
Polygonalization of railway wheels
M. Meywerk

Summary A model of a ¯exible wheelset running on ¯exible rails is presented which dem-
onstrates the growth of out-of-round pro®les of the wheels. This process of growing is called
polygonalization. We divide the model into two parts. One part describes the oscillations of
the wheelset and the rails. The excitations, which are a result of the out-of-round wheels, are
due to geometrical terms, while excitations of unsprung masses are not considered. The second
part describes the development of the wheel pro®les and the wear rate due to wear and
hardening, respectively. The two parts can be coupled by means of perturbation theory with
multiple-time scales, [4], [10] as a wear-feedback loop proposed in [6]. As the calculation show,
the greater is the phase shift between the-out-of-round pro®les of the right and the left wheel
the faster the wheels become out-of-round. Furthermore, it is shown, that the ®rst and the
second bending modes of the wheelset play an important role in the growth of polygonized
wheels. It should be emphasized that other reasons for polygonalization may exist too, e.g.
excitations due to unsprung masses, [14].
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1
Introduction
It is reported in the literature that railway wheels become out-of-round, [15], [18], [20]; the
technical term ``polygonalization'' is frequently used. Polygonized wheels cause high forces
and, in particular, noise, e.g. the 100 Hz rumbling in the passenger coach of the German high-
speed train ICE, [2]. Therefore, it is worthful to get some insight into the growth of polygo-
nalization. Rubber damped wheels reduce the noise but seem to be the cause for the serious
accident of an ICE train in Eschede, Germany, in summer 1998.

2
The model
The basic assumption of our consideration is that it is admissible to divide the model into two
parts. One part describes the oscillations of the wheelset and the rails. The oscillations are
forced by out-of-round wheels. We call this part the fast-time model. The other part, which
describes the evolution of the out-of-roundness of the wheels and the evolution of the wear
rate, is called the slow-time model.

First, let us have a closer look at the coupling between the fast- and the slow-time models.
Figure 1 shows the whole model as a control circuit. The initial out-of-roundness which is a
function of an azimuthal angle uw and the initial wear rate are the input quantities of the
circuit. We assume that both the pro®le and the wear rate are periodic functions of uw. The
out-of-round pro®le varies slowly with time. Thus, we can neglect the transient oscillations of
the fast-time model, and consider its forced oscillation for ®xed out-of-round pro®les. We
obtain thus the frictional power and the vertical force in the points of contact. The frictional
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power and the wear rates enter in the equations of evolution of the out-of-roundness, and
determine the loss of mass and, therefore, the change of the pro®le (s. the upper branch of the
¯owchart, Fig. 1). Vertical forces cause the change of the wear rate due to the hardening of the
wheel surface (s. the lower branch of the ¯owchart). The changed pro®les enter again as initial
input in the fast-time model. We assume, that the set of equations of the fast-time model is
linear, and that it does not change as a result of the changed wheel pro®les. The equations of
evolution of the pro®les and the wear rates are nonlinear.

2.1
The fast-time model
In this Section, we give a brief description of the fast-time model sketched in Fig. 2a. It consists
of the rails and the wheelset guided by the wheel frame (since the wheel frame can not rotate,
we prefer this name instead of bogie). The wheel frame moves with constant velocity v in~eg1

direction. The wheel frame and the wheelset are joined by three spring damper pairs, Fig. 2b, at
each end of the axle.

The rails, the rims of the wheels, and the axle are described in the model by one-dimensional
continua; the wheel disks by two-dimensional continua. We call a ¯exible body an n-dimen-
sional continuum (n is a natural number) if the de¯ection(s) depend(s) on n independent
spatial variables. The hubs are assumed to be rigid bodies. We assume a linear viscoelastic law
for the stress-strain relation, i.e.

rij � Ekl
ij 1� g

o
ot

� �
ekl ;

where Ekl
ij is the tensor of elasticity and g is the relaxation time, [7].

The de¯ections uwa and wwa of the axle in~ewa1 and~ewa3 directions, (cf. Fig. 3;
~ewa1 �~eg1;~ewa3 �~eg3), respectively, are governed by two systems of partial differential

Fig. 1. The incorporation of
the fast-time model into the
slow-time model

Fig. 2. a The fast-time model; b the primary suspension of the wheelset
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equations of Timoshenko beams. Due to the rotation of the axle, the two systems are coupled,
[22]. We describe the de¯ection vwa and the rotation bwa of the axle by the equations of a bar
and a torsional bar, respectively. The functions uwa; vwa;wwa; awa; bwa, and cwa depend on the
spatial coordinate y in~ewa2 direction and the time t. Each hub has six degrees of freedom: three
for the translations uwh; vwh;wwh and three for the rotations awh; bwh; cwh, Fig. 4. We drop the
index k � 1; 2 which indicates the wheel-rail pair 1 and 2. The de¯ections of the hubs and those
of the axle at its ends are coupled via geometrical and mechanical boundary conditions.

We assume that the wheel disks are clamped at the hubs. The de¯ections vwd of the disks
perpendicular to their middle plain obey Kirchhoff's plate theory, Fig. 5. The de¯ections
uwr; uwt in the middle plain are governed by the well-known equations of a shell, [21]. The
functions vw; uwr; uwt depend on an azimuthal angle uw, the radial coordinate r and the time t.
The equations of a Timoshenko beam, a torsional bar and a bar describe the motions of the
rims. One can obtain the equations of motion of the rims following the way sketched in [19].

The de¯ections vr and wr of a rail in the~eg2 and~eg3 directions, respectively, obey the
equations of a Timoshenko beam. The corresponding angles are cr and br , Fig. 6. The de¯ection
ur and the rotation ar are governed by the equations of a bar and a torsional bar, respectively.
The de¯ections ur; vr;wr and the angles ar; br; cr depend on the spatial coordinate s and on the
time t.

The wheels and the corresponding rails are coupled via Kalker's linear theory, [12], line-
arized Hertzian contact stiffnesses, geometrical and mechanical boundary conditions as well as
equations which describe the smoothness of the wheels and the rails at the points of contact.
We call them alltogether contact equations. The resulting set of equations is linear, homoge-
neous, autonomous and is composed of partial and ordinary differential as well as algebraic
equations.

We assume that the out-of-round pro®les of the wheels can be decomposed in Fourier series.
As the fast-time model is linear, the forced oscillations caused by a single term of one of these
Fourier series can be calculated separately, and the oscillations caused by all terms can be
calculated then by superposition. In the following, we sketch how the oscillations caused by one
single term are calculated.

For the harmonic excitation we write ur � ûrejxt and consider this excitation as a right-hand
side term. Here j is the imaginary unit and x is the angular velocity of the excitation. First, we

Fig. 3. The de¯ections of the axle

Fig. 4. The degrees of freedom of the hub
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split off the time-dependence ejxt 6� 0 and the spatial dependence by an ejrs- and an ejway-
ansatz, respectively, for one-dimensional continua rails and axle. This leads to standard ei-
genvalue problems for the eigenvalues jr and jwa, which are solved numerically. To ful®ll the
partial differential equations of the wheel disks, we separate the variables uw and r and choose
a polynomial in r for the r-dependence and an ejwuw -ansatz for the uw-dependence. This
proceeding results in an standard eigenvalue problem for the eigenvalue jw, which is solved
numerically, too. The numerical solutions are substituted in the contact equations which lead
to a set of linear algebraic equations. The coef®cients are comprised in a matrix M�x�. We
obtain the forced vibration of the system by inversion of the matrix M�x� and by multiplying
the inverse by ûr . Since the fast- time model is asymptotic stable (in the sense of Ljapunow), the
inverse Mÿ1�x� exists.

2.2
The slow-time model
We start with the above mentioned right-hand side terms of excitation ur � ûrejxt which yield
the input quantities of the slow-time model. Here and in the following, the index k � 1; 2
indicates the wheel-rail pairs 1 and 2, respectively. It is

Fig. 5. The de¯ections of the disk

Fig. 6. The de¯ections of the rail
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Fc3k � P� kH �fwk ÿ frk � ~hwrk ÿ hwr0k�|���������������������{z���������������������}
:�Dfk

: �1�

Here, kH is the linearized Hertzian contact stiffness, the sum Dfk comprises the time-dependent
elastic ¯attening of the wheels and the rails in the contact area. The ¯attening depends on the
de¯ections and deformations of the wheels (uwhk; vwhk;wwhk; awhk; bwhk; cwhk; vwdk; uwdrk; uwdtk;
k � 1; 2) and the rails (urk; vrk;wrk; ark; brk; crk), which are denoted by fwk and frk, respectively,
and on the difference between the mean value of the height of the rim hwr0k and the height ~hwrk

of the out-of-round wheel rim at the point of contact. A further excitation is due to the
geometrical requirement that the tangential planes of a wheel and the corresponding rail are
parallel. The height of the wheel rim is not constant with respect to the azimuthal coordinate
uw. This results in a longitudinal creep, [4], which is the reason for the third excitation
mechanism. We do not write down the corresponding equations due to their length.

The heights hwrk of the rims depend on the slow time s and the angle uw; they are 2p-
periodic functions with respect to uw

hwrk�s;uw � 2p� � hwrk�s;uw� : �2�
The angle uw is a langrangian coordinate, in the sense that each value of uw corresponds to a
material cross section of the rim. We expand hwrk in Fourier series with 2N harmonics

hwrk�s;uw� � hwr0k �
XN

n�ÿN
n 6�0

Cwrnk�s�ejnuw : �3�

The Fourier coef®cients Cwrnk depend on the slow time s; a coef®cient Cwrnk is a complex
conjugate of Cwr�ÿn�k. The height of the rim at the point of contact ~hwrk, which enters into Eq.
(1) is in a linear approximation represented as ~hwrk � hwrk�s;ÿXt�, where X is the mean value
of the angular velocity of the wheel-set. Deviations from this mean value are assumed to be
small, and can be neglected. That means that neither braked nor driven wheelsets are con-
sidered here. Thus the fast time t enters into (1) and the other excitation terms mentioned
above. In case of Eq. (1), we have

Fc3k � P� kH

 
fwk ÿ frk �

XN

n�ÿN
n6�0

Cwrnk�s�eÿjnXt

|���������������{z���������������}
right-hand sides

!
;

and one can recognize the right-hand side excitation terms of the fast-time model.
In the further calculation of wear, only the vertical force in the points of contact and the

frictional power for the forced oscillations of the fast-time model are necessary. As the fast-
time model is linear, the vertical forces, the slips and the spins in the points of contact are
linear functions of the coef®cients Cwrn1;Cwrn2 �n � ÿN; . . . ;N�. For the vertical forces holds

Fc31�s; t� � P�
XN

n�ÿN
n 6�0

�Cwrn1�s�dFn � Cwrn2�s�tFn�eÿjnXt

|���������������������������������{z���������������������������������}
:� ~Fc31

; �4�

Fc32�s; t� � P�
XN

n�ÿN
n 6�0

�Cwrn1�s�~tFn � Cwrn2�s�~dFn�eÿjnXt

|���������������������������������{z���������������������������������}
:� ~Fc32

: �5�

Here, Fc31 is the force in the contact patch between wheel 1 and rail 1, and Fc32 is the force in the
contact patch between wheel 2 and rail 2. The coef®cients dFn and tFn (we call them transfer
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coef®cients) represent the answer of the fast-time model to the single term Cwrn1eÿjnXt and
Cwrn2eÿjnXt, respectively, of the Fourier series of the out-of-round pro®le of wheel 1 (cf. the last
paragraph of the previous section, where x � ÿnX; the coef®cients dFn; tFn result from the
inversions of the matrices M�x��. The numerical results show that the transfer coef®cients
~dFn;~tFn are identical to dFn; tFn, i.e. ~dFn � dFn; ~tFn � tFn; �n � ÿN; . . . ;N�. We have to calculate
the change of the wear rate of the running surface due to hardening. Thus we need the vertical
force for each material point of the running surface. To obtain this force distribution we
transform Eqs. (4), (5) via ÿXt 7!uw. In the case of Eq. (4) we have (similarly to Eq. (5))

~Fc31�s;uw� �
XN

n�ÿN
n 6�0

�Cwrn1�s�dFn � Cwrn2�s�tFn�ejnuw : �6�

Applying Kalker's linear contact theory and the same transformation ÿXt 7!uw, one obtains
the frictional power distribution over the circumference of the running surface of wheel 1
(wheel 2 similarly)

Pfric1�s;uw� � Gacbc
v

2p
�C11m

2
11 � C22m

2
21 � acbcC33U

2
31��s;uw� : �7�

Here, m11 is the longitudinal creep in the~eg1-direction, m21 the lateral creep in the~eg2-direction,
and U31 the spin. The constants ac; bc are the radii of the contact patch ellipse, G is the shear
coef®cient and C11;C22;C33 are Kalker's coef®cients. The slips and the spin in the contact patch
1, m11; m21, and U31 are

m11�s;uw� �
XN

n�ÿN
n6�0

�Cwrn1�s�dm1n � Cwrn2�s�tm1n�ejnuw ; �8�

m21�s;uw� �
XN

n�ÿN
n6�0

�Cwrn1�s�dm2n � Cwrn2�s�tm2n�ejnuw ; �9�

U31�s;uw� � X
awc

v
�
XN

n�ÿN
n 6�0

�Cwrn1�s�dUn � Cwrn12�s�tUn�ejnuw ; �10�

the coef®cients dm1n; tm1n; dm2n; tm2n; dUn; tUn result from the inversion of the matrix M�x�. The
equations for the slips and the spin of contact patch 2 look similar. The constant spin term
Xawc=v is due to the conical form of wheel 1. As the conic angle of wheel 2 is ÿawc, the constant
spin term for the wheel-rail pair 2 is ÿXawc=v.

The evolution equations of the heights of the rims are based on the frictional work hy-
pothesis, [13]

ohwrk

os
�s;uw� � ÿvwk�s;uw�

Z uw�ac=Rw0

uwÿac=Rw0

mc�uÿ uw�Pfrick�s;u� du : �11�

Here, Rw0 is the mean radius of the not worn wheel and vwk is the wear rate of wheel k which
depends on the azimuthal angle uw and the slow time s. We call vwk the wear function. The
®nite length 2ac of the contact patch is taken into account by the weighted mean of the
frictional power, cf. [5] or [9]. For the weight function mc holdsZ uw�ac=Rw0

uwÿac=Rw0

mc�uÿ uw� du � 1 :

We introduce a B-spline for mc, for the de®nition see [17]; the weight function mc is depicted in
Fig. 7.

We assume an evolution equation for vwk
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ovwk

os
�s;uw� � ÿ�vwk�s;uw� ÿ vw0�

Z uw�ac=Rw0

uwÿac=Rw0

mc�uÿ uw�nwwFc3k�s;u� du : �12�

The change of the wear function vwk is similar to the effect of ratchetting under cyclic loading.
The decrease of the wear function is known from measurements of rails, cf. [1]. The saturation
value vw0 is a lower bound for vwk. This behaviour of material parameters is described in [11]
for plastic ratchetting or in [3]. To illustrate the saturation effect, we write down the solution of
Eq. (12) for the special case Fc3 � P

vwk�s;uw� � vw0 1� vwk�0;uw� ÿ vw0

vw0
eÿnwwPs

� �
;

where vwk�0;uw� � vw0 holds.
We expand vwk in Fourier series with N nonzero Fourier coef®cients

vwk�s;uw� �
XN

n�ÿN

Dwrnk�s�ejnu ; �13�

substitute (6) to (10) and (13) into (11) and (12) and solve the integral with respect to u. The
resulting equations are projected onto the functions feÿNuw ; eÿ�Nÿ1�uw ; . . . ; eNuwg by means of a
scalar product

hf ; gi :�
Z 2p

u�0

f �u��g�u� du :

If we do this procedure for both wheels we obtain a system of nonlinear ordinary differential
equations

oCwrnk

os
� fnk�Cwr�ÿN�1;Cwr�ÿN�1�1; . . . ;CwrN1;Dwr�ÿN�1;Dwr�ÿN�1�1; . . . ;DwrN1;

Cwr�ÿN�2;Cwr�ÿN�1�2; . . . ;CwrN2;Dwr�ÿN�2;Dwr�ÿN�1�2; . . . ;DwrN2�;
n � ÿN; . . . ;N; k � 1; 2 ; �14�

oDwrnk

os
� gnk�Cwr�ÿN�1;Cwr�ÿN�1�1; . . . ;CwrN1;Dwr�ÿN�1;Dwr�ÿN�1�1; . . . ;DwrN1;

Cwr�ÿN�2;Cwr�ÿN�1�2; . . . ;CwrN2;Dwr�ÿN�2;Dwr�ÿN�1�2; . . . ;DwrN2�;
n � ÿN; . . . ;N; k � 1; 2 : �15�

The initial values Cwrnk�0� and Dwrnk�0� are given by the initial out-of-round pro®les and the
initial wear resistances.

Fig. 7. The weight function mc
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3
Numerical results
In this section we present some numerical results. We examine mutually the in¯uence of the
symmetry between the two wheels, the in¯uence of the mean velocity of the wheel set, and the
in¯uence of the stiffness of the track.

First of all we have a look at the transfer coef®cients dm1; dm2; dUn; dFn; tm1; tm2; tUn; tFn. In the
calculations of these coef®cients we can, formally, vary n continuously. The absolute values of
the resulting transfer functions are depicted in Fig. 8. Transfer functions are helpful to identify
resonances which are due to eigenmodes of the short-time model. One can see maxima which
can be identi®ed as resonances of the short-time model. The values of the functions for natural
numbers of n yield the transfer coef®cients, e.g. dm1n � dv1�n� for a natural number n. The
coef®cients for negative indices are the complex conjugated of those with positive index, e.g.
dm1�ÿn� � dm1n.

The eigenmodes which cause a part of these resonances and which are responsible for
polygonalization are depicted in Figs. 11 to 14, the corresponding eigenvalues given in Fig. 9.
The undeformed system is sketched in Fig. 10, although the details have been dropped. The
viewing directions are: the reverse~eg2 direction in the upper left part, the~eg1 direction in the
upper right part, the~eg3 direction in the lower right part and the (1;ÿ0:5; 0:2��~eg1;~eg2;~eg3�T-
direction in the lower left part of the ®gures. The centers of mass of the hubs are marked by
crosses, the small circles represent the hubs, the large circles visualize the rims. The straight
lines show the vertices of the rail heads and the centers of shear of the rails.

In Figs. 11 to 14, the translated and rotated hubs are depicted as bold, small circles where the
translation can be recognized by the bold straight lines joining the crosses, e.g. Fig. 12, upper
left part. For these positions of the hubs the undeformed rims are depicted as large, light
circles, e.g. Fig. 11, lower left part. To get a better impression of the deformation of the rims,
light circles and the deformed, bold sketched rims are joined by bold lines. If the light, large
circles and the bold sketched rims coincide the rims are not deformed, e.g. Fig. 13. The centers
of mass of the de¯ected hubs are marked by crosses, too, and they are joined by a light straight
line. The light and bold lines which represents the deformed axle are joined by bold straight
lines, which are necessary to get an impression of the deformations of the axle, e.g. Fig. 12.

We focus on those eigenmodes which are important for the growth of polygonalization.
These are the eigenmodes belonging to the eigenvalues k2; k3; k4, and k5.

Fig. 8a,b. The absolute values of the transfer functions; the relationships between the eigenvalues kk of the
short-time model and the maxima of the transfer functions are marked
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The characteristics of the eigenmodes depicted in Figs. 11 and 12 (k2 and k3) are the
deformations of the wheel discs with one nodal diameter and the ®rst and second bending
mode of the axle. These eigenmodes play an important part for the maxima of the transfer
function of the longitudinal creep transfer function dm1 and tm1.

The deformation of the wheels are very small for the eigenmodes of k4 and k5. These
eigenmodes are determined by the vertical motion of the wheels: in Fig. 13 in phase (sym-
metric) and in Fig. 14 out of phase (skew-symmetric). They are important for the maxima of
the transfer functions for the vertical forces dF and tF .

Let us clear which harmonics of the out-of-roundness will likely grow faster than the others.
To do this, we look at the system of ordinary differential equations (14), (15), and extract those
equations and terms which cause the fast growth. The equations containing the leading terms of
the right-hand side, i.e. those terms with the largest absolute values, are in the case of wheel 1
(analogously wheel 2)

oCwr51

os
� ÿS1 ÿ S2 ÿ � � � ; �16�

where

Fig. 9. Eigenvalues of the short-
time model

Fig. 10. The undeformed wheelset
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Fig. 11. The eigenmode to the
eigenvalue k2 � �ÿ7:76 �
j526:9�=s

Fig. 12. The eigenmode to the ei-
genvalue k3 � �ÿ12:2� j529:2�=s

Fig. 13. The eigenmode to the
eigenvalue k4 � �ÿ44:7 �
j630:5�=s
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S1 :� Dwr01Gacbc
v

2p
C11Mc5�Cwr11dm11 � Cwr12tm11��Cwr41dm14 � Cwr42tm14� ;

S2 :� Dwr51Gacbc
v

2p
C11

XN

n�1

�Cwrn1dm1n � Cwrn2tm1n��Cwr�ÿn�1dm1�ÿn� � Cwr�ÿn�2tm1�ÿn��
 !

;

oDwr51

os
� ÿ�Dwr01 ÿ vw0�Mc5nww�Cwr51dF5 � Cwr52tF5� � � � � ; �17�

where

Mcn :�
Z uw�ac=Rw0

uwÿac=Rw0

mc�uÿ uw�ejnu du :

Similar equations hold for the complex conjugated coef®cients Cwr�ÿ5�1 and Dwr�ÿ5�1. The ab-
solute value of Mc5 is very close to one, and for that reason its in¯uence is negligible. The
magnitude of the absolute values of the ®rst term S1 of (16) is large because the coef®cients of
the ®rst harmonics Cwr11, Cwr12 are large, cf. measurements in [15], and also because the
transfer coef®cients dm14; tm14 are large, Fig. 15. In the second term S2, the leading factor is Dwr5.
The large value of Dwr5 results from Eq. (17). In this equation, the magnitudes of the transfer
coef®cients dF5; tF5, Fig. 16, are the reason for the fast growth of Dwr51. For clarity, the transfer
functions split up in their real and imaginary parts are depicted in Figs. 15 and 16.

We have thus two mechanisms which are the main reason for polygonalization.
The ®rst one is the maximum in the longitudinal slip caused by the excitation of the

eigenmodes k2; k3. The eigenmodes correspond to the ®rst and the second bending modes of
the wheelset. The mode of k2 is excited if hwr1 � hwr2, i.e. the wheels are symmetrically out-of-
round, and that of k3, if hwr1 � ÿhwr2, i.e. the wheels are skew-symmetric out-of-round. For real
wheelsets it is likely that the pro®les are a combination of symmetric and skew-symmetric
pro®les. Therefore, both eigenmodes are important for the growth of out-of-roundnesses.

The second mechanism is due to the spatial dependence of the wear coef®cients, which are
mainly in¯uenced by the symmetric and skew-symmetric eigenmodes k4, k5, respectively. This
mechanism forces primarily the ®fth harmonic to grow.

The ®rst mechanism causes also the growth of the third harmonic

oCwr31

os
�ÿDwr01Gacbc

v
2p

C11�Mc3�Cwr�ÿ1�1dm11 � Cwr�ÿ1�2tm11�
��Cwr41dm14 � Cwr42tm14� � � � �

In the further polygonalization, it leads to a fast growth of the fourth harmonic because the
third and the ®fth harmonic combine with the ®rst harmonic upto fourth-order terms. Thus,

Fig. 14. The eigenmode to the ei-
genvalue k5 � �ÿ62:8� j719:0�=s
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Fig. 15. Real and imaginary parts of the transfer functions dm1; tm1; the dots mark the corresponding
transfer coef®cients; velocity v � 65 m/s

Fig. 16. Real and imaginary parts of the transfer functions dF ; tF ; the dots mark the corresponding
transfer coef®cients; velocity v � 65 m/s

Fig. 17. Polygonalization for asymmetric wheelsets
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the maximum in the transfer functions near n � 4 will likely cause a growth of the fourth
harmonic for a velocity of v � 65 m/s. For higher velocities, the orders of those harmonic which
grow quickest decrease. The growth of the fourth harmonic is in accordance with measure-
ments of the 100 Hz-noise in ICE trains, [16].

We give now some examples of the polygonalization of wheels. In the diagrams of Figs. 17 to
22, the differences Dhwr between the mean initial height hwr0 and the ®nal height of the rim hwr

are shown. Instead of giving the running time s, we write down here the running distance L.
We start with the consideration of a wheelset, where the two wheels are sinusoidal out-of-

round, i.e. hwrk�0;uw� � hwr0 � ĥwr sin�uw � ~uk�; k � 1; 2. We choose ĥwr � 200 lm. The in-
serts in Fig. 17 sketch the initial pro®les which are not phase-shifted (Fig. 17a, ~u1 � 0; ~u2 � 0),
in anti-phase (Fig. 17b, ~u1 � 0; ~u2 � p) and 90� phase-shifted (Fig. 17c, ~u1 � 0; ~u2 � ÿp=2). It
is obvious that the greater the phase shift the quicker the wheels are worn down. The travel
distance is 1 170 100 km in Fig. 17a, and the trough to the peak distance is about 1:2 mm. The
travel distance is 130 000 km in Fig. 17b, the trough to peak distance is about 3:0 mm. It is
obvious that the skew-symmetric wheelset is worn down much quicker than the symmetric one.

The initial out-of-roundness of the wheels for the results shown in the last three examples is
depicted in Fig. 18. One recognizes that the ®rst harmonic is larger than the higher harmonics,
as con®rmed by measurements, too, [15].

In Fig. 19a, the pro®les of the out-of-round wheels are sketched which occur after a running
distance of L � 455 000 km at v � 65 m/s. In Figs. 19b, c, the absolute values of the Fourier

Fig. 18. Initial out-of-roundness of the wheels

Fig. 19a±c. The pro®les of the wheels at the running distance L � 455 000 km. a The pro®les as functions
of uw, b, c the absolute values of the Fourier coef®cients
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coef®cients Cwrnk are shown. Their maximal values are at n � 1, around n � 5 and n � 8. The
maximum of the ®rst harmonic is due to the initial values of the coef®cients. There are two
possible reasons for the maxima near n � 5: these are the two terms S1 and S2 in (16); the
strong in¯uence of the ®rst term is due to the maximum in the transfer functions dm1; tm1 and it
is due to the large absolute values of the ®rst harmonics Cwr11;Cwr12; the in¯uence of the second
term is due to the maximum of the transfer functions dF5; tF5 which results in the growth of

Fig. 20a±c. The wear function at the running distance L � 455 000 km. a The pro®les as functions of uw,
b, c the absolute values of the Fourier coef®cients

Fig. 21. Polygonalization in dependence of the velocity of the wheelset

118



Dwr51;Dwr52;Dwr�ÿ5�1;Dwr�ÿ5�2. This can be seen in Fig. 20, where the wear functions are de-
picted and the ®fth harmonic represents a maximum. The fast growth of the ®fth-order terms
of vw1 and vw2 can be concluded from (17).

In Fig. 21 is shown the in¯uence of the train velocity on the polygonalization. One can see
that, in general, the wheels become out-of-round not faster if the velocity is higher. For the
velocities v � 55 m/s and v � 59 m/s, the wheels become out-of-round very slowly, whereas at
other velocities the process is faster.

The last example shows the in¯uence of the track stiffness and damping parameters kSw; bSw,
respectively, which are related to the parameters of the Winkler foundation, [8]. The results are
shown in Fig. 22, and one can recognize that the higher the vertical track stiffness the quicker
the out-of-round pro®les grow. That means that out-of-round wheels will occur often in
modern high-speed passenger trains because the new high-speed tracks are stiffer than the
older ones.

4
Conclusions
The presented model allows for the prediction of polygonalization of railway wheels. It shows
that unsymmetric out-of-round wheels of one wheelset are worn quicker than symmetric ones.
Furthermore, the dependence of the polygonalization from the velocity of the wheelset and the
foundation parameters of the track are investigated. It has been shown that the eigenvalues
indicate at the harmonics which grow faster than the other ones.
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