
On the rotating rod with variable cross section
T. M. Atanackovic

Summary Stability of a heavy rotating rod with a variable cross section is studied by energy
method. Bifurcation points for the system of equilibrium equations are analyzed. It is shown
that for the case when the rotation speed exceeds the critical one, the trivial solution ceases to
be the minimizer of the potential energy, so that rod loses stability, according to the energy
criteria. Also, a new estimate of the maximal rod de¯ection in the post-critical state is obtained.

Key words rotation, stability, energy criterion, variational analysis, functional analysis,
eigenvalue problem

1
Introduction
Consider an elastic rod, ®xed at the one end and free at the other end. Suppose that the rod is
rotating with constant angular velocity x about its axis. At certain angular velocity, the rod
could lose its stability and deform so that its axis is bent under the action of centrifugal forces.
In the simplest case, the deformed axis of the rod is a plane curve. The deformed con®guration
is a relative equilibrium con®guration, with respect to a plane rotating with the angular velocity
x about the straight line determined by the axis of the rod in the undeformed state. The
problem of determining critical rotation speed, i.e. the speed at which rod loses stability, for the
case of a rod with constant cross section, has been subject of many investigations, see for
example [1], [2], [3], [4] and [5]. In all these works, the classic Bernoulli-Euler theory of rods
was used, and it was assumed that the rod cross section is constant, i.e. the moment of inertia of
the rod and its line density are assumed to be constant. We propose, in this note, to study the
rotating rod problem for the case when Bernoulli-Euler theory of rods is used, and when the
rod cross section is not constant. We shall use variational method to determine the bifurcation
points of the equations describing the relative equilibrium con®gurations of the rotating rod.
The use of variational method to study the stability of a relative equilibrium con®guration has
the advantage over the straightforward bifurcation analysis (Liapunov-Schmidt, method for
example). One can prove by it the existence of bifurcating solutions, and examine stability of
each bifurcating branch by examining the value of the potential energy on the particular
branch. For the value of rotation speed larger than the critical one for which bifurcation occurs,
we shall give an estimate of the maximal de¯ection. The estimate is based on one of the special
integral inequalities obtained in [6].

2
Model
Consider an elastic rod whose axis coincides with �x axis of a rectangular Cartesian coordinate
system �xÿ Bÿ �y lying in a plane P. Suppose that end B of the rod is ®xed, while the other end
is free. Suppose further that P is rotating about �x with the constant angular velocity x.
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At certain value of x the rod could deform and take the con®guration shown in Fig. 1. The
axis of the rod, in the deformed state, is a smooth, nonintersecting curve C. The coordinates of
an arbitrary point of the rod axis, in the deformed state, are

x � X̂�S�; y � Ŷ�S� ; �1�
where S is the arc length of C, and X̂, Ŷ are smooth functions. We assume that the length of the
rod axis is L so that S 2 �0; L�. Since the C is nonintersecting it has well-de®ned tangent at each
point. Let e1 and e2 be the unit vectors along the �x and �y axis, respectively. Then, if t is the unit
tangent vector at the point ��x; �y�, the relations

cos#�S� � táe1; sin#�S� � táe2 ; �2�
where á denotes the scalar product of two vectors, determine a unique #�S�. We assume that the
rod is so ®xed that #�0� � 0. With #�S� determined from (2), the curvature of C is K � d#=dS.
The equilibrium equations and geometrical relations expressing the fact that the rod axis is
inextensible, written in the system �xÿ Bÿ �y, are

H0 � 0;

V 0 � ÿqx2 �y;

M0 � V cos#ÿ H sin#;

�x0 � cos#;

�y0 � sin# ; �3�
where the differentiation with respect to S is denoted by prime, F � He1 � Ve2 is the contact
force representing the in¯uence of the part of the rod [0, S] on the part (S, L], M is the resultant
couple, q is the mass of the rod per unit length of the rod axis in the undeformed state. To (3)
we adjoin the following boundary conditions:

H�L� � 0; V�L� � 0; �x�0� � 0; �y�0� � 0; M�L� � 0; #�0� � 0 : �4�
In the Bernoulli-Euler rod theory, M is the only constitutive quantity, so that

M � ÿEI#0 ; �5�
where E is the module of elasticity and I is axial moment of inertia of the cross section. Since
the cross section is variable, we assume that

EI � EI0f �S�; q�S� � q0w�S� ; �6�
where I0 and q0 are constants and f �S� and w�S� are known continuous functions. For f �S� and
w�S�, we assume that they are positive, decreasing, in®nitely differentiable functions on the
closed interval [0, L] and that the following inequalities hold:

b1 > f �S� > c1 > 0; b2 > w�S� > c2 > 0 :

Integrating �3�1, and using the boundary condition �4�1, we obtain H � 0. Then, from (3)
and (5) follows

Fig. 1. Coordinate system and rod con®guration in the
post-critical state
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�EI0f �S�#0�0 � ÿV cos#;
V 0

q0w�S�
� �0

� ÿx2 sin# : �7�

We introduce the following nondimensional quantities:

W � VL2

EI0
; k2 � x2q0L4

EI0
; t � S

L
; x � �x

L
; y � �y

L
: �8�

and de®ne a new dependent variable as

u � ÿW=k :

Then setting g � 1=w, the system (7) transforms to

� g _u�� � k sin#; � f _#�� � ku cos#; _y � sin#; _x � cos# ; �9�
where ��� � d���=dt. Note also that g � 1=b2. The boundary conditions corresponding to (9) are

_u�0� � 0; u�1� � 0; #�0� � 0; _#�1� � 0; y�0� � 0; x�0� � 0 : �10�
The functions u0 � #0 � y0 � 0, x0 � S satisfy (9), (10) and represent a solution of (9), (10)
valid for all values of k. We call this solution the trivial solution. For the study of bifurcation
only two ®rst equations of the system (9) may be analyzed, since x and y could be determined
by an independent integration, after u and # are determined. Thus we analyze

� g _u� � k sin#; � f _#�� � ku cos# ; �11�
subject to

_u�0� � 0; u�1� � 0; #�0� � 0; _#�1� � 0 : �12�
Note that, in the case of a rod with constant cross section, i.e. g � const., f � const., the system
(11) possesses a ®rst integral given as

K � g
_u2

2
� f

_#2

2
ÿ ku sin# � const : �13�

The problem (11), (12) with g and f constant, was treated in the papers mentioned before.

3
Variational formulation for Eqs. (11), (12)
Let R denote the set of real numbers, and let H1((0,1), R2) be the space of square integrable
vector functions w � �u; #� mapping the interval (0,1) into R2 and having square integrable
®rst derivative in the sense of distributions. Suppose that the components of w satisfy the
boundary conditions �10�2;3, that is

H1 �
�

w � �u; #� :

Z 1

0

wwT dt <1;

Z 1

0

_w _wT dt <1; u�1� � #�0� � 0

�
; �14�

where wT denotes the transpose of w. The norm on H1 is taken as

kwk1 �
Z 1

0

� _u2 � u2 � _#2 � #2�dt

� �1=2

: �15�

The space H1 is separable re¯exive Banach space. The Sobolev imbedding theorem implies that
H1 � C��0; 1��;R2�, where C��0; 1��;R2� is the space of continuous functions mapping the in-
terval [0, 1] into R2. Therefore, u�1� and #�0� in (14) make sense. The space H1 is a real Hilbert
space with the inner product < w1;w2> given by
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< w1;w2 >�
Z 1

0

� _u1 _u2 � _#1
_#2 � u1u2 � #1#2�dt : �16�

Consider the functional F : H1 ! R, de®ned by

F �
Z 1

0

g
_u2

2
� f

_#2

2
� ku sin#

 !
dt : �17�

The functional F represents the nondimensional total potential energy of outer loads and inner
forces. We shall show that F attains a minimum on H1, and that the minimizing element is a
solution to the boundary value problem (11), (12). Thus, we have the following:
Theorem: For each k there exist w � �u; #� 2 H1 such that F�u; #� � F�u; #� for all
w � �u; #� 2 H1. Moreover, since f and g are in®nitely differentiable functions, then w is an

in®nitely differentiable vector function from the interval (0,1) into R2, i.e.,

w � �u; #� 2 C1���0; 1��;R2� and satis®es (11), (12).
Proof : We prove ®rst the existence of a minimizer of F in H1. To do this, we have to show that
the functional (17) is sequentially weakly lower semicontinuous and coercive (see [7]p. 45). Let
the L2 norm of a function be denoted as

ku0k �
�Z 1

0

u2dt

�1=2

:

Then, by using Cauchy inequality, F could be estimated as

F � 1

2

1

b2
k _uk2

0 �
1

2
c2k _#k2

0 ÿ kkuk0 �
1

2
a k _uk2

0 � k _#k2
0

� �ÿ kkuk0 ; �18�

where a � minf1=b2; c2g. However, from the boundary conditions u�1� � 0 and #�0� � 0, it
follows that

u�t� � ÿ
Z 1

t

_u�m�dm �
Z 1

t

1dm

� �1=2 Z t

0

_u2�m�dm

� �1=2

� �1ÿ t�1=2k _uk0 ;

#�t� �
Z t

0

_#�m�dm �
Z t

0

1dm

� �1=2 Z t

0

_#2�m�dm

� �1=2

� t1=2k _#k0 ; �19�

where, again, we have used Cauchy inequality. From (18), (19) we obtain

F � 1

4
a�kuk2

0k _uk2
0 � k#k2

0 � k _#k2
0� ÿ kkuk0 �

1

4
akwk2

1 ÿ kkwk0 ; �20�

Since

kwk1 � kwk0

the inequality (20) could be written as

F �
�

1

2

���
a
p kwk1 ÿ

k���
a
p
�2

ÿ k2

a
: �21�

Therefore, F !1 as kwk1 !1, i.e. F is coercive over H1. Further, let

F �
Z 1

0

L�w; _w�dt:

Then from (17) it follows that L�w; _w� is given as
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L � g
_u2

2
� f

_#2

2
� ku sin# : �22�

Note that L�w; �� is a strictly convex function (see [8] p. 117). Thus, we conclude (see [7] p. 75)
that F is a weakly lower semicontinuous functional. Since F is coercive over H1, and H1 is a
re¯exive Banach space, F attains a minimum on H1. Let w � �u; #� 2 H1 be the minimizer of F.
Then the FreÂchet derivative of F at the point �w; k� 2 H1 � R calculated in the direction
w � �m1; m2� satis®es

DF�w; k��w� �
Z 1

0

fg _u _m1 � f _# _m2 � k�m1 sin#� u cos#m2�gdt � 0 ; �23�

for all w � �m1; m2� 2 H1. The functional (23) is just the ®rst variation of (17). From (23), it
follows that w � �u; #� is a weak solution to (9), (10). However, since f and g are in®nitely
differentiable and the system (11) is analytic, it follows that �u; #� 2 C10 ��0; 1�;R2�. This proves
the theorem.
Remark 1. From (11), (12) it follows that if �u; #� is a solution, then �ÿu;ÿ#̂� is also a solution.
Also, since F�u; #� � F�u; #� for all �u; #� 2 H1, we conclude that �u; #�, and �ÿu;ÿ#� also, are
global minimizers of F.

From (23), it follows that the system (11), (12) could be written as

DF�w; k� � 0 : �24�
In (24), DF�w; k� is the FreÂchet derivative of F at the point �w; k� 2 H1 � R. It represents a
linear mapping between H1 and R. As such, it is an element of the dual space of H1. However,
since H1 is a Hilbert space, we can identify the dual of H1 with H1. Equation (24) has a trivial
solution w0 � 0 for all values of k. At certain values of k it may, however, have a nontrivial
solution. We characterize those values in the following:
Proposition 1. The points �0; kn� 2 H1 � R, where kn are eigenvalues of the following linear
boundary value problem

� g _u� � k#; � f _#� � ku ; �25�
and

_u�0� � 0; u�1� � 0; #�0� � 0; _#�1� � 0 ; �26�
are bifurcation points for the system (24).
Proof: We write (24) as

DF�w; k� � A�k�w � N�k;w� ; �27�
where

Aw � d

dt

g _u
f _#

� �
ÿ k

#
u

� �
; N�w; k� � ÿk

sin#ÿ #
u�cos#ÿ 1�
� �

: �28�

Note that N�w; k� � o�kwk1; k� uniformly in k. The linear boundary value problem (25), (26) is
equivalent to

A�k�w � 0 : �29�
Let _y � #. Then, (29) reduces to

� f �y��� � k2 1

g
y ; �30�

with the boundary conditions
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y�0� � 0; _y�0� � 0; �y�1� � 0; _f �1��y�1� � f �1�y...�1� � 0 : �31�
The selfadjoint, positive boundary value problem (30), (31) has countable many positive simple
eigenvalues. To show that k in (25), (26) is positive, we may use different approach. Namely,
f �S� > c1 > 0; g � 1=b2 so that we may apply the result of [3] p. 444, directly to (25), (26) to
conclude that the smallest k is positive. Therefore, there exist a countable increasing sequence
of eigenvalues k2

n; n � 1; 2; 3; . . . with the corresponding functions yn�t�. If yn�t� is the solution
of (30), then the eigenfunctions of (29) are wn � �un; #n�, where

#n � _yn; un � ÿkn

Z 1

t

yn� p�
g� p� dp : �32�

For Eq. (24), all conditions needed to apply the bifurcation theorem presented in [9] are
satis®ed, so that �0; kn� 2 H1 � R are bifurcation points of (24). This proves Proposition 1.

Note that in the ®rst mode, that corresponds to smallest eigenvalue denoted by k1, we have
(see [3] p. 444 Eq. (4.5))

#1 � 0; u1 � 0 : �33�

Therefore, from �9�3; �10�5 follows y1 > 0; _y1 > 0. Also, the smallest eigenvalue of (30), (31) is
characterized as [10]

k2
1 � min

y2Y

Z 1

0

f �y2dtZ 1

0

1

g
y2 dt

; �34�

where Y is the set of admissible trial functions, i.e.

Y � f y : y 2 C4��0; 1�;R�y�0� � _y�0� � �y�1� � _f �1��y�1� � f �1�y...�1� � 0g : �35�

We show now that the rod loses stability when k > k1. We shall do this by showing that for
k > k1 the functional (17) does not attain the minimum on the trivial solution w0 � �u0; #0�
� 0. Therefore, according to the energy criterion of stability, the trivial solution w0 is not
stable. We state this as:
Proposition 2. If k > k1, where k1 is the smallest eigenvalue of the linear boundary value
problem (25), (26), then the minimizer w � �u; #� of F is nontrivial, i.e. w � �u; #� 6� w0 � �u0;
#0� where �u0; #0� � �0; 0�.
Proof : We determine the second FreÂchet derivative of F at the point �w0; k � k1 � Dk�, where
Dk� 1, in the direction of the ®rst eigenfunction w1 � �u1; #1� of the linearized problem (25),
(26). The result is

D2F�w0; k��w1;w1� �
Z 1

0

fg _u2
1 � f _#2

2 � 2�k1 � Dk�u1#1gdt : �36�

However, from (25) followsZ 1

0

fg _u2
1 � f _#2

2 � 2k1u1#1gdt � 0 ; �37�

so that (36) becomes

D2F�w0; k��w1;w1� � 2Dk
Z 1

0

u1#1dt : �38�

Now, if k > k1 then Dk > 0 so that (33) implies
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D2F�w0; k��w1;w1� � 2Dk
Z 1

0

u1#1dt < 0 : �39�

Therefore, the necessary condition for a minimum (the second FreÂchet derivative to be posi-
tive) is violated at w0 and w0 � �u0; #0� is not a minimizer of F. Since F attains a minimum of
H1 for all values of k (see Theorem) this minimizer is nontrivial, i.e. it is on the branch
bifurcating from �0; k1�.

4
An estimate of the maximal deflection in post-critical state
In this section, we derive an a priori estimate of the maximal de¯ection of the rod y�1�. Our
method is similar to the procedure we used in [11]. It is based on certain integral inequalities,
applied to the function y�S�. From (9) and (10), we obtain the following boundary value
problem

�g _u�� � k sin#; � f _#�� � ku cos#; _y � sin# ; �40�
subject to

_u�0� � 0; u�1� � 0; #�0� � 0; _#�1� � 0; y�0� � 0 : �41�
Let k1 be the smallest eigenvalue of the problem (25), (26). Our main result in this section is the
following:
Proposition 3. If, in addition to the restriction b1 > f �t� > c1 > 0, the function f �t� is concave
and satis®es �f �0� � 0, then for k � k1 the maximal de¯ection sup

t2�0;1�
y�t� � y�1� satis®es the

inequality

sup
t2�0;1�

y2�t� � 32

p2

Z 1

0

1
g dtZ 1

0

f dt

�k2 ÿ k2
1� : �42�

Proof : From �40�1;2 and �41�1 we obtain g _u � ky, so that (40) could be written as

g _u � ky; _m � ÿku cos#; f _# � ÿm; _y � sin# ; �43�

subject to

u�1� � 0; m�1� � 0; #�0� � 0; y�0� � 0 : �44�
From (43) and (44) follows

u � ÿk
Z 1

0

1

g
y� p�dp; m � ÿk2

Z 1

t

�Z 1

n

1

g� p� y� p� dp

� �������������������
1ÿ _y2�n�

q
dn ;

_# � �y�������������
1ÿ _y2

p : �45�

Combining (45) and (43) and assuming cos# � �
��������������������
1ÿ sin2 #
p

, we get

f �t��y�t�������������������
1ÿ _y2�t�p � k2

Z 1

t

�Z 1

n

1

g� p� y� p�dp

� �������������������
1ÿ _y2�n�

q
dn : �46�

The solution to the boundary value problem (43), (44) is reduced to a single integro-differential
equation (46) with y 2 Y, where Y is given by (35). Multiplying (46) by �y and integrating (after
partial integration and use of boundary conditions), we obtain
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Z 1

0

f �t� �y2�t�dt������������������
1ÿ _y2�t�p � k2

Z 1

0

_y�t�
������������������
1ÿ _y2�t�

q Z 1

t

1

g�k� y�k�dk

� �
dt : �47�

Integral relation (47) is of the central importance in the analysis that follows. Consider the
inequalities

1�������������
1ÿ _y2

p � 1� 1

2
_y2; _y2 � 1 ; �48�

First of (48) is given in [12] and the second follows from �40�3. Using (48) in (47) we haveZ 1

0

f �y2dt � 1

2

Z 1

0

f _y2 �y2dt � k2

Z 1

0

1

g
y2dt ; �49�

orZ 1

0

f �y2dtZ 1

0

1
g y2dt

� 1

2

Z 1

0

f _y2 �y2dtZ 1

0

1
g y2dt

� k2 : �50�

The ®rst term on the left-hand side of (50) could be estimated as (see (34))

k2
1 �

Z 1

0

f �y2dtZ 1

0

1
g y2dt

: �51�

To estimate the second term, we introduce function U by

U � _y2

2
: �52�

Then, from (44) follows

U�0� � 0; _U�1� � 0; _U�0� � 0 : �53�

For two functions f �t� and h�t� such that f �t� is piecewise smooth and satis®es f �0� � 0, and
h�t� is positive, concave and satis®es _h�0� � 0, the following inequality has been proved in [6]:Z 1

0

h _f 2dtZ 1

0

hdt

Z 1

0

f 2dt

� p2

4
: �54�

Using (54) with h � f and f � U, we obtainZ 1

0

f �t� _U2�t�dtZ 1

0

f �t�dt

� � Z 1

0

U2�t�dt

� � � p2

4
: �55�

Note that y1 > 0; _y1 > 0, see comment after (33). In [3] p. 450, it is shown that for k � k1 there
exists a unique positive solution for #, so that boundary condition �10�5 implies that y�t� is
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positive and increasing. Also, since 1=g � w is decreasing, by Tchebyschef inequality [12] we
obtainZ 1

0

1

g
y2dt �

Z 1

0

1

g
dt

� � Z 1

0

y2dt

� �
: �56�

From (55), (56) followsZ 1

0

f _y2 �y2dtZ 1

0

1
g y2dt

� 1

4

p2

4

Z 1

0

f dt

� �Z 1

0

_y4dtZ 1

0

1
g dt

� � Z 1

0

y2dt

� � � 1

4

p2

4

Z 1

0

f dt

� �
k _yk4

0Z 1

0

1
g dt

� �
kyk2

0

; �57�

where in the last step we used Cauchy inequality. Also, from the inequality (54) applied to the
function y�h � 1; f � y in �54��, we haveZ 1

0

_y2dt � p2

4

Z 1

0

y2dt : �58�

Using (58), the inequality (57) could be transformed toZ 1

0

_y2 �y2dtZ 1

0

y2dt

� 1

4

p
2

� �4

Z 1

0

f dt

� �
Z 1

0

1
g dt

� � k _yk2
0 : �59�

Finally, from the boundary condition �44�4, we obtain

y�t� �
Z t

0

_y� p�dp �
Z t

0

dp

� �1=2 Z t

0

_y2� p�dp

� �1=2

� k _yk0 : �60�

Combining (50), (51), (59) and (60), follows (42). This proves Proposition 3.
Remark 2. With k � kcr � Dk; and Dk� 1, the expression (42) leads to the conclusion that the
maximal de¯ection is proportional to the square root of Dk, i.e.

sup
t2�0;1�

jy�t�j �

�����������������������������������
64

p2
kcr

Z 1

0

1
g dtZ 1

0

f dt

Dk

vuuuuut : �61�

The result (61) is, qualitatively, in agreement with the maximal de¯ection obtained from the
Liapunov-Schmidt procedure, in the case of a rod with constant cross section, see [4].

Conclusions
In this paper, we have analyzed the problem of determining critical value of the angular velocity
for the rotating rod with variable cross section. Our main results are:

1. For the smallest value of nondimensional angular velocity k1 that is determined from the
linearized equilibrium equations (25), (26), the rod loses stability. We have basically shown
this in two ways. First, by Proposition 1 we have shown that for k1 we have a bifurcation
point of the nonlinear equilibrium equations (24). Therefore, according to the Euler stability
criterion, the rod is not stable for k > k1.

2. We have shown in the Theorem that the total potential energy of the system always has a
minimizer, and that this minimizer is the classic solution of the equilibrium equations. Also,
we have shown by Proposition 2 that, for the case when k > k1, the trivial solution of the
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equilibrium equations in which rod axis remains straight is not a minimizer. Since a min-
imizer always exists, it follows that for k > k1 the rod has a minimizer for which the rod axis
is not straight. This implies that, according to the energy stability criterion, the rod is not
stable for k > k1.

3. In Sec. 4 we have derived an estimate of the maximal de¯ection for the case when the rod is
rotating with the angular velocity higher than k1. The estimate has been derived by using
several integral inequalities. The same method was applied earlier in [11] and [13]. In
particular, our estimate (61) is a generalization to the case of variable cross section of the
estimate presented in [13].

4. An interesting generalization of the problem treated here consists in obtaining the estimates
similar to (61) for the case when the in¯uence of shear stresses in the constitutive equations
of the rod is not neglected. One such model was used in [14].
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