
Effect of the regular term on the stress field in a joint
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Summary For most geometries and material combinations, stresses at the intersection of outer
edges and the interface of a joint of two dissimilar materials are singular for elastic response
under mechanical or thermal loads. Near the singular point the stresses can be described by a
sum of singular terms and one regular term, which is independent of the distance from the
singular point. Earlier investigations have shown that the regular term is also important in the
description of the singular ®eld. For thermal loading, for instance, there is a homogeneous
temperature change in the joint; the regular stress term is nonzero. For a remote mechanical
loading, the regular stress term is always nonzero for some geometries and material combi-
nations. One important case is a joint with an interface crack, in which the so called T-stress
term is the regular term and always nonzero.

In this paper, the regular stress term will be determined for a joint under a remote me-
chanical load. The conditions of a joint with a nonzero regular term and the formulas to
calculate the regular stress term will be presented both for an arbitrary joint geometry �h1; h2�
and for some special cases. Examples will be introduced, to show the contribution of the regular
term to the stress distribution near the singular point.

Key words Regular stress term, stress singularity, interface crack, stress intensity factor,
asymptotic solution

1
Introduction
For most geometries and material combinations, stresses at the intersection of outer edges and
the interface of a joint of two dissimilar materials are singular assuming elastic material
behavior under mechanical or thermal load. In many investigations, the characteristics of the
singular term were described, [1±9]. However, in many cases a term, which is independent of
the distance from the singular point ± called regular stress term ± is also important for the
description of the stress ®eld even close to the singular point. To assess the stress ®eld and
develop failure criteria, both terms ± the singular and the regular one ± have to be considered,
[10]. Regular stress terms for joints with free outer edges under thermal loading [11±13] and for
joints with edge tractions [14] have been given in an explicit form for an arbitrary geometry
�h1; h2�, Fig. 1. For a joint under thermal loading or a joint with edge tractions, the regular
stress term is always nonzero. For a joint under remote mechanical load, the regular stress term
is zero for most joint geometries and material combinations. In this paper, the regular stress
term will be studied for a joint under remote mechanical loading. The method and the explicit
form to calculate the regular stress term will be given for a joint with an arbitrary geometry, Fig.
1, and simpli®ed for several special geometries, which often appear in the engineering struc-
tures. Examples will be introduced to show the contribution of the regular stress term to the
stress distribution near the singular point. The signi®cance of applying a regular term is due to
the fact that both the singular and the regular terms are necessary to describe the stress ®eld
near the singular point in a large range, which is the scale of practical interest.
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2
Basic equations
To study the regular stress term, the following Airy's stress function [11]

Uk�r; h� � r2�Ak0h�Bk0 � Ck0 sin�2h� �Dk0 cos�2h�� ; �1�
is used in polar coordinates, where the coef®cients Ak0;Bk0;Ck0;Dk0 are unknown (for the
coordinates see Fig. 1). The index for material 1 is k � 1 and k � 2 for material 2. The regular
stress term can be calculated as

rrrk�r; h� � 2�Ak0h�Bk0 ÿ Ck0 sin�2h� ÿDk0 cos�2h�� ; �2�
rhhk�r; h� � 2�Ak0h�Bk0 � Ck0 sin�2h� �Dk0 cos�2h�� ; �3�

rrhk�r; h� � ÿ2
1

2
Ak0 � Ck0 cos�2h� ÿDk0 sin�2h�

� �
; �4�

which is independent of the distance r from the singular point.
Following the relations between stress, strain and displacement, the displacements for the

plane stress can be determined by

uk�r; h� � 2r

Ek
�Ak0h�1ÿ mk� �Bk0�1ÿ mk� ÿ Ck0�1� mk� sin�2h� ÿDk0�1� mk� cos�2h�� ;

�5�

vk�r; h� � 2r

Ek
�ÿCk0�1� mk� cos�2h� �Dk0�1� mk� sin�2h�� �Fk0r ÿ 4Ak0

Ek
r ln(r) ; �6�

where u � 0 and v � 0 at r � 0. The coef®cient Fk0 is an unknown. To determine the coef-
®cients Ak0;Bk0;Ck0;Dk0 and Fk0, the boundary conditions have to be used. For a joint with
free edges, the boundary conditions are:
at the interface

u1�r; 0� � u2�r; 0�; v1�r; 0� � v2�r; 0�;
rhh1�r; 0� � rhh2�r; 0�; rrh1�r; 0� � rrh2�r; 0� ;

�7�

for the free edges

rhh1�r; h1� � 0; rhh2�r; h2� � 0;

rrh1�r; h1� � 0; rrh2�r; h2� � 0 ;
�8�

where a perfect bond at the interface is assumed.

Fig. 1. General joint geometry and the coordinates
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The regular stress term should also satisfy the boundary conditions. From Eqs. (3)±(8) and
due to r being arbitrary, the following equations can be obtained:

2g�B10�1ÿ m1� ÿD10�1ÿ m1�� ÿ 2�B20�1ÿ m2� ÿD20�1ÿ m2�� � 0 ; �9�
2g�ÿC10�1� m1�� ÿ 2�ÿC20�1� m2�� � E2�F1 ÿF20� � 0 ; �10�
gA10 ÿA20 � 0 ; �11�
�B10 �D10� ÿ �B20 �D20� � 0 ; �12�
�A10 � 2C10� ÿ �A20 � 2C20� � 0 ; �13�
A10h1 �B10 � C10 sin�2h1� �D10 cos�2h1� � 0 ; �14�
A20h2 �B20 � C20 sin�2h2� �D20 cos�2h2� � 0 ; �15�
A10 � 2C10 cos�2h1� ÿ 2D10 sin�2h1� � 0 ; �16�
A20 � 2C20 cos�2h2� ÿ 2D20 sin�2h2� � 0 ; �17�
where g � E2=E1. By solving Eqs. (9, 11±17), coef®cients Ak0;Bk0;Ck0;Dk0 can be determined.
From Eq. (10), the difference F10 ÿF20 can be obtained. The absolute values of F10 and F20

depend on the overall geometry of the component, and have to be determined numerically. For
the regular stress term, only the coef®cients Ak0;Bk0;Ck0;Dk0 are interesting. Equations
(9, 11±17) can be rewritten in a matrix form as

�A0�8�8fX0g8�1 � f0g8�1 ; �18�
where fX0g8�1 � fA10;B10;C10;D10;A20;B20;C20;D20gT is unknown. Let �A0�8�8 be the co-
ef®cient matrix, in which material properties �Ek; mk� and geometry angles �h1; h2� are included.
Equation (18) is a homogeneous system. The condition of Eq. (18) having a nonzero solution
applies if and only if

Det��A0�8�8� � 0 ; �19�
is satis®ed. This means that if Det��A0�8�8� 6� 0, the regular stress term is always zero. In the
following the explicit form of Det��A0�8�8� will be given for an arbitrary geometry and for
several special geometries, which often appear in the engineering structures, e.g. (a) h1 � ÿh2;
(b) h1 ÿ h2 � p; (c) h1 ÿ h2 � 2p; (d) h1 � p and h2 is arbitrary. For the case of
Det��A0�8�8� � 0, the nonzero coef®cients Ak0;Bk0;Ck0;Dk0 can be determined with an arbi-
trary constant, which will be given in the next Section.

3
Determination of the regular stress term
In this Section, the conditions of the regular stress term being nonzero and the relations to
determine the corresponding nonzero regular stress term will be presented for an arbitrary
joint geometry and some special geometries.

3.1
A joint with an arbitrary geometry
For a joint with an arbitrary geometry h1; h2, the determinant of �A0�8�8 is

Det��A0�8�8� �
32

�1� a�2 f1ÿ cos�2�h1 ÿ h2�� � �h2 ÿ h1� sin�2�h1 ÿ h2��

� a2�ÿ1� 2 cos�2h1� ÿ cos�2�h1 ÿ h2�� � 2 cos�2h2�
ÿ 2 cos�2�h1 � h2�� ÿ �h1 � h2� sin�2�h1 � h2���
� ab�4ÿ 4 cos�2h1� � 2 cos�2�h1 ÿ h2�� ÿ 4 cos�2h2�
� 2 cos�2�h1 � h2�� ÿ 2h1 sin�2h1� � �h1 ÿ h2� sin�2�h1 ÿ h2��
ÿ 2h2 sin�2h2� � �h1 � h2� sin�2�h1 � h2���

366



� a�ÿ2 cos�2h1� � 2 cos�2h2� ÿ �h1 � h2� sin�2�h1 ÿ h2��
� �ÿh1 � h2� sin�2�h1 � h2���
� b�ÿ2h1 sin�2h1� � �h1 � h2� sin�2�h1 ÿ h2��
� 2h2 sin�2h2� � �h1 ÿ h2� sin�2�h1 � h2���g ; �20�

where a and b are the Dundurs' parameters, which are de®ned as

a � m2 ÿ km1

m2 � km1
; b � �m2 ÿ 2� ÿ k�m1 ÿ 2�

m2 � km1
;

with

m �
4
�1�m� for plane stress

4�1ÿ m� for plane strain ,

�
and k � G2=G1, where G is the shear modulus. From Eq. (20) we can see that, in general,
Det��A0�8�8� is nonzero, i.e. the regular stress term is zero. For a given geometry with h1 and h2,
however, material combinations with a and b exist, which lead to Det��A0�8�8� � 0. This can be
seen if Eq. (20) is rewritten as

Det��A0�� � f0�h1; h2� � a2f1�h1; h2� � af2�h1; h2� � abf3�h1; h2� � bf4�h1; h2� : �21�
For given h1 and h2, the solution of Det��A0�� � 0 is

b � ÿ f0�h1; h2� � a2f1�h1; h2� � af2�h1; h2�
af3�h1; h2� � f4�h1; h2� : �22�

In the Dundurs' diagram, in which a is plotted versus b, this represent a curve, which shall be
seen clearly in the next Sections for some special joint geometries. In fact, for a given geometry
with h1 and h2, there are in®nite material combinations with E1;E2; m1; m2, which satisfy Eq. (22),
so that the regular stress term is nonzero.

On the other hand, for a given material combination with a and b, one or more geometries
with h1 and h2 exist, which lead to Det��A0�8�8� � 0.

For the case of Det��A0�8�8� � 0, the nonzero coef®cients Ak0;Bk0;Ck0;Ck0 are not unique.
They are normalized as

Ak0 � K0A
�
k0; Bk0 � K0B

�
k0; Ck0 � K0C

�
k0; Dk0 � K0D

�
k0 ; �23�

where K0 is an unknown constant and A�
k0;B

�
k0;C

�
k0;D

�
k0 can be determined from

A�10 � 2�1� a�f1ÿ a� 2bÿ 2b cos�2h1� � �ÿ1� b� cos�2�h1 ÿ h2�� � 2�aÿ b� cos�2h2�
� �ÿa� b� cos�2�h1 � h2��g ; �24�

B�10 � fÿ2�1� a��1ÿ a� 2b�h1 � 2�1ÿ a��1� b�h2 cos�2�h1 ÿ h2��
� 4�1� a��bÿ a�h1 cos�2h2� � 2�1ÿ a��aÿ b�h2 cos�2�h1 � h2��
� �4a�1ÿ a� ÿ 2�1ÿ 3a�b� sin�2h1� � �1ÿ a� 2a2 � �1ÿ 3a�b� sin�2�h1 ÿ h2��
� �1ÿ 3a��bÿ a� sin�2�h1 � h2��g ; �25�

C�10 � f4a�aÿ 1� � 2�1ÿ 3a�b� �1ÿ a2 ÿ 2�1ÿ 3a�b� cos�2h1�
� �a�1� a� � �1ÿ 3a�b� cos�2�h1 ÿ h2��
� �ÿ1� 2aÿ 5a2 ÿ 2�1ÿ 3a�b� cos�2h2�
� �a�1� a� � �1ÿ 3a�b� cos�2�h1 � h2�� ÿ 2�1ÿ a�bh2 sin�2�h1 ÿ h2��
� 2�1ÿ a���1� a�h1 ÿ �1ÿ a� 2b�h2� sin�2h2�
� 2�1ÿ a�bh2 sin�2�h1 � h2��g ; �26�
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D�10 � f4�1� a�bh1 ÿ 2�1ÿ a�bh2 cos�2�h1 ÿ h2��
� 2�1� a���1� aÿ 2b�h1 ÿ �1ÿ a�h2� cos�2h2� � 2�1ÿ a�bh2 cos�2�h1 � h2��
� �ÿ1� a2 � 2�1ÿ 3a�b� sin�2h1� � �ÿa�1� a� � �ÿ1� 3a�b� sin�2�h1 ÿ h2��
� �1ÿ a2� sin�2h2� � �ÿa�1� a� � �ÿ1� 3a�b� sin�2�h1 � h2��g ; �27�

A�
20 � 2�aÿ 1�fÿ1� aÿ 2b� 2b cos�2h1� � �1ÿ b� cos�2�h1 ÿ h2��

� 2�ÿa� b� cos�2h2� � �aÿ b� cos�2�h1 � h2��g ; �28�

B�20 � �1ÿ a�fÿ2�1� a�h1 � 2�1ÿ b�h2 cos�2�h1 ÿ h2�� � 4�ÿa� b�h2 cos�2h2�
� 2�aÿ b�h2 cos�2�h1 � h2�� � 2a sin�2h1� � �1ÿ b� sin�2�h1 ÿ h2��
� 2�aÿ b� sin�2h2� � �ÿa� b� sin�2�h1 � h2��g ; �29�

C�20 � �1ÿ a�fÿ2a� 2b� �1� aÿ 2b� cos�2h1� � �ÿa� b� cos�2�h1 ÿ h2��
� �ÿ1� aÿ 2b� cos�2h2� � �a� b� cos�2�h1 � h2�� ÿ 2bh2 sin�2�h1 ÿ h2��
� �2�1� a�h1 � 2�ÿ1� aÿ 2b�h2� sin�2h2� � 2bh2 sin�2�h1 � h2��g ; �30�

D�20 � �aÿ 1�fÿ2bh2 cos�2�h1 ÿ h2�� � �ÿ2�1� a�h1 � 2�1ÿ a� 2b�h2� cos�2h2�
ÿ 2bh2 cos�2�h1 � h2�� � �1ÿ a� sin�2h1� � �aÿ b� sin�2�h1 ÿ h2��
� �ÿ1� aÿ 2b� sin�2h2� � �a� b� sin�2�h1 � h2��g : �31�

Then, the regular stress term in polar coordinates can be calculated from

rrrk0�r; h� � K0�A�k0h�B�k0 ÿ C�k0 sin�2h� ÿD�k0 cos�2h�� ; �32�
rhhk0�r; h� � K0�A�k0h�B�k0 � C�k0 sin�2h� �D�k0 cos�2h�� ; �33�

rrhk0�r; h� � ÿK0
1

2
A�k0 � C�k0 cos�2h� ÿD�k0 sin�2h�

� �
; �34�

where K0 has to be determined from the stress analysis of the total joint, e.g. using the Finite
Element Method (FEM).

For convenience in the engineering applications, simpli®ed equations (also in cartesian
coordinates) for some special geometries will be presented in the following.

3.2
A joint with h1=)h2

For a joint geometry with h1 � ÿh2, the determinant of �A0�8�8 is

Det��A0�8�8� �
64

�1� a�2 sin�h1�f�ÿ2h1 cos�h1� ÿ 2h1 cos�3h1� � sin�h1� � sin�3h1��

� a2�ÿ3 sin�h1� � sin�3h1��
� 2ab�ÿh1 cos�h1� � h1 cos�3h1� � 3 sin�h1� ÿ sin�3h1��g : �35�

For h1 6� p, if

b � 2h1 cos�h1� � 2h1 cos�3h1� ÿ sin�h1� ÿ sin�3h1� � a2�3 sin�h1� ÿ sin�3h1��
2a�ÿh1 cos�h1� � h1 cos�3h1� � 3 sin�h1� ÿ sin�3h1�� ; �36�

one gets Det��A0�8�8� � 0, i.e. the regular stress term is nonzero. The nonzero coef®cients
Ak0;Bk0;Ck0;Dk0 can be determined from Eq. (23) with

A�10 � 8�1� a� sin2�h1�f1ÿ a� b� �1ÿ b� cos�2h1�g ; �37�
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B�10 � f2�ÿ1ÿ a� 2a2 ÿ �1� 3a�b�h1

� 4�1� a��bÿ a�h1 cos�2h1� ÿ 2�1ÿ a��1� b�h1 cos�4h1�
� 2�2a�1ÿ a� � �ÿ1� 3a�b� sin�2h1�
� �1ÿ a� 2a2 � �1ÿ 3a�b� sin�4h1�g ; �38�

C�10 � 2 sin�h1�fÿ2�1ÿ a��2� b�h1 cos�h1� � 2�1ÿ a�bh1 cos�3h1�
� �a�ÿ3� 5a� � 3�1ÿ 3a�b� sin�h1� � �ÿa�1� a� � �ÿ1� 3a�b� sin�3h1�g ; �39�

D�10 � f2�1� 3a�bh1 � 4�1� a��1ÿ b�h1 cos�2h1�
� 2�1ÿ a�bh1 cos�4h1� � 2�ÿ1� a2 � �1ÿ 3a�b� sin�2h1�
� �ÿa�1� a� � �ÿ1� 3a�b� sin�4h1�g ; �40�

A�20 � ÿ8�1ÿ a� sin2�h1�fÿ1� aÿ b� �ÿ1� b� cos�2h1�g ; �41�

B�20 � �1ÿ a�f2�ÿ1ÿ 2a� b�h1 � 4�aÿ b�h1 cos�2h1�
� 2�ÿ1� b�h1 cos�4h1� � 2b sin�2h1� � �1ÿ b� sin�4h1�g ; �42�

C�20 � 2�1ÿ a� sin�h1�fÿ2�2� b�h1 cos�h1� � 2bh1 cos�3h1�
� �ÿa� 3b� sin�h1� � �aÿ b� sin�3h1�g ; �43�

D�20 � ÿ�1ÿ a�f2bh1 ÿ 4�1� b�h1 cos�2h1� � 2bh1 cos�4h1�
� 2�1ÿ a� b� sin�2h1� � �aÿ b� sin�4h1�g : �44�

For the special case with h1 � ÿh2 � p=2,

Det��A0�8�8� �
256a

�1� a�2 �2bÿ a� : �45�

This means that if a � 2b or a � 0 with an arbitrary b, the regular stress is nonzero.
The nonzero coef®cients Ak0;Bk0;Ck0;Dk0 are

A10 � C10 �A20 � C20 � 0; B10 � D10 � B20 � D20 � K0 : �46�

The regular stress term in cartesian coordinates is

ryy10 � ryy20 � 4K0; rxx10 � rxx20 � rxy10 � rxy20 � 0 : �47�

This means that only ryy0, which is perpendicular to the interface, is nonzero.

3.3
A joint with h1)h2 = p
For a joint geometry with h1 ÿ h2 � p, the determinant of �A0�8�8 is

Det��A0�8�8� �
128

�1� a�2 sin�h1��b� a cos�2h1� ÿ b cos�2h1��

� �ÿp cos�h1� � ap cos�h1� ÿ 2ah1 cos�h1� � 2a sin�h1�� : �48�

The determinant Det��A0�8�8� � 0 if

a � b�cos�2h1� ÿ 1�
cos�2h1� ; for cos�2h1� 6� 0 �49�

or
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a � p cos�h1�
p cos�h1� ÿ 2h1 cos�h1� � 2 sin�h1� ; �50�

with an arbitrary b, which represents two curves in the Dundurs' diagram. This means that
there are in®nite material combinations, in which the regular stress is nonzero. For these
combinations of a and b, the regular stress term can be simpli®ed. After transformation of the
regular stress term from polar to cartesian coordinates by

rxx � rrr cos2�h� � rhh sin2�h� ÿ 2rrh sin�h� cos�h�;
ryy � rrr sin2�h� � rhh cos2�h� � 2rrh sin�h� cos�h�;
rxy � �rrr ÿ rhh� cos�h� sin�h� � rrh�cos2�h� ÿ sin2�h�� ;

�51�

the regular stress term can be obtained in cartesian coordinates. For a given by Eq. (49), there is

rxx10 � rxx20 � 64 cos2�h1��b� cos�2h1� ÿ b cos�2h1��
�cos�2h1� � b cos�2h1� ÿ b�2 K0

� fbh1 ÿ p cos�2h1��1� b� � b cos�4h1��pÿ h1� ÿ 2b sin�2h1� � b sin�4h1�g ; �52�

ryy10 � ryy20 � sin2�h1�
cos2�h1� rxx10; sxy10 � sxy20 � sin�h1�

cos�h1�rxx10 : �53�

For a given by Eq. (50), there is

rxx10 � ÿ 16 sin2�h1�
p cos�h1� ÿ h1 cos�h1� � sin�h1�K0

� f2�2b� �1ÿ 2b�ph1 � 4bh2
1� cos�h1� � 2�ÿ2b� �1ÿ 2b�ph1 � 4bh2

1� cos�3h1�
� 2b�p� 2h1� sin�h1� � 2b�pÿ 6h1� sin�3h1�
� sin�2h���ÿ�1� b�p� 2bh1� cos�h1� � ��ÿ1� b�pÿ 2bh1� cos�3h1�
ÿ 6b sin�h1� � 2b sin�3h1��
� 2h��ÿ�1� b�p� 2bh1� cos�h1� � ��ÿ1� b�pÿ 2bh1� cos�3h1�
ÿ 6b sin�h1� � 2b sin�3h1��g ; �54�

ryy10 � 16 sin2�h1�
p cos�h1� ÿ h1 cos�h1� � sin�h1�K0

� fÿ2ph1 cos�h1� ÿ 2ph1 cos�3h1� ÿ 2p sin�h1� � 2p sin�3h1�
� 2h���1� b�pÿ 2bh1� cos�h1� � ��1ÿ b�p� 2bh1� cos�3h1�
� 6b sin�h1� ÿ 2b sin�3h1��
� sin�2h���ÿ�1� b�p� 2bh1� cos�h1� � ��ÿ1� b�pÿ 2bh1� cos�3h1�
ÿ 6b sin�h1� � 2b sin�3h1��g ; �55�

rxy10 � 16 sin2�h1�
p cos�h1� ÿ h1 cos�h1� � sin�h1�K0

� f��1ÿ b�p� 6bh1� cos�h1� � ��1� b�pÿ 6bh1� cos�3h1�
� 2�ÿ3b� bph1 ÿ 2bh2

1� sin�h1� � 2b�1� ph1 ÿ 2h2
1� sin�3h1�

� cos�2h���ÿ�1� b�p� 2bh1� cos�h1� � ��ÿ1� b�pÿ 2bh1� cos�3h1�
ÿ 6b sin�h1� � 2b sin�3h1��g ; �56�

rxx20 � 16 sin2�h1��h1 cos�h1� ÿ sin�h1��
�p cos�h1� ÿ h1 cos�h1� � sin�h1��2

K0

� f2�2bÿ p2 � 2bp2 � ph1 ÿ 6bph1 � 4bh2
1� cos�h1�

� 2�ÿ2bÿ p2 � 2bp2 � ph1 ÿ 6bph1 � 4bh2
1� cos�3h1�
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� 2b�ÿ3p� 2h1� sin�h1� � 2b�5pÿ 6h1� sin�3h1�
� sin�2h���ÿpÿ bp� 2bh1� cos�h1� � �ÿp� bpÿ 2bh1� cos�3h1�
ÿ 6b sin�h1� � 2b sin�3h1��
� 2h��ÿpÿ bp� 2bh1� cos�h1� � �ÿp� bpÿ 2bh1� cos�3h1�
ÿ 6b sin�h1� � 2b sin�3h1��g ; �57�

ryy20 � 16 sin2�h1��h1 cos�h1� ÿ sin�h1��
�p cos�h1� ÿ h1 cos�h1� � sin�h1��2

K0

� f2p�ÿp� h1� cos�h1� � 2p�ÿp� h1� cos�3h1� � 2p sin�h1� ÿ 2p sin�3h1�
� sin�2h���p� bpÿ 2bh1� cos�h1� � �pÿ bp� 2bh1� cos�3h1�
� 6b sin�h1� ÿ 2b sin�3h1��
� 2h��ÿpÿ bp� 2bh1� cos�h1� � �ÿp� bpÿ 2bh1� cos�3h1�
ÿ 6b sin�h1� � 2b sin�3h1��g ; �58�

sxy20 � 16 sin2�h1��h1 cos�h1� ÿ sin�h1��
�p cos�h1� ÿ h1 cos�h1� � sin�h1��2

K0

� f�ÿp� 5bpÿ 6bh1� cos�h1� � �ÿpÿ 5bp� 6bh1� cos�3h1�
� 2b�3� p2 ÿ 3ph1 � 2h2

1� sin�h1� � 2b�ÿ1� p2 ÿ 3ph1 � 2h2
1� sin�3h1�

� cos�2h���p� bpÿ 2bh1� cos�h1� � �pÿ bp� 2bh1� cos�3h1�
� 6b sin�h1� ÿ 2b sin�3h1��g : �59�

3.4
A joint with h1) h2 = 2p
For a joint with h1 ÿ h2 � 2p, which is the case of a joint with a crack having the tip at the end
of the interface, all equations given in Sec. 3.3 (Eqs. (48)±(59)) are valid by replacing p with 2p.
For example, the determinant of �A0�8�8 is

Det��A0�8�8� �
256

�1� a�2 sin�h1��b� a cos�2h1� ÿ b cos�2h1���ÿp cos�h1�

� ap cos�h1� ÿ ah1 cos�h1� � a sin�h1�� ; �60�
Eq. (50) is replaced by

a � p cos�h1�
p cos�h1� ÿ h1 cos�h1� � sin�h1� ; �61�

and Eq. (52) is replaced by

rxx10 � rxx20 � 64 cos2�h1��b� cos�2h1� ÿ b cos�2h1��
�cos�2h1� � b cos�2h1� ÿ b�2 K0fbh1

ÿ 2p cos�2h1��1� b� � b cos�4h1��2pÿ h1�
ÿ 2b sin�2h1� � b sin�4h1�g : �62�

3.5
A joint with h1 = p and arbitrary h2

For a joint geometry with h1 � p and an arbitrary h2, the determinant of �A0�8�8 is

Det��A0�8�8� �
64

�1� a�2 �1ÿ a� sin�h2�fp cos�h2� � ap cos�h2� ÿ h2 cos�h2�

� ah2 cos�h2� � sin�h2� ÿ a sin�h2�g : �63�
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The determinant Det��A0�8�8� � 0 if a � 1 or

a � ÿ�pÿ h2� cos�h2� � sin�h2�
�p� h2� cos�h2� ÿ sin�h2� ; �64�

with an arbitrary b. Therefore, the regular stress term is nonzero. For the a given in Eq. (64),
the regular stress terms in cartesian coordinates are

rxx10 � 32p sin2�h2�K0

h2 cos�h2� ÿ sin�h2� f2h cos�h2� � cos�h2� sin�2h�

ÿ 2�1ÿ 2b� sin�h2� ÿ 2�p� 2bp� 2bh2� cos�h2�g ; �65�

ryy10 � 32p cos�h2� sin2�h2�K0

h2 cos�h2� ÿ sin�h2� fÿ2p� 2hÿ sin�2h�g ; �66�

sxy10 � 64p cos�h2� sin2�h2�K0

h2 cos�h2� ÿ sin�h2� sin2�h� ; �67�

rxx20 � 8p2 sin2�h2�K0

�h2 cos�h2� ÿ sin�h2��2
fÿ2h2 � 2h� sin�2h�g ; �68�

ryy20 � 32p2 cos�h2� sin2�h2�K0

�h2 cos�h2� ÿ sin�h2��2
f2h cos�h2� ÿ 2h2 cos�h2�

ÿ cos�h2� sin�2h� � 2 sin�h2�g ; �69�

sxy20 � 16p2 sin2�2h2�K0

�h2 cos�h2� ÿ sin�h2��2
sin2�h� ; �70�

where h2 cos�h2� ÿ sin�h2� 6� 0, i.e. a 6� ÿ1. For a � 1

rxx10 � 64pK0�ÿbÿ cos�2h2� � b cos�2h2��;
rxx20 � 0; ryy10 � ryy20 � rxy10 � rxy20 � 0 :

�71�

The special case is h2 � ÿp, which is the case of a joint with an interface crack. For this joint

Det��A0�8�8� � 0 : �72�
This means that for any material combination the regular stress is always nonzero. The nonzero
coef®cients Ak0;Bk0;Ck0;Dk0 are

A10 � C10 �A20 � C20 � 0 ; �73�

B10 � ÿD10 � K0
1� a
aÿ 1

; B20 � ÿD20 � ÿK0 : �74�

The regular stress term in cartesian coordinates is

rxx10 � 4B10 � 4K0�1� a�
aÿ 1

; rxx20 � 4B20 � ÿ4K0;

ryy10 � ryy20 � rxy10 � rxy20 � 0 ;

�75�

for a 6� 1. From Eq. (75) it can be seen that for a joint with an interface crack only the
component rxx0, which is parallel to the crack and called T-stress, is nonzero.
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4
Asymptotic description of a singular stress field
In general, the stress ®eld near the singular point in a joint of dissimilar materials can be
described by

rij�r; h� �
XN

n�1

Kn

�r=L�xn
fijn�h� � K0fijo�h� ; �76�

when the eigenvalue is real [15], and by

rij�r; h� �
XN

n�1

Kn

�r=L�xn
fcos� pn ln�r=L�� f c

ijn�h� � sin� pn ln�r=L�� f s
ijn�h�g � K0fijo�h� ; �77�

when the eigenvalue is complex �xn � ipn�, [16]. Here, xn are the singular stress exponents,
fijn�h�, f c

ijn�h� and f s
ijn�h� are the angular functions, Kn are the stress intensity factors

and K0fijo�h� is the regular stress term. For an arbitrary joint geometry with h1 and h2, the
quantities xn, pn, fijn�h� and fijo�h� can be calculated analytically. The factors Kn should be
determined by applying a numerical method, e.g. FEM. For a joint under thermal loading or
with edge tractions, K0 can also be calculated analytically [11±14]. However, for a joint under a
remote mechanical loading, K0 has to be determined like Kn by using a numerical method. In
Eqs. (76) and (77), the distance r is normalized by L, which is a characteristic length of the
joint, such that the factors Kn have the unit of stress. For an arbitrary geometry and an arbitrary
material combination, there may be more than one singular term. Equations (76) and (77)
include all singular terms in the sum, i.e. xn > 0 in Eqs. (76) and (77).

The method to determine factors K0 and Kn for a ®nite joint, which is given in [15], is based
on the least squares method and the stress analysis of the overall joint.

5
Examples and discussions
In this Section, three examples will be presented to show the effect of the regular stress term on
the stress ®eld near the singular point. For the examples, different geometries and material
combinations are chosen, which lead to different singular stress exponents.

The results given in the following are for plane strain. The loading is a remote tensile stress
perpendicular to the interface of the joint, Fig. 1. For the FEM calculation, the ABAQUS code
was used with a 8 nodes' standard element. The mesh near the singular point is ®ne.
The smallest length in the element is about 10ÿ6L.

5.1
Joints with jh1j+jh2j< 3608
The geometry of Example 1 is h1 � 135�; h2 � ÿ45�, which is the case with h1 ÿ h2 � p, Fig. 2.
For this geometry, it is known from Eq. (50) that Det��A0�8�8� � 0 if a � ÿ0:879802 and b is
arbitrary. This means that the regular stress term doesn't vanish. Material data E1 � 100 GPa,
m1 � 0:425041, E2 � 1832:41 GPa, m2 � 0:2 are chosen for Example 1, which gives b � ÿ0:1. The
singular stress exponent is x � 0:04827, i.e. there is only one singular term. According to
Eq. (76), if the regular stress term could be neglected, the plot of log10�rij� vs log10�r=L� should
provide straight lines with the slope of ÿx. The stresses obtained by the FEM along h � 90� are
plotted in Fig. 3 in a double-logarithmic scale (here, for sxy the absolute value is presented). It is
evident that the three curves are not parallel straight lines, also for small r=L values. This fact
shows that, in the range of r=L > 10ÿ6, the singular stress ®eld cannot be described by using the
singular stress term exclusively. Therefore, the effect of the regular stress term should be
considered. The factors Kn�n � 0; 1� in Eq. (76) were determined by using the method given in
[15] and K0 � 3:442 MPa, K1 � 2:115 MPa. Using the K-factors as determined, at arbitrary
points stresses can be calculated analytically from Eq. (76). Considering the regular stress term,
a comparison of the stresses obtained from FEM (points) and from Eq. (76) (curves) along
h � 0 is shown in Fig. 4, here, rx is missing due to a jump at the interface. The results
demonstrate that stresses calculated by FEM and from Eq. (76) are in good agreement with each
other in the range near the singular point �r=L < 10ÿ2� when the regular stress term is taken
into account.
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The geometry of Example 2 is h1 � 180�; h2 � ÿ60�, which is shown in Fig. 5 with the overall
geometry and load. For this geometry, from Eq. (64) it is known that Det��A0�8�8� � 0 if
a � ÿ0:642042 or a � 1 and b is arbitrary. Therefore, the regular stress term doesn't vanish.
Material data E1 � 100 GPa, m1 � 0:258878, E2 � 472:009 GPa, m2 � 0:2 are chosen for
Example 2, which gives a � ÿ0:642042 and b � ÿ0:2. The singular stress exponent is
x � 0:48588. Although the singular stress exponent is very large, the effect of the regular stress
term will be shown to be obvious.

The obtained K-factors are K1 � 1:204 MPa, if only the singular term is considered, and
K0 � 3:557 MPa, K1 � 1:186 MPa, when two terms are used. Applying the K factors as deter-
mined, stresses have been calculated from Eq. (76) using either one term or two terms.
Comparison of stresses obtained from FEM and from Eq. (76) along h � ÿ45� is shown in
Fig. 6. It can be seen that if only the singular term is used, the agreement is good only in the
range of r=L < 10ÿ3 or smaller, Fig. 6a. However, if the regular stress term is considered,
agreement is good in a very large range near the singular point for r=L < 10ÿ1, Fig. 6b. To
obtain a good description of the stress ®eld near the singular point over a large range, the
regular stress term should be considered, also for the joint with a large singular stress exponent.

Fig. 3. Dependence of log10�rij� vs.
log10�r=L� along h = 90�; Example 1

Fig. 2. Joint geometry and load; Example 1 with H1=L = 1.695,
H2=L =1, p1=1 MPa and p2 = 3.4284 MPa
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5.2
A joint with an interface crack
The geometry of Example 3 is h1 � 180�, h2 � ÿ180�, which is shown in Fig. 7 with the overall
geometry and loading. For this geometry the regular stress term is always nonzero.

Material data E1 � 400 GPa, m1 � 0:3, E2 � 100 GPa, m2 � 0:2 are chosen for Example 3,
which gives a � 0:61684 and b � 0:24842.

For this joint, the eigenvalue is complex �k � x� ip�. The singular stress exponent is

x � 0:5, p � � 1
2p ln

�
1�b
1ÿb

�
. To calculate the stresses analytically, Eq. (77) should be used. In

Eq. (77), the angular functions are normalized as follows: f c
h �h � 0� � 1; f s

h�h � 0� � 0 for K1,

and f c
h �h � 0� � 0; f s

h�h � 0� � ÿ1 for K2, which are the same as that de®ned in the fracture
mechanics. Following this normalization both eigenvalues x� ip and xÿ ip give the same
information on the stresses.

The obtained K-factors are K1 � 9:290 MPa and K2 � 0:6591 MPa, when only two terms are
used, and K0 � 0:2348 MPa, K1 � 9:336 MPa, K2 � 0:6999 MPa when the regular stress term is
considered. Using the K-factors as determined, stresses have been calculated with Eq. (77) for
the use of two terms only, as well as for three terms. Comparisons of stresses obtained from

Fig. 5. Joint geometry and load Example 2 with H1=L = H2=L =
2, p1 = 4.226 MPa and p2 = 20 MPa

Fig. 4. Comparison of the stresses
along h = 0� calculated by FEM
(points) and from the asymptotic
solution (lines); Example 1
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Fig. 6. Comparison of the
stresses along h � ÿ45� cal-
culated by FEM and from the
asymptotic solution for
Example 2, a only the singular
term is used (1 term), b the
regular stress term is consid-
ered also (2 terms)

Fig. 7. Joint geometry and load; Example 3 with H1=L �
H2=L � 2 and p � 1 MPa
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FEM and from Eq. (77) along h � ÿ90� and h � 135� are shown in Figs. 8±9. It can be seen that
if only the singular terms are used, they are in good agreement only in the range of r=L < 10ÿ3

or smaller, Fig. 8; it should be noted that the stresses are here in a logarithmic scale. However, if
the regular stress term is considered, they are in good agreement in a very large range near the
singular point for r=L < 10ÿ1, Figs. 8 and 9.

6
Conclusions
For a joint under remote mechanical loading, the regular stress term is zero for most joint
geometries and material combinations. However, for a given joint geometry there are in®nite
material combinations corresponding to one or two curves in the Dundurs' diagram, in which
the regular stress term is nonvanishing.

The conditions for a joint with a nonzero regular stress term have been given. Explicit forms
needed to calculate the regular stress term have been presented for a joint with an arbitrary
geometry, and simpli®ed for several special geometries.

The examples have shown that by using the singular terms only, the asymptotic solution can
describe the stress ®eld near the singular point over a small range, even for the case of a joint
with an interface crack.

The signi®cance of applying a regular stress term is due to the fact that the singular and the
regular stress term are both necessary to describe the stress ®eld near the singular point over a
large range, which is the scale of practical interest.

Fig. 8. Comparison of the stresses
along h � 135� calculated by FEM and
from the asymptotic solution for
Example 3

Fig. 9. Comparison of the stresses
along h � ÿ90� calculated by FEM
and from the asymptotic solution
(3 terms) for Example 3
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If one material is ceramic, failure starts from ¯aws in the order of 10 � 100 lm. Therefore,
stresses in the range of 0:0001 < r < 0:1 mm are important, which is corresponding to
0:00001 < r=L < 0:01 for L � 10 mm. As can be seen from the results, the stresses have to be
described including the regular stress term.
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