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Summary In this article, a comparative study of the control for the repetitive impacting elastic
link with parametrically excited base in rotational motion is considered. First, a sliding mode
control strategy based on linearized inverse model is designed and employed to suppress the
vibrations of the elastic beam after the impact. The control concept involves the usage of an
adaptive plant inverse model as controller in feedforward con®gurations. Next, a linear con-
troller is designed via Lyapunov-Floquet transformation. In this approach, the time-periodic
equations of motion are transformed into a time-invariant form, which is suitable for the
application of standard time-invariant controller-design techniques. Finally, a fuzzy logic
controller is applied for the nonlinear model of the impacting system. The momentum balance
method and an empirical coef®cient of restitution is used in the collision.
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1
Introduction
Application of modern control methodology plays a major role in the development of the
manipulators, walking machines and robot arms technology. A special attention is paid to the
analysis of elastic links that impact rigid surfaces.

An engineering-oriented impact approach for multiple collision industrial applications
was developed in [14] using complementary algorithms. The authors replaced the unilat-
eral character of the constraints in the normal direction by an ef®cient bilateral formula-
tion.

Planar and nonplanar oscillations of a cantilever beam subjected to a planar periodic ex-
citation were studied in [6, 7]. The stability of out-of-plane motion was performed, taking into
account damping and geometric nonlinearities in the differential equations of motion.

In [5] an elastic arm was considered, modeled as a pinned-free beam attached to a hub. The
objective of the work was to carry out experiments designed to determine the necessary control
torque applied at the base of the link using only the tip position measurement. A more complex
system was analyzed in [3]. The work was related to the problem of controlling plane rotational
motions of two rigid bodies connected by an elastic rod.

The problem of controlling an elastic arm of two links based on variable structure system
theory and pole assignment technique for stabilization was treated in [13]. This design ap-
proach was motivated by a simple observation that the nonlinearity in the dynamics of an
elastic robotics system is essentially due to rigid modes (joint angles), and, as the time de-
rivatives of the rigid modes vanish, the remaining motion is only due to the elasticity. For the
rigid modes, a sliding controller was designed. The controller of the elastic modes was con-
structed using the pole assignment technique. A similar technique is used in [16] to control a
¯exible/rigid link robot using sliding-mode and a shaped-input controllers. The ®rst controller
was used to control the rigid body motion, while the second one served to control the ¯exible
motion. Comparative to the two works above mentioned, the model of the ¯exible link studied
in this paper was improved by considering the axial deformation of the elastic beam. The
impact with external bodies or rigid surfaces was also studied. The same sliding mode control
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strategy was used, but a decoupling controller was designed in order to decouple the global
system into several independent equations.

The ¯ap motion control of a rotating ¯exible beam with a parametrically excited base was
studied in [4]. A linear controller, based on Lyapunov-Floquet transformation was constructed
to suppress both the de¯ection angle and the elastic vibrations of the beam. The controller
design was based on the idea suggested in [17].

In [15] the control strategy was studied using inversion of multivariable linear system. A new
algorithm for constructing an inverse of a multivariable linear dynamic system was developed.
This algorithm, which is considerably more ef®cient than previous methods, also incorporates
a relatively simple criterion for determining if the inverse system exists.

A fuzzy logic control scheme to investigate the vibration suppression of a ¯exible-rod slider
mechanism was developed in [2]. A three-mode approximation of the beam was considered.
From simulations it was found that the transverse de¯ection of the ¯exible link was signi®-
cantly reduced.

In [9], proportional-integral and fuzzy logic controllers were proposed for a two-link
rigid robot. The proportional-integral controller was used to ensure fast transient response and
zero steady-state error. The fuzzy logic controller was used to enhance the damping charac-
teristics of the system. However, the author found that the gains adjustment of the propor-
tional-integral controller requires a large effort, and the control scheme does not compensate
for the nonlinear effects of the robot system.

In this work, both linear and nonlinear control strategy are applied for the vibration control
of a parametrically excited impacted link. An elastic beam is attached to a rigid base which has
a parametric excitation. The equations of motion have periodic coef®cients. A decoupled
controller using sliding-mode strategy is proposed ®rst. The global system is decoupled into
several independent components. The inverse system model is used as an actuator for the
original system. Next, a controller using Lyapunov-Floquet (L-F) transformation has been
designed. Simulated results are provided to demonstrate the applicability of the L-F trans-
formation technique in the study of this class of problems. Finally, a fuzzy-logic controller is
implemented to the nonlinear model of the system. Simulations for all control strategies are
performed, and their results are shown. Several concluding remarks are presented.

2
System model
In Fig. 1, the slender ¯exible beam AB is cantilevered onto a rigid massless base with negligible
dimensions, [10]. The base is attached to a rigid link OO1 of variable length L0 � L1 sin xt with
negligible mass. The ¯exible beam has the length L, a constant ¯exural rigidity EI and a
uniformly distributed mass per unit length q � m=L, where m is the total mass of the beam.
The base can perform small rotational de¯ections /�t�. A spring of constant k and a damper of
constant c are connected to the base and the rigid link in order to avoid large rotation of /. The
whole system rotates with a constant angular velocity X in the horizontal plane.

The impacted rigid link of length lb and mass mb can rotate around the ®xed point S. The rigid
link is connected to the ground through a spring of constant kb and a damper of constant cb,
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avoiding large values of the angle n. The spring and the damper are designed such that, after
each impact between the two links, the angle n goes rapidly to zero before a new impact occurs.

Two reference frames are considered: a ``®xed'' reference frame (N) of unit vectors i, j
and k, whose origin is at O, and a rotating reference frame (R) of unit vectors m1, m2 and m3,
with the origin at O and attached to the rigid link OO1. The unit vectors are related by the
transformation

m1

m2

m3

24 35 � cos Xt sin Xt 0
ÿ sin Xt cos Xt 0

0 0 1

24 35 i
j
k

24 35 : �1�

Let x be the position of any point P on the elastic beam with respect to the end A of the base,
and y be the elastic de¯ection. The position vector of the point P is

rP � �L0 � L1 sin xt � x cos /ÿ y sin /�m1 � �y cos /� x sin /�m2 : �2�

The elastic de¯ection y of the beam is computed as

y�x; t� �
Xn

i�1

Wi�x�qi�t� ; �3�

where qi�t� are the generalized elastic coordinates and n 2N is the total number of vibrational
modes (N is the set of natural numbers). The functions Wi�x� are chosen as the mode shapes
of a cantilever beam and are de®ned by the expression

Wi�x� � cosh�z� ÿ cos�z� ÿ cosh�ki� � cos�ki�
sinh�ki� � sin�ki� �sinh�z� ÿ sin�z�� ; �4�

where

z � xki

L
; �5�

and ki (i � 1; . . . ; n) are the ®rst nth consecutive roots of the transcendental equation

cos�k� cosh�k� � ÿ1 : �6�
The additional degree of freedom of the ¯exible link is due to the rotation /�t� of the base.

The transverse elastic de¯ection of the end B with respect to the base axis is yL, and the total
deformation of the same tip with respect to m1 unit vector is yt, Fig. 1.

The velocity of the point P in the ®xed reference frame (N) is computed with the
expression

vP �
RdrP

dt
�X� rP ; �7�

where the ®rst term of the right-hand side represents the derivative with respect to time in the
moving reference frame (R), and X � ÿXk.

The total kinetic energy of the system is

K � q
2

Z L

0

vP � vP dx�mbl2
b

_n
2

6
: �8�

The total potential energy of the system is computed as

U � EI

2

Z L

0

o2y

ox2
dx� 1

2
k/2 � 1

2
kbn

2 : �9�
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Using Lagrange's method, the nonlinear equations of motion are of the form

M�x��x� f�x; t� � du ; �10�
where x is the generalized coordinates vector, de®ned by x � /; q1; q2; q3; n� �T, M�x� is the mass
matrix, f�x; t� is a nonlinear vector, which contains periodic coef®cients, d � �1; 0; 0; 0; 0�T is
the input vector, and u is the control torque applied to the moving base, as shown in Fig. 1. For
the simulations presented here, a three-mode approximation (n � 3) is used. The nonlinear
equations of motion are linearized around the zero equilibrium position
/ � q1 � q2 � q3 � n � 0. The matrix form of the linearized equations of motion is

M�x�t� � C _x�t� � �K� V�t��x�t� � du�t� : �11�
The various coef®cients involved in the linearized equation of motion (11) are

� The mass matrix

M �

mL2

3 F1 F2 F3 0
F1 G1 0 0 0
F2 0 G2 0 0
F3 0 0 G3 0

0 0 0 0
mbl2

b

3

266664
377775 ; �12�

� The damping matrix

C �

c 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 cb

266664
377775 ; �13�

� The constant part of the stiffness matrix de®ned as

K �

k� L1X
2m L

2 L1X
2V1 L1X

2V2 L1X
2V3 0

L1X
2V1 a1 0 0 0

L1X
2V2 0 a2 0 0

L1X
2V3 0 0 a3 0

0 0 0 0 kb

266664
377775 ; �14�

where ai � ÿmX2Gi � EIHi=L3, i � 1, 2, 3.
� The periodic part of the stiffness matrix de®ned as

V�t� � L0�X2 � x2�

mL
2 V1 V2 V3 0

V1 0 0 0 0
V2 0 0 0 0
V3 0 0 0 0
0 0 0 0 0

266664
377775 sin xt : �15�

Functions Fi , Gi , Vi and Hi (i � 1, 2, 3) are de®ned as

Fi �
Z L

0

xqWi�x�dx; Gi �
Z L

0

qW2
i �x�dx;

Vi �
Z L

0

qWi�x�dx; Hi �
Z L

0

oWi�x�
ox

� �2

dx : �16�

In state space form, Eq. (11) can be written as

_e�t� � A�t�e�t� � bu�t� ; �17�
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where e�t� � �x�t�; _x�t��T is the state space vector. Matrices A�t� and b are de®ned as

A�t� � 05�5 I5�5

ÿMÿ1�K� V�t�� ÿMÿ1C

� �
; b � 05

Mÿ1d

� �
; �18�

where 05�5 and I5�5 are the zero and the identity matrices of order ®ve, respectively, and 05 is a
5� 1 zero vector. Matrix A�t� is periodic with period T � 2p=x.

3
Impact equations
The equations of impulsive motion are determined following the procedure described in [12]. A
basic assumption is that the con®guration of the bodies is held constant in the analysis of the
collision process, with no signi®cant change in mass and moments of inertia. Let Fc be the
impact force, which in this case has only a component in i direction

Fc � 0; Fc; 0� � : �19�
The friction during the impact is neglected. Let v be the vector of generalized speed de®ned as

v � _/; _q1; _q2; _q3;
_n

h iT� vj

� �
j�1;2;3;4;5

: �20�

An integrated form of the differential equations is

d

dt

oK

ovj
� Qj ; �21�

where Qj are the generalized impulsive forces during impact. Equation (21) establishes a re-
lationship between the time derivative of the generalized vector v and the contact force Fc,
which leads to the matrix form

Mv � D�x�Fc ; �22�
where D�x� is a vector that depends on pre-impact positions. Because at the impact moment n
can be expressed in terms of /, q1, q2 and q3, only the ®rst four components of the generalized
vector v are independent.

Let vÿB and v�B be the velocities of the elastic beam tip before and after impact, respectively.
Let vÿC and v�C be the velocities of the impacted rigid end link before and after impact, re-
spectively. With these notations, one can write

v�C ÿ v�B � e�vÿB ÿ vÿC � ; �23�
where e is the kinematic coef®cient of restitution. By solving the system of equations (22)
and (40), the unknown velocities after impact � _/�, _q�1 , _q�2 , _q�3 , _n

�� are determined.

4
Controller design

4.1
Sliding mode controller
A sliding-mode control procedure based on usage of inverse model and a decoupled control
system, Fig. 2, is proposed in order to eliminate the vibration of the elastic beam, [11]. The
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control method uses an inverse model Sÿ1 of the original (direct) model S and a Decoupling
Controller (DC) which separates the global system into several independent components. The
inverse model has a transfer function like the reciprocal of the plant transfer function and
becomes the controller for the original model. Let consider xd�t�, _xd�t� and �xd�t� be the vectors
which represent the desired position, velocity and acceleration of the impacting system, and
x�t�, _x�t� and �x�t� be the measured values.

The errors of this control system are

Dx � xd ÿ x; D _x � _xd ÿ _x; D�x � �xd ÿ �x ; �24�
The controller will generate new variations dx, d _x, d�x

dx
d _x
d�x

24 35 � R
Dx
D _x
D�x

24 35 ; �25�

where R is a (15� 15)-dimensional matrix which de®nes the control law and assures the
decoupling of the system. This matrix will be presented later on.

The new variations dx, d _x, d�x generate a new trajectory

x� � xd ÿ dx; _x� � _xd ÿ d _x; �x� � �xd ÿ d�x ; �26�
which is used as a reference trajectory for the inverse system (Sÿ1).

The equations which describe the direct and inverse system are

M��xd ÿ D�x� � C� _xd ÿ D _x� � �K� V sin xt��xd ÿ Dx� � du ; �27�
M��xd ÿ d�x� � C� _xd ÿ d _x� � �K� V sin xt��xd ÿ dx� � du : �28�
BY subtracting Eq. (27) from Eq. (28), the dynamic model of the direct and inverse system
developed around the reference trajectory xd, _xd, �xd can be rewritten as

M�D�xÿ d�x� � C�D _xÿ d _x� � �K� V sin xt��Dxÿ dx� � 0 : �29�
The matrix R has the following form:

R �
R3 0 0
0 R2 0

P2 � P3 sin xt P1 R1

24 35 ; �30�

and it is selected such that

d�x � R1D�x� P1D _x� P2Dx� P3 sin xtDx ; �31�
d _x � R2D _x ; �32�
dx � R3Dx : �33�
Matrices Pi, Ri are chosen to verify the relations

R1 � Mÿ1�Mÿ I� ; �34�
R3 � ÿaI ; �35�

P3 � Mÿ1��a� 1�Vÿ D� ; �36�

P2 � Mÿ1��a� 1�Kÿ B� ; �37�
C�Iÿ R2� ÿMP1 � 2Z ; �38�
where a � 2; 3; . . .
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In order to assure the decoupling of the system of equations, the matrices D, B and Z are
chosen of the diagonal form as follows

D � diag�d1; d2; d3; d4; d5� ; �39�
B � diag�b1; b2; b3; b4; b5� ; �40�
Z � diag�f1; f2; f3; f4; f5� : �41�

Equation (29) becomes

D�x� 2ZD _x� �B� D sin xt�Dx � 0 ; �42�

Equation (42) can be rewritten as a set of ®ve independent equations

D�x� 2fiD _x� �bi � di sin xt�Dx � 0 ; �43�

for i � 1; 2; 3; 4; 5. These equations represent the decoupled equations of the errors for the
original system.

A sliding mode controller is designed using the damping coef®cient fi as control variable.
The control of the motion is divided in two parts. During the ®rst part the controller assures the
motion toward the switching line, and in the second part the motion is forced along the
switching line by the control of the damping coef®cients fi in Eq. (42). The switching line is
de®ned as follows:

D _xi � fiDxi � 0 ; �44�

and the control law is de®ned by

fi < mi; fi > Mi ; �45�
to assure the stable evolution of the system, where mi and Mi are de®ned as follows:

mi � min�bi � di sin xt�1=2; Mi � max�bi � di sin xt�1=2 �46�

4.2
State feedback controller
Returning back to Eq. (17), the objective is to determine a linear time-varying control law of
the type

u � Fe ; �47�
where F is the feedback matrix. It is assumed that all states are available for control, by
measurement. The controller design is based on Lyapunov-Floquet transformation, and the
procedure developed in [17] is applied.

To determine the Lyapunov-Floquet transformation, one must ®rst compute the funda-
mental matrix (or state transition matrix) U�t�. This can be done either analytically, using the
Chebyshev polynomials expansion approach, [8], or by numerical integration of the matrix
differential equation

_U�t� � A�t�U�t�; 0 < t � T ; �48�
with the initial condition

U�0� � I5 : �49�
For a time t1 > T, the state transition matrix can be computed using the expression

U�t1� � U�t � rT� � U�t�Ur�T� ; �50�
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where r is a suitable integer, and U�T� is the state transition matrix evaluated at the end of the
principal period. This matrix is also called Floquet Transition Matrix (FTM). Matrix U�t� can
be factored as

U�t� � Q�t�eRt ; �51�
where Q�t� is a 2T real periodic matrix, and R is a real constant matrix. Due to the periodicity
of the matrix Q�t�, matrix R is computed using the expression

R � 1

2T
ln U�2T� � 1

2T
ln U2�T� : �52�

Applying the Lyapunov-Floquet transformation

e�t� � Q�t�z�t� ; �53�
to Eq. (17), the following system is obtained:

_z�t� � Rz�t� � Qÿ1�t�bu�t� : �54�
At this point, an auxiliary time invariant system of the type

_�z�t� � R�z�t� � Bov�t� ; �55�
is constructed. In Eq. (55), Bo is a full rank constant matrix, such that the pair �R;Bo� is
controllable. The control vector v�t� of the system given by Eq. (55) is determined by designing
a full-state feedback controller, using either the pole placement technique or the optimal
control theory. Thus one can write

v�t� � Fo�z�t� ; �56�
where Fo is a constant feedback gain. De®ning e�t� � z�t� ÿ �z�t�, the dynamic error between
the state vectors z and �z, Eqs. (54) and (55) yield

_e�t� � �R� BoFo�e�t� � Qÿ1�t�bu�t� ÿ BoFoz�t� : �57�
Since (R� BoFo) is the stability matrix, the systems de®ned by Eqs. (54) and (55) can be made
equivalent if

Qÿ1�t�bu�t� � BoFoz�t� : �58�
Because condition (58) can not be exactly satis®ed, these systems are made equivalent in the
least-square sense. For this purpose, ®rst the error vector is de®ned as

g � bu�t� ÿ Q�t�BoFoz�t� ; �59�
and u�t� is computed such that the performance index gTg is minimized. This procedure yields,
[17]

u�t� � b�Q�t�BoFoz�t� ; �60�
where b� is the generalized inverse of matrix b, de®ned as

b� � �bTb�ÿ1bT : �61�
Applying the inverse Lyapunov-Floquet transformation to Eq. (60), we obtain

u�t� � b�Q�t�BoFoQÿ1�t�e�t� : �62�
Comparing Eq. (62) with Eq. (47), the desired feedback gain matrix F�t� is

F�t� � b�Q�t�BoFoQÿ1�t� : �63�

562



It should be observed that the feedback matrix from Eq. (63) can be computed off line and
stored into the computer memory, since Q�t� and Qÿ1�t� are 2T-periodic and information for
t > 2T is not needed. This is important for a real-time implementation of the control algo-
rithm.

4.3
Fuzzy-logic controller
In this Section, a fuzzy-logic controller for the nonlinear system is designed such that the elastic
vibration of the beam are eliminated. The total de¯ection yt of the beam tip can be computed
with the expression yt � L sin /� yL cos /, where yL is the elastic de¯ection of the beam tip,
computed as

yL�t� � y�L; t� �
X3

i�1

Wi�L�qi�t� : �64�

The inputs of the fuzzy-logic controller are the total de¯ection yt and its time derivative _yt. The
output of the controller is the torque u applied to the base of the elastic link.

Figure 3a shows the fuzzy sets for the total beam de¯ection yt (lyt
). There are seven grades,

that correspond to negative huge (NH), negative big (NB), negative small (NS), zero (ZE),
positive small (PS), positive big (PB), and positive huge (PH) values of the total beam de¯ection
yt. One can see that the support vector of yt is between ÿ1 and 1 m. However, the total
de¯ection yt is not restricted to belong to this support, by extending the fuzzy set to �1. This
means that, for instance, any de¯ection larger than 1 m will belong to the positive huge (PH)
set.

The fuzzy sets of the time derivative _yt, are represented in Fig. 3b. It has only three grades,
which correspond to negative (N), zero (Z), and positive (P) values of _yt. The support vector is
taken between ÿ2 and 2 m/s, but _yt can have any value, by extension.
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The fuzzy sets of the controller output u are shown in Fig. 3c. It consists of equidistant
triangle grades. The control force fuzzy set has ®ve components, that correspond to negative
big (NB), negative small (NS), zero (ZE), positive small (PS), positive big (PB) values of the
controller output.

The controller output is generated using ``If-Then'' rules, based on a consequent table.
The ``If-Then'' rule has two parts, an antecedent and a consequent. The antecedent is the ``If ''
part, and the consequent is the ``Then'' part. The consequent table (de®ned in Table 1) is a
matrix of seven columns (the number of grades of yt fuzzy set) and three rows (the number
of grades of _yt fuzzy set). Each time, according to the values of yt and _yt, one or more
``If-Then'' rules may be de®ned. The computation of the control torque u is also based on the
intersection and union of fuzzy sets, as well as on the centroid method that returns the
``center of mass'' of a fuzzy set, [1].

5
Results
For the system shown in Fig. 1, a parametric excitation of amplitude L1 � 0:002 m and fre-
quency x � 10 rad/s is considered. The distance between the massless base O1 and the rotation
center O is OO1 � L0 � L1 sin xt, where L0 � 0:02 m. The system is rotating with a constant
angular velocity X � 1 rad/s. The value of the spring constant and damping constant are
k � 5:0 Nm/rad and c � 2:0 Nms/rad, respectively. Simulations are performed for elastic link
of length L � 1:5 m. The mass/unit length of the elastic link is q � 0:612 kg/m, and the mass of
the impacted rigid link is mb � 0:3 kg. The values of the spring and damping constant used for
impacted link are kb � 10 Nm/rad and cb � 5:0 Nms/rad, respectively. A kinematic coef®cient
of restitution e � 0:5 for the elasto-plastic impact of the two bodies is considered. The values of
the various coef®cients involved in the equations of motion are shown in Table 2.

Computer programs are developed to simulate the impact of the elastic beam with the rigid
link. The evolution of the uncontrolled and controlled system is studied. The behavior of the
uncontrolled system is depicted in Fig. 4. The beam de¯ection yt is presented in Fig. 4a, while
Fig. 4b shows the evolution of the angle /. Due to the damping, the magnitude of the oscil-
lations decreases in time, but does not vanish.

The behavior of the controlled system using a sliding-mode strategy is presented in Fig. 5.
For the sliding-mode control procedure, the diagonal elements of the matrices D and B are
di � 3, bi � 5 for i � 1; 2; . . . ; 5. The evolution of the beam de¯ection is depicted in Fig. 5a.
Due to the control torque applied on the massless base of the elastic beam, the de¯ection of the
beam vanishes in less than 5 s, and is zero at the following impact moment (not shown in the
picture). The evolution of the angle / is depicted in Fig. 5b, while the control torque u is
represented in Fig. 5c. A maximum value of u � ÿ2:7 Nm is noticed after the impact moment.

Figure 6 shows the phase portrait for the angle / and beam de¯ection yt for the sliding mode
controlled system. The system evolves from the zero state, which characterized the system
before the impact moment. Due to the impact with the rigid link, a jump in the state of the
system is noticed. After the impact, the system evolves to the switching line, and follows this
line until the zero state is reached.

The behavior of the controlled system using state feedback controller is presented in Fig. 7.
The maximum value of the beam de¯ection depicted in Fig. 7a is yt � 0:125 m. The de¯ection
yt vanishes before a new impact occurs. Figure 7b shows the behavior of the angle /. After

Table 1. The consequent table for fuzzy-logic controller design

yt NH NB NS ZE PS PB PH

_yt=N PB PS PS ZE ZE NS NB
_yt=Z PS PS ZE ZE ZE NS NS
_yt=P PB PS ZE ZE NS NS NB

Table 2. The values of the coef®cients involved in the equation of motion (11)

F1

[Kg m]
F2

[Kg m]
F3

[Kg m]
G1

[Kg]
G2

[Kg]
G3

[Kg]
H1

[mÿ1]
H2

[mÿ1]
H3

[mÿ1]
V1

[Kg]
V2

[Kg]
V3

[Kg]

L = 1.5 m 0.7840 0.1251 0.0446 0.9189 0.9189 0.9189 3.6629 143.8574 1127.8655 0.7195 0.3987 0.2337
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impact, a maximum value of 0.085 rad is noticed, but / goes to zero in a short time. Figure 7c
represents the applied control torque. The control torque u has a large peak value immediately
after impact, and then it goes to zero in a very short time interval.

Figure 8 shows the evolution of the fuzzy-logic controlled system. The total beam tip de-
¯ection yt, Fig. 8a, as well as the angle /, Fig. 8b, vanish in less than 2 s after the impact
moment. A maximum peak yt � 0:035 m is noticed. The angle / has a negative jump at the
impact moment. The control torque applied on the massless base is depicted in Fig. 8c. It has a
maximum value of ÿ2:7 Nm, and vanishes in a short period of time.

Fig. 4a, b. Uncontrolled system be-
havior
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6
Conclusions
The control problem associated with a parametrically excited rotating ¯exible link impacting
periodically with a rigid beam is studied. A sliding-mode controller is applied on the linearized
system. The inverse model of the system is used as an actuator for the direct system control.
The simulated results show that this control method can be applied successfully to the linear
systems control. Next, a full-state feedback controller is designed using the Lyapunov-Floquet
transformation technique. For the controlled system, all states vanish before a new impact
occurres. The system controller applies a large control torque immediately after the impact
moment. The results obtained show that Lyapunov-Floquet transformation is a powerful tool
for linear controllers design. Finally, a fuzzy-logic strategy is applied for nonlinear system
control. This strategy does not require a priori knowledge of the equations of motion. The
technique is simple and suitable for a real-time implementation.
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