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Summary We call piezoelectromechanical (PEM) truss beam a truss modular beam coupled
with a transmission electrical line when the coupling is obtained by piezoelectric actuators
which act as bars in the module and as capacitances in the electrical line.

The truss module length is assumed negligible with respect to the considered wave lengths.
The transmission electrical line is assumed continuously distributed along the truss beam.

Applying the method of virtual power as expounded in [2] we formulate a continuum model
for PEM truss beams and we prove that there exists a critical value for the transmission
electrical impedance in the neighborhood of which the electromechanical modal coupling is
maximum and the possible electrical dissipation of mechanical energy is relevant.

Key words modular truss beam, electric transmission line, piezoelectromechanical coupling,
vibration control

1
Introduction
When formulating a mathematical model for a truss modular beam two different approaches
are possible:

i) in a re®ned description, the deformation of every element of the truss is accounted for,
ii) in a continuum one, the kinematic of the truss is described by displacement and rotation

®elds de®ned on a curve.

The ®rst approach, when applied to technologically meaningful instances, often leads to
oversized numerical problems and models not easy to handle. Therefore, the second one (see
for instance [4], [5], [6], [9], [10]) has been proposed: the displacement and rotation ®elds
describe a homogenized average displacement and rotation of the generic constituent module.

In this paper, using the method of virtual power [2], we formulate a continuum description
for a piezoelectromechanical truss beam which accounts for its modular structure, and use it to
propose a new vibration damping technique.
The typical module constituting the considered truss beam is composed:

1) by a pair of ¯at rigid diaphragms connected by a number of elastic bars (some of which are
piezoelectric) constrained to remain straight and

2) by an electric net connected also with the piezoelectric actuators.

The electromechanical system we consider presents the following features:
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± at least one of the bars of each module is a piezoelectric actuator,
± the electrical transmission line shows the same periodicity properties of the truss beam, so

that every mechanical module corresponds to a modular electrical net,
± the piezoelectric actuators are connected to the electrical line so that their equivalent circuits

are to be regarded as part of the modular electrical net.

One important assumption we apply in this paper concerns the electromechanical behavior
of the piezoelectric actuators: following [7], [8], they are regarded as cylinders undergoing
Saint-Venant deformations only. Then the results obtained in [7], [8] allow us to ®nd the
relationship between the tabular Voigt piezoelectric constants and the relevant piezoelectric
stiffnesses and impedances. A MATHEMATICA program, supplied in Appendix A, needed to be
developed in order to use quoted results in the present situation.

The new structural system studied in this paper deserves, in our opinion, some interest. This
is proved by the following results obtained for simple, but interesting, 2D and 3D module
choices in which extension, bending and torsion are examined.

We have studied the effects of the variation of the transmission line impedance on the wave
propagation speed and on the modal and frequency response of the structure; we ®nd that there
exists a critical range of inductance in which the electromechanical coupling is relevant. In this
range:

± the displacement-electric potential waves propagate simultaneously with two close propa-
gation speeds,

± the wave energy is shared in comparable proportions in mechanical and electrical parts.

Unfortunately, the electromechanical coupling range for bending and the modular trans-
mission line introduced in the present paper lies in the neighborhood of in®nity: the induc-
tances necessary to insure electromechanical coupling are not technically feasible. As a
consequence, the modal damping ratios for bending are typically 103 � 104 times smaller than
in extension or in torsion, under comparable conditions. In a forthcoming paper, we will
consider an electrical line whose evolution equation is a PDE in which fourth order space
derivative appears, so obtaining a more ef®cient modal coupling.

Having used MATHEMATICA, we dispose (in the cases of extension and torsion) of the explicit
symbolic formulas expressing wave speeds and the norms of the associated wave forms versus
the electrical transmission impedance. This analytical treatment becomes dif®cult when
studying the modal analysis under given boundary conditions or in the case of bending wave.

For this reason we have used a standard numerical procedure to ®nd:

± the bending wave dispersion formulae,
± the eigenfrequencies electrically insulated, the corresponding eigenfunctions and the fre-

quency response operator H� jx� of the clamped-clamped PEM beam.

We remark, concerning the frequency response operator, that a partition of the set of
impedance values is obtained, as proved by the plot of a norm of the H� jx� operator. In a
range, the response operator yields for different forcing frequencies either a purely mechanical
or a purely electrical response. Instead in a given interval, centered around what we call
``maximal exchange value'', the response operator yields only coupled electromechanical re-
sponses: the range of resonant forcing frequencies results to be also sensibly increased with
respect to the purely mechanical one. This means that around the ``maximal exchange value''
for impedance it is possible to damp modular truss by dissipating electrical energy.

Our numerical computation shows that this phenomenon can be exploited in technologically
relevant instances: indeed the available PZT materials and actuators seem to allow the damping
of truss beams of technologically relevant size.

To our knowledge, a continuously distributed damping for a modular truss has never been
proposed before (see [13]). It seems to us that such damping technique is more ef®cient than
those already proposed in the literature, characterized by the use of actuators supplying
concentrated forces.

2
Identification procedure
In [4] truss beams are modelled using a continuum description generalizing the standard
Bernoulli-Navier theory. The main result of the cited paper, based on the identi®cation of the
mechanical power on the re®ned level with that on the continuum one, allows for the deter-
mination of the constitutive equations for the contact and inertial actions explicitly in terms of
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the mechanical properties in the module. The identi®cation of the mechanical response of the
truss modular beam, when modelled as a one-dimensional continuum, is then possible by
means of an algorithmic procedure.

The same approach applied to the electrical transmission line leads to a standard homoge-
nization procedure in which the electrical impedance is continuously distributed per unit length.

We adapt here the identi®cation procedure proposed in [4] to piezoelectromechanical truss
beams.

2.1
Refined model
We assume that:

± the bars are constrained to remain straight, therefore they can be only elongated,
± the electric potential is assumed linear in any piezoelectric bar (see [8]).

With these hypotheses, the state of each module is completely determined by the placement
of the diaphragms which are assumed to be rigid, and by the capacitive charges at the extremes
of the piezoelectric bars.

Therefore, let us assume as ``kinematical descriptors'' characterizing the state of the con-
sidered system, the position of a point in the diaphragm Xo, a triple of unit vectors Gk rep-
resenting the attitude of the diaphragm, and the set of the charges at the ends of the
piezoelectric bars Q.

We shall label with a superscript minus ()) and plus (+) two consecutive diaphragms
belonging to a module. So, respectively, on the reference and actual con®guration, the kine-
matical descriptors of a module are

X�o ;G�k ;Q
�

x�o ; g�k ; q
�

so that the positions of the end points of the typical bar in the module are

x�b � x�o � a�b g�2 � b�b g�3 ; �1�
where a�b ; b

�
b are the time-independent coordinates of the bar labeled b with respect to the

vectors g2 and g3 in the diaphragm plane.
Corresponding to the previous choices, being

eb :� kx
�
b ÿ xÿb k

Lb
ÿ 1

the elongation of the bar, the time-rate deformation ®eld in any bar is given by

_eb �
�x�b ÿ xÿb �

_�x�b ÿ xÿb �
Lbkx�b ÿ xÿb k

; �2�

where Lb :� kX�b ÿ Xÿb k is the reference length of the bar.
Their electrical counterparts will be

qb :� q�b ÿ qÿb

and the piezoelectric capacitive current

_qb �
�

�q�b ÿ qÿb �
: �3�

For any module, the expression of the electrical power associated to the set Np of its piezo-
electric bars is

Wrefined
e �

X
p2Np

/p � _qp ; �4�

where /p represents the electric potential difference between the end points of the piezoelectric
bar p.
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In a similar way, for any module we express the mechanical power of the contact actions nb

Wrefined
c �

X
b2Nb

nb � _eb ; �5�

and of the inertial actions

x�n�:� xÿb �
n
Lb
�x�b ÿ xÿb �

Wrefined
in � ÿ

X
b2Nb

Z Lb

0

db�x�n� � _x�n�dnÿ
X

d2Nd

Z Ld

0

dd�x�n� � _x�n�dn ; �6�

where Nd and Nb are, respectively, the set of the bars constituting and connecting the
diaphragms and db; dd are the densities per unit length of the bars.

Concerning the re®ned constitutive relations for the contact actions and for the electric
potentials, we limit our attention to the linear case. Following [7], [8] the electro-mechanical
behavior of the piezoelectric actuators is derived. We regard them as Saint-Venant cylinders,
starting from the equations for the Cauchy stress tensor T and the electric displacement
tensor D

div T � 0; div D � 0 : �7�

The linear constitutive equations for piezoelectric materials can be found in [1]. Equations are
solved under the Saint-Venant hypothesis in order to determine the electromechanical stiff-
nesses of such actuators. As our interest is limited to purely extensional actuators, we quote
here the linear constitutive relations expressing the contact action and the electric potential as
functions of the electromechanical deformation ®eld

nb � keeeb � keqqb ; �8�
/b � kqeeb � kqqqb : �9�

The results of [7], [8] allow us to ®nd the relationship between the tabular Voigt piezoelectric
constants and the more technologically useful actuator constants kee; keq; kqe; kqq. A MATHE-

MATICA program devoted to transform the Voigt constants is given in Appendix A.
The constitutive relations for the purely electric elements (resistances and inductances) are

written as

/p � kR _qp; /p � kL �qp : �10�

2.2
Continuum model
The coarse model apt to describe our electromechanical system is a one-dimensional con-
tinuum endowed with structure: we assume as model for the mechanical part the standard
Euclidean structure used in the theory of Bernoulli-Navier beam (see for a complete discussion
[4]), and for the electric part the standard model from the theory of the continuous electrical
transmission line. Finally, the electromechanical coupling will be modelled assuming that
every used constitutive equation depends on all the electro-mechanical state parameters listed
below.

The parameters describing the state of every material point P of this continuum are chosen
paralleling the choices made in the re®ned model. Respectively, in the reference and actual
con®guration we have

Po�1�;Dk�1�;C�1� ;
po�1; t�; dk�1; t�; c�1; t� ;
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where 1 and t are the spatial and temporal coordinates, po represents the position of the point
P; dk the directors orienting P and c�1� � �c1�1�; c2�1�; . . .� the charges stored in the piezo-
electric components in the �0; 1� interval.

The generalized displacement ®eld is described by the following relations:

u�1; t� � po�1; t� ÿ Po�1�;
R 2 Orth, dk�1; t� � R�1; t�Dk�1�;
d�1; t� � c�1; t� ÿ C�1� :
The velocity ®eld is de®ned deriving with respect to t the previous equations

w � _po;

W � _RRT ) _dk �Wdk;

i � _c :

�12�

Finally, the generalized deformation ®eld is chosen comparing, as usual, the actual and the
reference con®gurations

e � RTp0o ÿ P 0o;

E � RTR0;
. � c0 ÿ C0 :

�13�

Let us now write the expressions of mechanical and electrical power: the actions which expend
power on the time-rate generalized deformation ®eld are the Piola-Kirchhoff contact actions
s; S and the electric potential ®eld u. On a module of reference length L we have

Wcoarse
c �

Z L

0

�
s � _eÿ 1

2
S � _E

�
d1 ; �14�

Wcoarse
e �

Z L

0

�u � _.�d1 ; �15�

Finally, denoting by �b;B� the distributed inertial actions, the power expended is given by

Wcoarse
c �

Z L

0

�b � w ÿ 1

2
B �W�d1 : �16�

The mechanical balance equations in terms of the Piola-Kirchhoff stress ®elds are

�Rs�0 � b � 0 ; �17�

�RSRT�0 � p0o ^ Rs� B � 0 : �18�
Now, let us choose the typical module for the electrical circuit, i.e. show how the piezoelectric
bars are connected to each other as well as with the resistance and inductance elements.
Figure 1 represents the more general mesh used in the present paper.

For a linear continuous transmission line characterized by the chosen electrical mesh,
Kirchhoff circuital laws and constitutive equations read

Fig. 1. Typical modular electric mesh
constituting the transmission line. The
®rst element from the left represents
the capacitance of the PZT bar
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u0 � jL�c� jR _c� V ; �19�
_c0 � _va � _vb ; �20�
jqqvb � jqeu0 � u ; �21�
jl�va � jr _va � v� u ; �22�
where constitutive equations (21) and (22) are the continuum counterpart of (9) and (10). For
vanishing initial conditions we get

va�t� �
1

jl

Z t

0

Z t0

0

exp
ÿ jr

jl
�t0 ÿ s��v� u��s�dsdt0 : �23�

Given a function f � f �1; t�, let us introduce the following integral operator

Ia� f � :�
Z t

0

Z t0

0

expÿa�t0ÿs� f ��; s�dsdt0 ; �24�

With the following two properties

lim
a!1Ia� f � � 0 ;

�Ia� f ��0 � Ia� f 0� ;
so that

va �
1

jl
Ijr

jl

�v� u� :

With these assumptions

u0 � jR _c� jL�c� V ; �25�

jqqc
0 � jqeu0 � u� jqq

jl
Ijr

jl

�v� u� : �26�

The previous equations are easily rearranged in terms of c to give

jqqc
00 � jqeu00 � jL�c� jR _c� V � jqq

jl
Ijr

jl

�v0 � jR _c� jL�c� V� ; �27�

which for jr !1 Ijr

jl

! 0

� �
reduces to a wave equation for the charge vector density c.

We note that for jR !1, Eq. (19) reduces to

_c � 0 : �28�
Then c��; t� � c0 and _c0 � 0, so that Eqs. (20), (21) and (22) become

_va � ÿ _vb �: _v;

jqqc
0
0 ÿ jqqv� jqeu0 � u;

jl�v� jr _v � v� u ;

�29�

which reduce to the Kirchhoff laws for the RLC circuit separately connected to every piezo-
electric bar (remark) that in this limit case c00 represents the initial distribution of capacitive
charge:

jl�v� jr _v� jqq�vÿ c00� ÿ jqeu0 � v : �30�
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2.3
Constitutive relations
A relation between the re®ned and the continuum model is established by assigning a map
from the local placement in the coarse model �po; dk; c� to the local placement of a module in
the re®ned model � x�o ; g�; q��

xÿo � po ÿ L
2 p0o; x�o � po � L

2 p0o;
gÿk � dk ÿ L

2 d0k; g�k � dk � L
2 d0k;

qÿ � cÿ L
2 c0; q� � c� L

2 c0 ;
�31�

denoting by L the reference length of the module.
In order to identify the continuum constitutive functions we assume that, for any pair of

corresponding motions, the power expended by the actions prescribed within the ®ne model
equals the power expended by the corresponding actions within the coarse model

Wcoarse
c � Wrefined

c ;

Wcoarse
e � Wrefined

e ;

Wcoarse
in � Wrefined

in :

�32�

This identi®cation procedure was used by [4] in a purely mechanical contest, and has shown its
validity in the study of technical problems [9], [10]. Moreover, the results expounded in [2]
clearly indicate that, when dealing with the electromechanical coupling phenomena, the most
useful tool is given by the method of virtual power: we are con®dent that the identities (32)
allow among the possible continuum models the determination of that one which better ap-
proximates the discrete re®ned model.

By using explicitly the expressions (4), (5), (14), (15) for power, and by a massive use of
computer aided symbolic calculation via Eqs. (31), we ®nally get the constitutive coarse rela-
tions for the contact actions �s; S�:

s �
X

b2Nb

sb; sb :� RT
b

�x�b ÿ xÿb �
kx�b ÿ xÿb k

nb;

S �
X

b2Nb

Sb; Sb :� 1
2 �aÿb � a�b �D2 � �bÿb � b�b �D3

� � ^ sb ; �33�

and for the electrical and piezoelectrical ones:

jqe � kqe; jqq � kqqL;

jR � kR

L
; jL � kL

L
: �34�

Equations (34) represent a simple homogenization of the re®ned discrete parameters �k::� in
the coarse continuum ones �j::� used in the classical theory of continuously distributed
transmission lines.

We refer to the Appendix B for a complete explicit expression of the non-linear inertial
constitutive coarse relations.

3
Linearized equations: applications to particular truss modules
Equations (33), (34) and (46 through 56) in Appendix B provide the linear expressions for the
piezo electrical and purely electrical actions and the nonlinear ones for the contact and inertial
actions. In order to start the analysis of the behavior of PEM beams, we have linearized these
last ones (see in Appendix C for details of such a linearization) assuming that either jr !1 or
jR !1.

Under the assumption jr !1, we introduce the linearized expressions of �s; S� and �b;B�
in the balance equations (17, 18), and rearrange the mechanical parameters in a function vector
u�1; t� and the electrical ones in c�1; t�. For example, in the case of a 2D truss beam with one
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piezoelectric bar per module the function vector u�1; t� contains the axial displacement u, the
transverse displacement v and the rotation ®elds #

u�1; t� �
u�1; t�
v�1; t�
#�1; t�

0@ 1A
while c�1; t� is a scalar function representing the capacitive charge stored in segment [0; 1] of
the line. The linear equations of the considered electromechanical system may be written now
as follows:

K�0�
ee u�K�1�

ee u0 �K�2�
ee u00 �Keqc

00 �M�0��u�M�1��u0 �M�2��u00 � 0;

Kqqc
00 �Kqeu00 �KR _c�KL�c � V ;

�35�

where K�::�
:: ;M

�::�;KR and KL, are, respectively, the stiffness, mass and impedance matrices,
whose expression in term of the electromechanical properties of the module are known.

Similarly, under the assumption jR !1, we have

K�0�
ee u�K�1�

ee u0 �K�2�
eq u00 �Keqv

0 �M�0��u�M�1��u0 �M�2��u00 � 0;

Kqqv�Kqeu00 �Kr _v�Kl�v � v ; �36�
in which the variable v plays the role of an internal variable (see [3]).

3.1
Description of the considered truss module
We have examined three different truss modules.

In the ®rst one, shown in Fig. 2, there is only one piezoelectric bar centered along the
symmetry axis; in addition, all the geometrical and mechanical properties are symmetric with
respect to this axis. This fact allows us to obtain the axial displacement and electric current
equations uncoupled from the shear and bending ones. This is a particular case of Eqs. (35) in
which the stiffness, mass and impedance matrices reduce to scalar numbers: wave analysis can
be easily faced in a symbolic way. The bars containing the piezoelectric actuators are marked
with bold lines; the normal lines indicate the aluminium bars.

The second module, with four PZT bars electrically connected in parallel, is designed to
couple torsion with the electric transmission line, and can be studied exactly in the same way as
the ®rst one.

The third module, with two symmetric piezoelectric actuators, is designed to establish
coupling phenomena between the bending beam and the considered electric transmission line.

Table 1 resumes the geometrical and mechanical data of the described truss modules. In all
the modules we assume as piezoelectric actuator a cylinder of PZT5 material whose constants
are listed in Appendix A.

4
Analysis of numerical results
The numerical methods we use for the ®rst analysis of Eqs. (35) are based on standard FE and
Runge-Kutta discretizations, implemented by the computation environment MATHEMATICA. The
section is divided into three parts.

Fig. 2. First truss module (bold lines for
PZT bars)
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In Sect. 4.1, we consider an in®nite truss beam, and study the transversal, compression and
torsional wave propagation, the dispersion formula and the electromechanical coupling for all
the modules presented in Sect. 3.1.

In Sect. 4.2, we consider the ®nite clamped-clamped and electrically insulated electrome-
chanical beam. The spectrum of the differential operator in (35) is discrete, and determined via
the simultaneous diagonalization of the corresponding electromechanical rigidity and mass
FEM matrices. Subsequently, we determine the set of eigenfunctions, each of which is com-
posed by a purely mechanical and purely electrical part. Finally we determine, via a Fourier
Transform of the FE discretized version of (35), its frequency response operator.

In Sect. 4.3, we introduce in the coupled transmission line a dissipative impedance. For all
considered modules, we determine the modal damping ratio as a function of the line imped-
ance. This leads us to consider damped vibration only for extensional and torsional problems.
This is done projecting (35) on the ®rst two eigenfunctions found in the previous Section, thus
®nding a second order system of ODEs for the corresponding coef®cients. The Cauchy problem
for this system of ODEs we solve using a standard Runge-Kutta integrator. Different values for
impedance are considered. We ®nd the range for impedance in which a relevant energy ex-
change between the mechanical and the electrical components occurs and an ef®cient electrical
damping is possible.

Table. 1. Mechanical and geometrical properties of the aluminium and PZT bars

Geometry PZT bar Al bar

L � 0:1 m qPZT � 7000 kg/m3 qAl � 2800 kg/m3

h � 0:05 m APZT � 10ÿ4 m2 AAl � 2:5 10ÿ5 m2

lPZT � 0:05 m GY;Al � 70 GPa

Fig. 3. Second truss module (bold lines for PZT bars)

Fig. 4. Third truss module (bold lines
for PZT bars)
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4.1
Wave analysis: dispersion formulae and propagation speeds
Wave analysis on Eqs. (35) is faced as usual, by searching solutions of the form

u�1; t�
c�1; t�

� �
� u

c

� �
� ek1�jxt : �37�

The ratio x=k physically represents the wave speed; the ratio jujj=jcjj between two components
of the mechanical and electrical eigenvectors measures electromechanical coupling in the wave.

We can analytically determine the explicit dispersion formula k � k�x� for axial displace-
ment-current and twist angle-current waves, arising when the modules in Fig. 2 and in Fig. 3
are considered. This can be done as in both cases in Eqs. (35) the stiffness, impedance and mass
matrices are reduced to scalar numbers and the last two addends in Eqs (35)1 are vanishing.
With the obvious meaning of the symbols we have

k
x

� �2

�

����������������������������������������������������������������������������������������������������������������������������������
jeejL � jqqm0 �

�������������������������������������������������������������������������������������������
j2

eej
2
L � 4jeqjLjqem0 ÿ 2jeejLjqqm0 � j2

qqm2
0

q
2�jeejqq ÿ jqejeq�

vuut
: �38�

The line inductance minimizing the difference between the two wave speeds and maximizing
the electromechanical coupling is given by

jL �
2jeqjqe ÿ jqqjee �

���������������������������������������������������������
�2jeqjqe ÿ jqqjee�2 ÿ j2

eej
2
qq

q
j2

ee

�m0 : �39�

In Fig. 5 are shown, for the ®rst truss module, the variation of the wave speeds when increasing
the line inductance jL, and the electromechanical coupling measured comparing the elastic and
capacitive energy of the different waves.

We note that for both modules the existence of a critical value jL ± which we will call
``maximal exchange value'' ± for inductance is numerically proven. It maximizes the elec-
tromechanical coupling and minimizes the difference among the propagation speeds of those
waves for which the electromechanical coupling is relevant. As one should expect, the maximal
exchange value for inductance will play a relevant role also in the following modal analysis.

Unfortunately, the maximal exchange value for inductance, in the case of bending-current
waves, is �1 for the present choice of the coupled transmission line; this is shown by the
numerical determination of the dispersion formula and the corresponding study of electro-

Fig. 5. Wave speeds and electro-
mechanical coupling as functions of the
line inductance (module 1: extensional
problem)
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mechanical coupling. Our numerical results show that a relevant energy exchange occurs only
in presence of too high impedance. In our opinion, this circumstance is due to the choice of an
unsuitable spatial second order circuitry in the transmission line.

4.2
Modal analysis: a clamped-clamped electromechanical beam
We perform the modal analysis for Eqs. (35), adding to them the following boundary condition:

u�0; t� � 0 u�LB; t� � 0;

c�0; t� � 0 c�LB; t� � 0 ;
�40�

where LB is the total length of the beam (we assume LB � 2 m). These boundary conditions
physically mean that the beam is mechanically clamped and electrically insulated. We postpone
to further investigations the study of more complex boundary conditions.

In order to lighten the presentation of the obtained results, as from the qualitative point of
view they are similar for the ®rst and the second modules, in the following we alternatively
show plots concerning only one of them.

4.2.1
Eigenfrequencies and eigenfunctions
Although this does not mean any change in the numerical analysis, we assume, in this sub-
section, jR � 0.

Numerical computation shows that it is possible to select pairs of eigenfunctions with
electrical and mechanical modal shapes exchanged, as clearly shown by Fig. 6.

In Fig. 7 the locus of eigenfrequencies is plotted in the plane of frequency and line induc-
tance; for jL � jL the eigenvalues corresponding to the pairs of modal shapes determined in
Fig. 6 are equal.

As one can also see from Fig. 5, in the neighborhood of jL the eigenfunctions show coupled
electromechanical component; as a consequence, when jL ' jL, for every eigenfunction the
elastic deformation energy (relative to displacement modal form) and the electric capacitive

Fig. 6. The ®rst four eigenfunctions for
module 1 (�jL ' 45 H/m; solid line for the
displacement, dotted line for the charge ei-
genfunctions)
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energy (relative to charge modal form) are comparable; otherwise, for jL � jL or KL � jL, the
eigenfunctions present either the mechanical or the electrical part sensibly greater than the
other one.

4.2.2
Frequency response operator Hjx

In this subsection, a dissipative line impedance is considered. A numerical evaluation of fre-
quency response operator is obtained by a Fourier Transform of the FE discretized form of Eqs.
(35). Let H�x� be the FE matrix representing Hjx. In Fig. 8 we show the plot of jdet�H�x��j for
the twist angle-current problem for six different values of jL.

For the case considered in Fig. 8, the units are chosen so that jdet�H�0��j � 1 and
jL ' 330 H=m.

The whole set of numerical simulations we have performed allows us to state the following
qualitative results:

Fig. 7. Eigenfrequencies locus in the
inductance frequency plane (module 1)

Fig. 8. Norm of det�H�x�� in the neighborhood of the ®rst two eigenfrequencies (module 2: �jL ' 330 H/m)
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± For jL � jL and jL � jL, the plot of jdet�H�j as a function of x shows two distinct maxima;
one of them is always ®nite and corresponds to the electric eigenfrequency, the other one is
always in®nite and corresponds to the mechanical eigenfrequency; this circumstance can be
accounted for once one recalls the absence of any mechanical dissipation mechanism and the
presence of an electric dissipative impedance.

± When jL ' jL, the plot of jdet(H)j has only one maximum; the considerations developed in
the previous section indicate that in this case there is a relevant electromechanical energy
exchange and coupling; this means that, for every forcing action, the system response shows
comparable electrical and mechanical components.

± When jL ' jL the resonance frequency range increases its width with respect to the cases
jL � jL and jL � jL; apparently this could seem a drawback but the analysis of the fol-
lowing Sect. 4.3 shows that this is not the case. Indeed the resonance of the electrical signal
allows for an ef®cient dissipation of a mechanical forcing action.

4.3
An example of piezoelectromechanical damping
In order to give a further test to the previous statements we implement a numerical simulation
of a damping problem. More precisely, a time-evolution problem is studied: initial data are
assumed to be given as a linear combination of the ®rst two eigenfunctions.

Figure 9 clearly shows the electromechanical energy exchange in the case of non-dissipative
impedance (dashed line) and the electrical damping of the mechanical vibration in the case of
dissipative line (solid line).

In Fig. 10 are plotted the damping ratios of the ®rst four modes as a function of line
resistance. The damping ration d is de®ned by the expansion:

x�t� � x0eÿdte jxt

so that: x��t� � x0=e for �t � dÿ1. There is a critical value for resistance for which the mechanical
damping ratio attains its maximum (see curves 1m and 2m).

In fact, Fig. 10 shows that for any mode there is a branching value ~jR beyond which modal
shapes are characterized by either a mechanical or an electrical dominant component (res-
pectively, curves 1m-2m or 1e-2e, where the ®rst digit refers to mode frequency); this can be
physically interpreted as follows: even when the modal coupling controlled by jL is maximum,
the choice of jR can avoid the ¯owing of mechanical into electrical energy.

Fig. 9a,b. Time evolutions for axial displacement-current ®elds. (jL � jL; dashed line for jR � 0, solid line
for jR 6� 0)
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In Fig. 11 are plotted the damping ratios of the ®rst four bending-charge modes for module 3
in the same range of line resistance, they are sensibly smaller than those shown in Fig. 10; this is
essentially due to the low modal coupling between the bending beam and the second order
transmission line presented. In order to obtain an ef®cient electric coupling for the bending
beam we will introduce a spatially fourth order transmission line.

5
Concluding remarks
A modelling procedure for smart truss beams has been introduced essentially based on an
identi®cation in power; both the mechanical truss beam and electric transmission line have
been described by continuum models in which PEM constitutive equations are expressed in
terms of modular properties (generalizing [4] with method suggested in [2]).

The basic physical idea is to couple a truss beam with an electrical transmission line by
means of piezoelectric elements which act respectively as bars and capacitances.

The piezoelectric stiffnesses and impedances have been derived by the tabular Voigt con-
stants via a simple MATHEMATICA program (sketched in Appendix A), which implements results
obtained in [7] and [8].

The continuum model leads to the equations of an internal variable continuum for kr !1
and of a microstructured continuum for kR !1.

Three different modules have been studied in order to investigate coupling phenomena
between capacitive charge and, respectively, axial displacement, twist angle and bending. Our
aim was to answer the following question: what happens when changing the line impedance
(i.e. jL and jR)?

We found an interesting result: there is a critical line inductance value that maximizes the
electromechanical modal coupling; this means a relevant exchange of energy between the beam
and the electrical line and the possibility of an ef®cient control on the mechanical phenomena

Fig. 10. Modal damping ratio vs. line
resistance (module 2)

Fig. 11. Modal damping ratio vs.
line resistance (module 3)

14



acting on electric parameters. We only investigated a simple case of passive control in damping
vibration, but several active control applications are conceivable, for instance acting on the
terms V and v in Eqs. (35) and (36).

In particular, we obtain very high damping ratio in the case of extensional and torsional
waves: distributing piezoelectric actuators along the beam and connecting them to form a
transmission line proves to be a useful method for passive damping.

Unfortunately, in bending problems, the electromechanical coupling is a monotone in-
creasing function of jL and in technologically meaningful range of inductance is low; this is
also shown by the damping ratio plots of Fig. 11: this circumstance is essentially due to the
absence in the functional spectrum of the electrical line operator of the bending eigenfunctions
(i.e. electric line and truss beam have different modal shapes) and will lead us to consider a
spatially fourth order transmission line electrically paralleling a bending beam.

Appendix A: Voigt constants
In [1] are de®ned the following matrices representing the linear constitutive relation for a
transversely isotropic piezoelectric (TIP) material:

s �

s11 s12 s13 0 0 0

s12 s11 s13 0 0 0

s13 s13 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 2�s11 ÿ s12�

0BBBBBBBB@

1CCCCCCCCA
; �41�

d �
0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0

0B@
1CA ; �42�

k �
k11 0 0

0 k11 0

0 0 k33

0B@
1CA : �43�

There are ten independent material constants for such a material. The following MATHEMATICA

program allows to determine the only four coarse parameters �kee; keq; kqe; kqq� of Eqs. (8) and
(9) that are most technologically relevant, once the matrices s, d and k are known.
(� PZT5 �)
s11 � 16:4; s12 � ÿ5:74; s13 � ÿ7:22; s33 � 47:5; s44 � 47:5; �� 10^ÿ 12��
d15 � 584; d31 � ÿ172; d33 � 374; �� 10^ÿ 12��
k11 � 1730; k33 � 1700;
��Experimental dataÿ!Voigt Matrices ��
sigma � Inverse[s] ;
e � d �Transpose[sigma] ;
eps � eps0 k;
�� eps0 � permittivity of free space � 8:854 10^ÿ 12 ��
�� Voigt Matricesÿ!TIP material representation ��
lambda � sigma��1; 1�� � sigma��1; 2��; mu � sigma��6; 6��=2;
alpha1 � sigma��4; 4��; alpha2 � sigma��1; 3�� ;
alpha3 � sigma��3; 3��=2ÿ alpha2ÿ alpha1;
beta1 � e��3; 1�� ÿ e��1; 5��; beta2 � ÿe��3; 1�� ; beta3 � ÿe��3; 3�� ;
gamma1 � eps��1; 1�� ; gamma2 � eps��2; 2�� ;
( � TIP material representation ÿ! �7� �)
A1 � 2 �alpha1� alpha2� alpha3� ÿ alpha2^2�=�mu� lambda�;
A2 � gamma2� �beta2 beta1�=�mu� lambda�;
B1 � beta3ÿ �beta1 alpha2�=�mu� lambda�;
B2 � ÿbeta3� �beta2 alpha2�=�mu� lambda�;
�� �7� ÿ! our actual definition ��
kee � �A1ÿ B1 B2=A2� Apzt; ��Apzt � PZT cylinder section area��
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kep � B1/A2;
kpe � ÿ�B2/A2� lpzt; ��lpzt=PZT cylinder length��
kpp � (1/A2) lpzt/Apzt;

For the given PZT5 Voigt constants we obtain:

kee keq

kqe kqq

� �
� 24:085 � 109 � APZT ÿ1:1537 � 107

ÿ4:4664 � 108 � lPZT 7:9394 � 107 � lPZT=APZT

� �
: �44�

Appendix B: Continuum inertial actions
The inertial actions identi®ed by the aforementioned procedure turn out to be the sum of two
partsZ 12

11

�b;B�d1 �
Z 12

11

�~b; ~B�d1� �b̂; B̂� ; �45�

where �b̂; B̂� is a discrete measure concentrated in f11; 12g (for more details see [4]).
Moreover, the truss module inertial actions result from the sum over the set of the bars �Nb�

and of bars constituting the diaphragms �Nd�
~b �

X
Nb

~bb �
X
Nd

~bd; b̂ �
X
Nb

b̂b �
X
Nd

b̂d ; �46�

~B �
X
Nb

~bb �
X
Nd

~bd; B̂ �
X
Nb

B̂b �
X
Nd

B̂d: �47�

De®ning the following quantities �x � b; d�:

mx0 �
Z Lx

0

qx�n� 1ÿ n
Lx

� �2

dn;

mx1 �
Z Lx

0

qx�n�
n
Lx

1ÿ n
Lx

� �
dn; �48�

mx2 �
Z Lx

0

qx�n�
n
Lx

� �2

dn;

the actions for a generic bar or diaphragm are given in terms of these integral mass quantities
and of the coordinates �a; b� de®ned in Eq. (1)

~bb �ÿ 1=L�mb0 � 2mb1 �mb2��p
ÿ 1=L�a�b mb0 � a�b mb1 � aÿb mb1 � aÿb mb2��d2

ÿ 1=L�b�b mb0 � b�b mb1 � bÿb mb1 � bÿb mb2��d3

� �ÿa�b mb1 � aÿb mb1��d02
� �ÿb�b mb1 � bÿb mb1��d03
� L=4�mb0 ÿ 2mb1 �mb2��p00
� L=4�a�b mb0 ÿ a�b mb1 ÿ aÿb mb1 � asmb2��d002
� L=4�b�b mb0 ÿ b�b mb1 ÿ bÿb mb1 � bÿb mb2��d003 ;

�49�

b̂b � 1=2�ÿmb0 �mb2��p
� 1=2�ÿa�b mb0 � a�b mb1 ÿ aÿb mb1 � aÿb mb2��d2

� 1=2�ÿb�b mb0 � b�b mb1 ÿ bÿb mb1 � bÿb mb2��d3

� L=4�ÿmb0 � 2mb1 ÿmb2��p0
� L=4�ÿa�b mb0 � a�b mb1 � aÿb mb1 ÿ aÿb mb2��d02
� L=4�ÿb�b mb0 � b�b mb1 � bÿb mb1 ÿ bÿb mb2��d03;

�50�
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~bd � 1=L�ÿmd0 ÿ 2md1 ÿmd2��p
ÿ 1=L�aimd0 � aimd1 � ajmd1 � ajmd2��d2

ÿ 1=L�bimd0 � bimd1 � bjmd1 � bjmd2��d3

� L=4�md0 � 2md1 �md2��p00
� L=4�aimd0 � aimd1 � ajmd1 � ajmd2��d002
� L=4�bimd0 � bimd1 � bjmd1 � bjmd2��d003 ;

�51�

b̂d �ÿ L=4�md0 � 2md1 �md2��p0
ÿ L=4�aimd0 � aimd1 � ajmd1 � ajmd2��d02
ÿ L=4�bimd0 � bimd1 � bjmd1 � bjmd2��d03;

�52�

~Bb � d2 ^ �ÿ1=L�a�b mb0 � a�b mb1 � aÿb mb1 � aÿb mb2��p
ÿ 1=L�a�2

b mb0 � 2a�b aÿb mb1 � aÿb mb2��d2

ÿ 1=L�a�b b�b mb0 � aÿb b�b mb1 � adb
ÿ
b mb1 � aÿb bÿb mb2��d3

� �a�b mb1 � aÿb mb1��p0
� �ÿaÿb b�b mb1 � a�b bÿb mb1��d03
� L=4�a�b mb0 ÿ a�b mb1 ÿ aÿb mb1 � aÿb mb2��p00
� L=4�a�2

b mb0 ÿ 2a�b aÿb mb1 � aÿb mb2��d002
� L=4�a�b b�b mb0 ÿ aÿb b�b mb1 ÿ adb

ÿ
b mb1 � aÿb bÿb mb2��d003 �

� d3 ^ �ÿ1=L�b�b mb0 � b�b mb1 � bÿb mb2��p
ÿ 1=L�a�b b�b mb0 � aÿb b�b mb1 � adb

ÿ
b mb1 � aÿb bÿb mb2��d2

ÿ 1=L�b�2
b mb0 � 2b�b bÿb mb1 � bÿb mb2��d3

� �b�b mb1 � bÿb mb1��P0
� �aÿb b�b mb1 ÿ a�b bÿb mb1��d02
� L=4�b�b mb0 ÿ b�b mb1 ÿ bÿb mb1 � bÿb mb2��p00
� L=4�a�b b�b mb0 ÿ aÿb b�b mb1 ÿ adb

ÿ
b mb1 � aÿb bÿb mb2��d002

� L=4�b�2
b mb0 ÿ 2b�b bÿb mb1 � bÿ2

b mb2��d003 �;

�53�

B̂b � d2 ^ �1=2�ÿa�b mb0 ÿ a�b mb1 � aÿb mb1 � aÿb mb2��p
� 1=2�ÿa�2

b mb0 � aÿ2
b mb2��d2

� 1=2�ÿa�b b�b mb0 � aÿb b�b mb1 ÿ adb
ÿ
b mb1 � aÿb bÿb mb2��d3

� L=4�ÿa�b mb0 � a�b mb1 � aÿb mb1 ÿ aÿb mb2��p0
� L=4�ÿa�2

b mb0 � 2a�b aÿb mb1 ÿ aÿb mb2��d02
� L=4�ÿa�b b�b mb0 � aÿb b�b mb1 � adb

ÿ
b mb1 ÿ aÿb bÿb mb2��d03�

� d3 ^ �1=2�ÿb�b mb0 ÿ b�b mb1 � bÿb mb1 � bÿb mb2��p
� 1=2�ÿa�b b�b mb0 ÿ aÿb b�b mb1 � adb

ÿ
b mb1 � aÿb bÿb mb2��d2

� 1=2�ÿb�2
b mb0 � bÿ2

b mb2��d3

� L=4�ÿb�b mb0 � b�b mb1 � bÿb mb1 ÿ bÿb mb2��p0
� L=4�ÿa�b b�b mb0 � aÿb b�b mb1 � adb

ÿ
b mb1 ÿ aÿb bÿb mb2��d02

� L=4�ÿb�2
b mb0 � 2b�b bÿb mb1 ÿ bÿb mb2��d03�;

�54�
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~Bd � d2 ^ �ÿ1=L�aimd0 � aimd1 � ajmd1 � ajmd2��p
ÿ 1=L�a2

i md0 � 2aiajmd1 � a2
j md2��d2

ÿ 1=L�aibimd0 � ajbimd1 � aibjmd1 � ajbjmd2��d3

� L=4�aimd0 � aimd1 � ajmd1 � ajmd2��P00
� L=4�a2

i md0 � 2aiajmd1 � a2
j md2��d002

� L=4�ajbimd0 � ajbimd1 � aibjmd1 � ajbjmd2��d003 �
� d3 ^ �ÿ1=L�bimd0 � bimd1 � bjmd1 � bjmd2��P
ÿ 1=L�aibimd0 � ajbimd1 � aibjmd1 � ajbjmd2��d2

ÿ 1=L�b2
i md0 � 2bibjmd1 � b2

j md2��d3

� L=4�bimd0 � bimd1 � bjmd1 � bjmd2��P00
� L=4�aibimd0 � ajbimd1 � aibjmd1 � ajbjmd2��d002
� L=4�b2

i md0 � 2bibjmd1 � b2
j md2��d003 � ;

�55�

B̂d � d2 ^ �ÿL=4�aimd0 � aimd1 � ajmd1 � ajmd2��P0
ÿ L=4�a2

i md0 � 2aiajmd1 � a2
j md2��d02

ÿ L=4�aibimd0 � ajbimd1 � aibjmd1 � ajbjmd2��d03�
� d3 ^ �ÿL=4�bimd0 � bimd1 � bjmd1 � bjmd2��P0
ÿ L=4�aibimd0 � ajbimd1 � aibjmd1 � ajbjmd2��d02
ÿ L=4�b2

i md0 � 2bibjmd1 � b2
j md2��d03�:

�56�

Appendix C: Linearization
The linearization of the continuum model inertial actions shown before is obtained with a
simple MATHEMATICA symbolic program that provides to calculate (b, B) via the substitution

p! P� e�uD1 � vD2 � wD3�;
d1 ! D1 � e�#3D2 � #2D3�;
d2 ! D2 � e�#1D3 ÿ #3D1�;
d3 ! D3 ÿ e�#2D1 � #1D2�;

�57�

where �u; v;w� are the displacement ®eld components and �#1; #2; #3� are the parameters of the
rotation ®eld R

linealist � f
D[p[s,t]; ft; 2g� ! (u � D1� v � D2� w � D3) ;

D[d1[s,t]; ft; 2g� ! ��teta3 � D2+teta2 � D3� ;
D[d2[s,t]; ft; 2g� ! �ÿteta3 � D1+teta1 � D3� ;
D[d3[s,t]; ft; 2g� ! �ÿteta1 � D2ÿ teta2 � D3� ;
D[p[s,t]; ft; 2g; fs; 1g� ! �us � D1+vs � D2+ws � D3� ;
D[d1[s,t]; ft; 2g; fs; 1g� ! ��teta3s � D2+teta2s � D3� ;
D[d2[s,t]; ft; 2g; fs; 1g� ! �ÿteta3s � D1+teta1s � D3� ;
D[d3[s,t]; ft; 2g; fs; 1g� ! �ÿteta1s � D2--teta2s � D1� ;
D[p[s,t]; ft; 2g; fs; 2g� ! �uss � D1+vss � D2+wss � D3� ;
D[d1[s,t]; ft; 2g; fs; 2g� ! ��teta3ss � D2+teta2ss � D3� ;
D[d2[s,t]; ft; 2g; fs; 2g� ! �ÿteta3ss � D1+teta1ss � D3� ;
D[d3[s,t]; ft; 2g; fs; 2g� ! �ÿteta1ss � D2--teta2ss � D1� g ;
b � b=:linealist;
B � B=:linealist;
In a similar way is obtained the linearization of the contact actions �s; S�.
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