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Summary For a two-dimensional piezoelectric plate, the thermoelectroelastic Green's func-
tions for bimaterials subjected to a temperature discontinuity are presented by way of Stroh
formalism. The study shows that the thermoelectroelastic Green's functions for bimaterials are
composed of a particular solution and a corrective solution. All the solutions have their sin-
gularities, located at the point applied by the dislocation, as well as some image singularities,
located at both the lower and the upper half-plane. Using the proposed thermoelectroelastic
Green's functions, the problem of a crack of arbitrary orientation near a bimaterial interface
between dissimilar thermopiezoelectric material is analysed, and a system of singular integral
equations for the unknown temperature discontinuity, de®ned on the crack faces, is obtained.
The stress and electric displacement (SED) intensity factors and strain energy density factor
can be, then, evaluated by a numerical solution at the singular integral equations. As a con-
sequence, the direction of crack growth can be estimated by way of strain energy density
theory. Numerical results for the fracture angle are obtained to illustrate the application of the
proposed formulation.
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1
Introduction
In engineering practice, most structures contain internal interfaces. When a heat ¯ow in a
structure is disturbed by some defects, such as holes or cracks, the local temperature gradient
around the defects is increased, and the temperature is often discontinuous across the defects.
Thermal disturbances of this type may produce material failure. Therefore, the thermal analysis
for such structures is very important in engineering. A number of studies dealing with ¯aw-
induced thermal stresses in in®nite regions has been done [1±3]. Applying the equations for the
distribution of thermal stresses in an anisotropic elastic half-space, [4], a solution for the two-
dimensional Grif®th crack obstructing a uniform heat ¯ow in a general anisotropic medium as
given in [5]. Using the techniques of Fourier transforms and multiple integration, the penny-
shaped crack embedded in a transversely isotropic or orthotropic material was studied in [6].
Based on the Stroh's formalism and complex conformal mapping, thermal stresses for an
anisotropic elastic plate with an elliptic hole subjected to uniform heat ¯ow in x2-direction were
obtained in [7]. The above authors used complex-variable methods or Fourier transforms to
represent the stress and displacement ®elds. An alternative method, which has been extensively
used in thermoelastic problems, is to represent the elastic ®elds in terms of Green's function
[8]. It is well known that the Green's function method has some important advantages over the
above-mentioned methods, such as transform methods. First, we note that the solution is
expressed in terms of physical variables so that it is easier to determine at intermediate stages
whether the solution is physically reasonable [9]. In particular, it is usually possible to express
the solution in terms of distributions of Green's function over a ®nite range, with bounded or
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integrable singular behaviour at the end points. This enables us to easily represent a crack
problem with the integral equations. Recently, the simplest solution of thermoelastic Green's
functions has been obtained for a two-dimensional problem of an in®nite elastic plate subjected
to a constant temperature discontinuity along the axis x2 � 0 [9]. However, the formulation
cannot be applied to the case of bimaterial problems.

In view of the above analysis, the purpose of this paper is to present the thermo-electro-
elastic Green's function for bimaterial problems due to the thermal analog of a line dislocation
with temperature discontinuity. The proposed Green's functions are, then, used to derive the
thermoelectroelastic solution for an inclined crack near interface between two materials, which
result in a system of singular integral equations. The integral equations can be solved nu-
merically and used to calculate some fracture parameters, such as SED intensity factors and
strain energy density factor.

2
Basic formulation
Consider an anisotropic piezoelectric solid in which all ®elds are assumed to depend only on
in-plane coordinates x1 and x2. The SED tensor P, the elastic displacement and electric po-
tential (EDEP) vector U, temperature h and heat ¯ux h � fh1h2gT in the solid subjected to
loading can be expressed in terms of complex analytic functions as follows [10,11]:

U � Im�Af�z�q� cg�zt��;
/ � Im�Bf�z�q� dg�zt��;

P1 � ÿ/;2;P2 � /;1; �1�
h � Im�g0�zt��;

h1 � Im�p�ikg00�zt��;
h2 � Im�ÿikg00�zt��;

where overbars denote complex conjugation, Im stands for the imaginary part, q is a constant
vector to be determined by the boundary conditions, U � fu1u2u3/gT ; Pj � fr1jr2jr3jDjgT ,
k �

������������������������
k11k22 ÿ k2

12

p
, j � 1; 2; i � ������ÿ1

p
; f�z� � ff �z1�f �z2�f �z3�f �z4�gT , f and g are functions of

the generalised complex variables zi and zt, de®ned by zi � x1 � pix2 and z1 � x1 � p�x2; pi and
p� depend on the material constants, and are determined by ®nding the roots of the following
characteristic equations [11]:

kQ� p�R� RT� � p2Tk � 0;

k11 � 2k12p� � k22p2
� � 0;

�2�

respectively, in which

QIK � E1IK1; RIK � E1IK2; TIK � E2IK2 ; �3�
where kij are coef®cients of heat conduction, EiJKm are the generalised material constants
de®ned by

EiJKm �
Cijkm J;K � 1; 2; 3
emij J � 1; 2; 3; K � 4
eikm J � 4; K � 1; 2; 3
ÿeim J � K � 4

8><>: �i;m � 1; 2; 3� �4�

here Cijkm, eijk and ejk are elastic moduli, piezoelectric and dielectric constants, respectively.
The additional multipliers in Eq.(1) are de®ned by [11]

�Q� p�R� RT� � p2T�A � 0;

B � RTA� TAP;

P � diag�p1 p2 p3 p4�;
c � �Q� p��R� RT� � p2

�T�ÿ1fb1 � p�b2g;
d � �RT � p�T�cÿ b2;

�5�
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where

b1 � fb11 b21 b31 k1gT; b2 � fb21 b22 b32 k2gT ; �6�
in which bij and ki are the thermal stress coef®cients and pyroelectric constants, respectively.

3
The Green's function for temperature field

3.1
Green's function for homogeneous materials
For an in®nite domain subject to the thermal analog of a line dislocation with temperature
discontinuity h0 located at x1 � x2 � 0, the solution of Eq:�1�4 is of the form [9]

h�zt� � h0

2p
Im�ln zt� : �7�

It is easy to show that the general solution at point zt due to a single dislocation at ẑt � x̂1�
p�x̂2 is as follows:

h�zt� � h0

2p
Im�ln y1� : �8�

The corresponding heat ¯ux is given by

hi � ÿ h0

2p
Im

ki1 � p�ki2

y1

� �
; �9�

where y1 � zt ÿ ẑt .

3.2
Green's function for bimaterials
Consider a bimaterial plate for which the upper half-plane �x2 > 0� is occupied by material 1;
and the lower half-plane �x2 < 0� is occupied by material 2. They are rigidly bonded together so
that

h�1� � h�2�; h
�1�
2 � h

�2�
2 at x1 � 0; �10�

where the superscripts (1) and (2) label the quantities relating to the material 1 and 2, res-
pectively.

To satisfy the interface conditions Eq.(10), the solutions (8) and (9) are modi®ed as

h�1� � h0

2p
Im�ln y

�1�
1 � �

h1

2p
Im�ln y

�1�
2 �; �11�

h
�1�
i � ÿ h0

2p
Im

k
�1�
i1 � p

�1�
� k

�1�
i2

y
�1�
1

 !
ÿ h1

2p
Im

k
�1�
i1 � p

�1�
� k

�1�
i2

y
�1�
2

 !
; �12�

for Im�zt� > 0, and

h�2� � h2

2p
Im�ln y

�2�
1 �; �13�

h
�2�
i � ÿ h2

2p
Im

k
�2�
i1 � p

�2�
� k

�2�
i2

y
�2�
1

 !
; �14�

for Im�zt� < 0, where h1 and h2 are two unknown constants to be determined, and
y
�1�
1 � zt

�1� ÿ ẑ
�1�
t , y

�1�
2 � z

�1�
t ÿ ẑ

�1�
t , y

�2�
1 � z

�2�
t ÿ ẑ

�1�
t . It should be noted that the source point is

assumed to be located in the material 1. Substitution of Eqs. (11)±(14) into Eq. (10) yields the
values of h1 and h2 as
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h1 � b1h0; h2 � b2h0; b1 � k�2� ÿ k�1�

k�2� � k�1�
; b2 � 2k�1�

k�2� � k�1�
: �15�

4
Thermoelectroelastic Green's functions

4.1
Particular solution
From Eqs. �1�1, �1�2 and �1�4, the particular solution to the thermoelectroelastic ®eld can be
expressed as

Up � Im�cg�zt��;
/p � Im�dg�zt��; �16�
h � Im�g0�zt��;

where the subscript ``p'' refers to particular solution.
By comparing Eqs. (11) and (13) with Eq. �16�3; the function g�zt� may be assumed in the

form,

g�1��z�1�t � �
h0

2p
fy�1�1 �ln y

�1�
1 ÿ 1� � b1y

�1�
2 �ln y

�1�
2 ÿ 1�g; �17�

for Im�z�1�t � > 0, and

g�2��z�2�t � �
b2h0

2p
y
�2�
1 �ln y

�2�
1 ÿ 1�; �18�

for Im�z�2�t � < 0. The corresponding expressions for stress function and EDEP can, then, be
given by

U
�1�
p �z�1�t � �

h0

2p
Imfc�y�1�1 �ln y

�1�
1 ÿ 1� � b1y

�1�
2 �ln y

�1�
2 ÿ 1��g;

/�1�p �z�1�t � �
h0

2p
Imfd�y�1�1 �ln y

�1�
1 ÿ 1� � b1y

�1�
2 �ln y

�1�
2 ÿ 1��g;

�19�

for Im�z�1�t � > 0, and

U
�2�
p �z�2�t � �

b2h0

2p
Imfc�y�2�1 �ln y

�2�
1 ÿ 1��g;

/�2�p �z�2�t � �
b2h0

2p
Imfd�y�2�1 �ln y

�2�
1 ÿ 1��g;

�20�

for Im�z�2�t � < 0. The solutions (19) and (20) do not, generally, satisfy the interface conditions
at x2 � 0. Therefore, a corrective solution is needed to develop when superposed on the
particular solutions (19) and (20) the interface condition will be satis®ed. This is completed in
the coming subsection.

4.2
The thermoelectroelastic Green's functions
Again, consider a bimaterial plate for which the material 1 occupies the upper half-plane
�x2 > 0� and the material 2 occupies the lower half-plane �x2 < 0�. They are rigidly bonded so
that

U�1� � U�2�; /�1� � /�2� at x2 � 0 : �21�
Owing to the fact that f�z� and g�zt� have the same order to affect the EDEP and SEP in Eqs.(1)1
and �1�2, possible function forms come from the portion of solution g�zt�. This is
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f �z �i�� � diag�f �y��i�1 �; f �y��i�2 �; f �y��i�3 �; f �y��i�4 ��; i � 1; 2; �22�
where

f �y� � y�ln yÿ 1�;
y
��k�
i � z

�k�
i ÿ ẑ

�1�
t ; i � 1; 2; 3; 4; k � 1; 2 :

Thus, the resulting expressions of U�1� and /�1� can be given as

U�1� � Im�A�1�f�z�1��q1� �
h0

2p
Imfc�1��y�1�1 �ln y

�1�
1 ÿ 1� � b1y

�1�
2 �ln y

�1�
2 ÿ 1��g; �23�

/�1� � Im�B�1�f�z�1��q1� �
h0

2p
Imfd�1��y�1�1 �ln y

�1�
1 ÿ 1� � b1y

�1�
2 �ln y

�1�
2 ÿ 1��g; �24�

for Im�z�1�t � > 0, and

U�2� � Im�A�2�f�z�2��q2� �
b2h0

2p
Imfc�2�y�2�1 �ln y

�2�
1 ÿ 1�g; �25�

/�2� � Im�B�2�f�z�2��q2� �
b2h0

2p
Imfd�2�y�2�1 �ln y

�2�
1 ÿ 1�g; �26�

for Im�z�2�t � < 0 The substitution of Eqs. (23)±(26) into Eq. (21) yields

A�1�q1 ÿ A�2�q2 �
h0

2p
�b2c�2� � b1c�1� ÿ c�1�� ;

B�1�q1 ÿ B�2�q2 �
h0

2p
�b2d�2� � b1d

�1� ÿ d�1�� : �27�

Solving Eq.(27) for q1 and q2, one obtains

q1 �
h0

2p
�B�1� ÿ B�2�A�2�ÿ1A�1��ÿ1

� f�b2d�2� � b1d
�1� ÿ d�1�� ÿ B�2�A�2�ÿ1�b2c�2� � b1c�1� ÿ c�1��g;

q2 �
h0

2p
�B�1�A�1�ÿ1A�2� ÿ B�2��ÿ1

� f�b2d�2� � b1d
�1� ÿ d�1�� ÿ B�1�A�1�ÿ1�b2c�2� � b1c�1� ÿ c�1��g

�28�

Thus, the thermoelectroelastic Green's functions can be obtained by substituting Eq. (28) into
Eqs. (23)±(26).

Now, let us discuss the image singularities properties of Eqs. (23)±(26). The ®rst term in Eq.
(23) represents image singularities for material 1 which are located at the upper half-plane
occupied by the material. They can be shown by writing

y
��1�
j � z

�1�
j ÿ ẑ

�1�
t � z

�1�
j ÿ z

t�1�
j ; �29�

with

z
t�1�
j � x

t�1�
j1 � p

�1�
j x

t�1�
j2 � x̂1 � p�1�� x̂2 ;

p
�1�
j � p

�1�
jR � ip

�1�
j1 ; p�1�� �

1

k
�1�
22

�k�1�12 � i

����������������������������������
k
�1�
11 k

�1�
22 ÿ �k�1�12 �2�

q
:

�30�

The last equality in Eq:�30�1 provides the equations to determine locations of the image
singularity as
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x
t�1�
j1 � p

�1�
jR x

t�1�
j2 � x̂1 � k

�1�
12 x̂2

k
�1�
22

; p
�1�
j1 x

t�1�
�j2� �

x̂2

k
�1�
22

��������������������������������
k
�1�
11 k

�1�
22 ÿ �k�1�12 �2

q
: �31�

Since p
�1�
j1 and x̂2 are positive by de®nition, it follows that x

t�1�
j2 > 0, which indicates that the

image singularity for f �y��1�j1 � is located in the upper half-plane. The image singularities for
Eq.(25) can be obtained similarly, and they are also located in the material 1. The conclusion is
that there are ®ve image singularities, four of which are located in the upper half-plane, and the
other one image singularity is in the lower half-plane.

5
Interaction between crack and interface

5.1
Boundary conditions
The geometrical con®guration of the problem to be solved is depicted in Fig. 1, showing a crack
with an orientation angle a and length 2c near an interface between materials 1 and 2. The
corresponding boundary conditions are as follows:

± along the inclined crack

tn � ÿP1 sin a�P2 cos a � 0;

hn � ÿh1 sin a� h2 cos a � 0;
�32�

± at in®nity

h12 � h0; P11 � P12 � h11 � 0; �33�
where n stands for the normal direction to the lower face of the inclined crack, tn is the surface
traction-charge vector.

It is convenient to represent the solution as the sum of a uniform heat ¯ux in an un¯awed
solid which involves no thermal stress and a corrective solution in which the boundary con-
ditions are:

± along the inclined crack

tn � ÿP1 sin a�P2 cos a � 0;

hn � ÿh1 sin a� h2 cos a � ÿh0 cos a;
�34�

± at in®nity

P11 � P12 � h11 � h12 � 0 : �35�
In the following sections, we will use Eqs. (34) and (35) instead of Eqs.(32) and (33).

5.2
Singular integral equations
The boundary conditions �34�2, can be satis®ed by rede®ning the discrete Green's functions h0

in Eq.(12) in terms of distributing Green's functions h0�n� de®ned along the crack line

Fig. 1. Geometry of the inclined crack
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z
�1�
t � p�1�� d � gz�; ẑ

�1�
t � p�1�� d � nz�; z� � cos a� p�1�� sin a;

where d and a are shown in Fig. 1. Enforcing the satisfaction of the applied heat ¯ux conditions
on the crack faces, a singular integral equation for the Green's function is obtained as

1

p
Re

Z 1

ÿ1

1

t0 ÿ t
� K0�t0; t�

� �
ĥ0�t�dt

� �
� 2h0 cos a

k�1�
; �36�

where

ĥ0�t� � h0�n�; t � cn; t0 � cg;

and

K0�t0; t� � b1Im
z�

ct0z� ÿ ctz� � �p�1�� ÿ p�1�� �d

" #
; �37�

is a regular function.
In addition to Eq.(36), the single-valuedness of the temperature around a closed contour

surrounding the whole crack requires thatZ 1

ÿ1

ĥ0�t�dt � 0: �38�

The singular integral equation (36), combined with Eq.(38), can be solved numerically [12]. To
this end, let

ĥ0�t� � H�t�������������
1ÿ t2
p �

Pn
k�1

BkTk�t�������������
1ÿ t2
p ; �39�

where H�t� is a regular function de®ned in a closed interval jtj � 1, Bk are the real unknown
coef®cients, and Tk�t� the Chebyshev polynomials. Thus, the discretized form of Eqs.(36) and
(38) may be written as [12]

Xn

k�1

H�tk�
n

1

t0r ÿ tk
� K0�t0r; tk�

� �
� 2h0 cos a

k�1�
;

Xn

k�1

H�tk� � 0;

�40�

where

tk � cos
�2kÿ 1�p

2n

� �
; k � 1; 2; . . . ; n;

t0r � cos
rp
n

� �
; r � 1; 2; . . . ; nÿ 1:

Equation (40) provides a system of n linear algebraic equation to determine H�tk�, and then Bk.
Once the function H�t� has been found, the corresponding SED can be given from Eqs.�1�3 and
(24) in the form

P�1�1 � ÿ/
�1�
;2 � ÿ

1

2p

Z c

ÿc

Im�B�1�P�1�hln z�1�iq1 � d�1�p�1�� �ln y
�1�
1 � b1ln y

�1�
2 �h0�n�dn;

P�1�2 � /
�1�
;1 �

1

2p

Z c

ÿc

Im�B�1�hln z�1�iq1 � d�1��ln y
�1�
1 � b1ln y

�1�
2 �h0�n�dn; �41�
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where

hln z�1�i � diag�ln y
��1�
1 ; ln y

��1�
2 ; ln y

��1�
3 ; ln y

��1�
4 �;

y
��1�
i � z

�1�
i ÿ ẑ

�1�
i � z

�1�
i ÿ nz� ÿ p�1�� d; i � 1; 2; 3; 4:

�42�

Thus, the traction-charge vector on the crack faces is of the form

tn�g� � ÿP�1�1 �g� sin a�P�1�2 �g� cos a

� 1

2p

Z c

ÿc
Im �B�1��I cos a� P�1� sin a�hln z�1�iq1

� d�1��cos a� p�1�� sin a��ln y
�1�
1 � b1ln y

�1�
2 ��h0�n�dn: �43�

It is obvious that tn�g� 6� 0 on the crack faces jgj � c. To satisfy the traction-charge-free
condition �34�1, we must superpose a solution of the corresponding isothermal problem with a
traction-charge vector equal and opposite to that of Eq.(43) in the range jgj � c. The elastic
solution for a singular dislocation of strength b0 has been given in the literature [10]. This
solution can be straightforwardly extended to the case of electroelastic problem as

P�1�1 � ÿ
1

p
Im�B�1�hp�1�i �z�1�i ÿ p

�1�
i d�ÿ1iB�1�T�b0

ÿ 1

p

X4

b�1

Im�B�1�hp�1�i �z�1�i ÿ p
�1�
b d�ÿ1iB�IbB

�1�T �b0 �44�

P�1�2 �
1

p
Im�B�1�h�z�1�i ÿ p

�1�
i d�ÿ1iB�1�T �b0

� 1

p

X4

b�1

Im�B�1�h�z�1�i ÿ p
�1�
b d�ÿ1iB�IbB

�1�T �b0 �45�

where
Ib � diag�d1bd2bd3bd4b�; dij � 1 fori � j;

dij � 0 for i 6� j; and

h��ii � diag���1��2��3��4�;
B� � B�1�ÿ1�Iÿ 2�Mÿ1

1 �M
ÿ1
2 �ÿ1Lÿ1�

with

Mj � ÿiB�j�A�j�ÿ1; j � 1; 2;

L � ÿ2iB�1�B�1�T:

Therefore, the boundary condition �34�1 will be satis®ed if

L

2p

Z c

ÿc

b0�n�dn
gÿ n

�
Z c

ÿc

K0�g; n�b0�n�dn � ÿtn�g�; �46�

where

K0�g; n� � 1

p

X4

b�1

Im�B�1�hz�j �z�1�j ÿ ẑ
�1�
bc �ÿ1iB�IbB

�1�T
; �47�

with

z�j � cos a� p
�1�
j sin a; z

�1�
j � gz�j � p

�1�
j d; ẑ

�1�
bc � nz�b � p

�1�
b d:
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For single-valued displacements and electric potential around a closed contour surrounding
the whole crack, the following conditions have also to be satis®ed:Z c

ÿc

b0�n�dn � 0: �48�

As was done previously, let g � ct0, n � ct, and

b0�n� � H�n���������������
c2 ÿ n2

p �
Pn
k�1

EkTk�t�������������
1ÿ t2
p ; �49�

where Ek � fEk1;Ek2;Ek3;Ek4gT . Thus, from Eqs.(46) and (48), we obtain

Xm

k�1

1

n

L

2c�t0r ÿ tk� � K0�t0r; tk�
� �

H�ctk� � ÿtn�t0r�;

Xm

k�1

H�ctk� � 0:

�50�

Equations (50) provide a system of 4m linear algebraic equations to determine H�ctk� and then
Ek. Once the function H�ctk� has been found from Eq.(50), the stresses and electric displace-
ments Pn�g� in a coordinate local to the crack line can be expressed in the form

Pn�g� � X�a� L

2p

Z c

ÿc

b0�n�dn
gÿ n

�
Z c

ÿc

K0�g; n�b0�n�dn� tn�g�
� �

; �51�

where the 4� 4 matrix X�a�, whose components are the cosine of the angle between the local
coordinates and the global coordinates, is in the form

X�a� �
cos a sin a 0 0
ÿ sin a cos a 0 0

0 0 1 0
0 0 0 1

2664
3775 : �52�

Using Eq.(31), we can evaluate the stress-intensity factors

K� � fKII;KI;KIII;KDgT

at the tips, e.g. at the right tip of the crack �n � c� by the following de®nition:

K� � lim
n!c�

�������������������
2p�nÿ c�

p
Pn�n�: �53�

Combined with the results of Eq.(31), it then leads to

K� �
�����
p
4c

r
X�a�LH�c�: �54�

Thus, the solution of the singular integral equation enables the direct determination of the
stress-intensity factors.

5.3
Direction of crack initiation
The strain energy density criterion [13] will be used to predict the direction of crack initiation
in the thermopiezoelectric bimaterials. To make the derivation tractable, the crack tip ®elds
are ®rst studied. In doing this, a polar coordinate system �r;x� centred at a crack tip, say the
right tip of the crack, �x1; x2� � �c cos a; d � c sin a� and x � 0 along the crack line is used,
Then, the variable z

�1�
k becomes
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z
�1�
k � p

�1�
k d � c�cos a� p

�1�
k sin a� � r�cos�a� x� � p

�1�
k sin�a� x��: �55�

With this coordinate system, SED ®elds near the crack tip can be evaluated by taking the
asymptotic limit of Eq.(51), and using expressions (44) and (45) as r ! 0

P�1�1 �r;x� �
�������
1

2cr

r
Im�B�1� p

�1�
k������������������������������

z�k�a�z�k�a� x�p* +
B�1�T �H�c� �

�������
1

2cr

r
V1�x�; �56�

P�1�2 �r;x� � ÿ
�������
1

2cr

r
Im�B�1� 1������������������������������

z�k�a�z�k�a� x�p* +
B�1�T�H�c� �

�������
1

2cr

r
V2�x�; �57�

where

z�k�x� � cos x� p
�1�
k sin x

For a thermopiezoelectric material, the strain energy density factor S�x� can be calculated
by considering the related thermoelectroelastic potential energy W . The relationship
between the two functions is as follows:

S�x� � rW � r

2
fP1P2gTFfP1P2g; �58�

where the matrix F is the inverse of stiffness matrix E. The substitution of Eqs.(56) and (57)
into Eq.(58), leads to

S�x� � 1

4c
fV1V2gTFfV1V2g: �59�

Referring to the Ref. [14], the strain energy density criterion states that the direction of
crack initiation coincides with the direction of the strain energy density factor Smin, i.e. the
necessary and suf®cient condition of crack growth in the direction x0 is that

oS

ox

����
x�x0

� 0 and
o2S

ox2

����
x�x0

> 0: �60�

Substituting Eq.(59) into Eq.�60�1, yields

fV1iV2igTF
o

ox
fV1iV2igT � 0: �61�

Solving Eq.(61) several roots of x may be obtained. The fracture angle x0 will be the one
satisfying Eq.�60�2.

6
Numerical results
In this section, the numerical results for fracture angle are presented to illustrate the appli-
cations of the proposed formulation. For simplicity, we only consider an inclined crack near the
interface between two transversely isotropic materials. The upper and lower materials are
assumed to be BaTiO3 [15] and cadmium selenide [16], respectively. The material constants for
the two materials are as follows:

(1) material properties for BaTiO3 [15]

c11 � 150GPa; c12 � 66GPa; c13 � 66GPa; c33 � 146GPa; c44 � 44GPa;

a11 � 8:53� 10ÿ6=K; a33 � 1:99� 10ÿ6=K; k3 � 0:133� 105N/CK;

e31 � ÿ4:35C/m2; e33 � 17:5C/m2; e15 � 11:4C/m2; j11 � 1115j0;

j33 � 1260j0; j0 � 8:85� 10ÿ12C2/Nm2;

(2) material properties of cadmium selenide [16]
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c11 � 74:1GPa; c12 � 45:2GPa; c13 � 39:3GPa; c33 � 83:6GPa; c44 � 13:2GPa;

c11 � 0:621� 106NKÿ1mÿ2; c33 � 0:551� 106NKÿ1mÿ2; v3 � ÿ0:294CKÿ1mÿ2;

e31 � ÿ0:160Cmÿ2; e33 � 0:347Cmÿ2; e15 � 0:138Cmÿ2;

j11 � 82:6� 10ÿ12C2=Nm2; j33 � 90:3� 10ÿ12C2=Nm2;

in which the well-known two-index notation has been adopted [17]. Here, cij and eij are the
reduced material constants obtained by using the following convention: replace ij or kl by p or
q, where i; j; k; l take the values of 1±3, and p; q assume the values 1±6 according to the
following rule:

ij or kl 11 22 33 23 or 32 31 or 13 12 or 21
p or q 1 2 3 4 5 6

In accordance to this representation, it follows that

cpq � Cijkl; eip � eikl; for i; j; k; l � 1±3; p; q � 1±6:

Since the values of the coef®cient of heat conduction both for BaTiO3 and cadmium selenide
could not be found in the literature, the values k

�1�
33 =k

�1�
11 � 1:5; k

�2�
33 =k

�2�
11 � 2; and k

�1�
13 � k

�2�
13 = 0

are assumed.
Figure 2 shows the variation of the fracture angle x0 with the crack orientation a. It is found

from the ®gure that the fracture angle x0 varies between ÿ57� and ÿ35�, and reaches its
minimum value at about a � 37�.

7
Conclusion
The thermoelectroelastic Green's functions for bimaterials due to a thermal analog of line
dislocation with temperature discontinuity are developed using the Stroh formalism. The study
shows that the Green's function for bimaterials due to a temperature discontinuity in the upper
half plane has four image singularities located in the upper half-plane, and another image
singularity located in the lower half-plane. Based on the proposed thermoelectroelastic Green's
functions, a system of singular integral equations is derived to model fracture problems of a
crack near a bimaterial interface between dissimilar thermopiezoelectric materials. The for-
mulations can be used to calculate some fracture parameters, such as SED intensity factors and
strain energy density factor. As a result, the direction of crack growth can be predicted by way
of the strain energy density theory. Numerical results for crack growth direction at a particular
crack tip of the crack system are presented to illustrate the application of the proposed for-
mulation.

Fig. 2. Fracture angle vs crack orien-
tation
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