; b ABAQUS

Table 1. Collapse pressures (in MPa) resulting from the shakedown analysis (SD) and limit analysis (LA),
by direct and evolutive approaches

SD Present
method

SD ABAQUS LA [16] LA ABAQUS

Without slot 42.2 42.1 42.2 42.1
Spherical slot 40.42 40.1 40.55 40.7
Circumf. ellipsoidal slot 41.11 41.2 41.25 41.7
Axial ellipsoidal slot 35.50 36.0 38.97 40.1
Rectangular slot 29.95 32.7 33.96 34.4
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pressure peaks substantially lower than plastic collapse pressures except for small lengths c
(say, below the thickness). This notable circumstance corroborates the need for the SD analysis
in practical assessment of the integrity of pressurized vessels.

In the present 3D situations, the penalization factor a for the enforcement of plastic in-
compressibility is, naturally, expected to play an important role in the numerical solution of the
SD analysis. Its role has been investigated, and results concerning the vessel with axially
ellipsoidal slot are plotted in Fig. 7, having set c � 10ÿ8 and d1 � d2 � 10ÿ3. The interval from
a � 102 to a � 1018 has been scanned: a � 103 and lesser values lead to erroneous SD limits,
signi®cantly lower than the actual one (p � 35:5 MPa); on the other end, a > 1016 gives rise to
higher erroneous SD limits, fast increasing with a. Clearly, the former circumstance, i.e. a weak
penalization, re¯ects an excessive relaxation of the kinematic constraints in the system; the
latter fact is a locking manifestation due to excessively stiff penalization. The practically re-
markable result is the large amplitude of the a interval leading to correct SD limit. Unfortu-
nately, this conclusion cannot be generalized, but turns out to be problem-dependent. In fact, a
similar investigation carried out in the study for 2D plane-strain problems led to a narrower
interval of admissible penalization factors a.
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The assumed horizontal symmetry (Fig. 4) is warranted by the localized geometry of the
slots and by the expected empirical fact that its removal negligibly alters the limit and SD
analysis results. The removal of that symmetry has implied a meaningful numerical test: the
consequent increase in the number of variables entailed an almost proportional growth of
computing time for the present numerical procedure. Speci®cally, for rectangular slots as a
representative example: nodal d.o.f. from 3024 (756 FEs) to 4536 (1134 FEs); limit analysis from
400 to 970 CPU sec.; SD analysis from 560 to 1200 CPU sec. However, clearly, the above
encouraging remark cannot be generalized to problem size growth by mesh re®nements.

6
Conclusions
The study expounded in this paper leads to the following conclusions:

(a) Shakedown (SD) ®nite element analysis by the kinematic approach can be ef®ciently
performed with the enforcement of the plastic incompressibility by penalization, by solving the
(nonlinear) stationarity conditions of the Lagrangian function, using a suitably adjusted iter-
ative procedure proposed in [16, 25]. This procedure turns out to be signi®cantly cost-effective
with respect to other approaches, particularly with respect to evolutive step-by-step analyses by
commercial ®nite element codes. This conclusion has been corroborated by means of a three-
dimensional implementation carried out in this study and by numerical tests concerning
practical engineering situations, such as defective pressure vessels.

(b) The numerical behaviour (in particular, its convergence speed) of the solution procedure
adopted herein appears to be satisfactory and rather insensitive to the choice of the initial-
ization vector and of the user-available parameters (penalization factor a; parameters b and c
screening rigid-yielding zones). However, the optimal choice of these parameters is dependent
on essential geometrical features of the kind of problems considered and rests merely on
empirical bases.

(c) Penalization turns out to be a convenient and effective way of achieving a practically
satisfactory compromise between the con¯icting requirement of enforcing plastic incom-
pressibility and avoiding ``locking'' in ®nite element analyses.

(d) The specialization of the present SD analysis technique to the limit analysis has made
evident a signi®cant conservativeness of some semi-empirical formulae currently employed in
industrial environments, [22].

(e) Extensions to elasto-plastic material models more general than von Mises' perfect elasto-
plasticity adopted here, would preserve the nonsmoothness of the objective function, but it
would imply diverse mathematical features (such as nonconvex equality constraints for
Drucker-Prager model, instead of convex like for von Mises, see e.g. [5]) which appear to be
worth studying as for the performance of the kind of iterative algorithm investigated here.

(f) Although the application is focused here on 3D structures (defective pressure vessels), the
present kinematic formulation is general and can be implemented with any type of kinemat-
ically admissible ®nite element (e.g. pipe element, shell element, 2D or 3D solid element, etc.).
In particular, the present method can be applied to shell and pipe structures of nuclear, oil and
other industries. The loading domain can be considered to include more complex loading such
as combinations of variable repeated thermal and mechanical external actions, also in the
presence of dead loads.
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