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Negative Poisson’s ratios in composites with star-shaped
inclusions: a numerical homogenization approach

P. S. Theocaris, G. E. Stavroulakis P. D. Panagiotopoulos

Summary Materials with specific microstructural characteristics and composite structures are
able to exhibit negative Poisson’s ratio. This result has been proved for continuum materials by
analytical methods in previous works of the first author, among others [1]. Furthermore, it also
has been shown to be valid for certain mechanisms involving beams or rigid levers, springs or
sliding collars frameworks and, in general, composites with voids having a nonconvex mi-
crostructure.Recently microstructures optimally designed by the homogenization approach
have been verified. For microstructures composed of beams, it has been postulated that non-
convex shapes with re-entrant corners are responsible for this effect [2]. In this paper, it is
numerically shown that mainly the shape of the re-entrant corner of a non-convex, star-shaped,
microstructure influences the apparent (phenomenological) Poisson’s ratio. The same is valid
for continua with voids or for composities with irregular shapes of inclusions, even if the
individual constituents are quite usual materials. Elements of the numerical homogenization
theory are reviewed and used for the numerical investigation.

Key words negative Poisson’s ratio, mechanics and design of composites, numerical homo-
genization

1

Introduction

Composite materials usually present a certain nonhomogeneous and isotropic microstructure.
Only on the macroscale it is possible to accept these materials as quasi-homogeneous and
eventually isotropic for the cases considered in this paper. By using the method of optimal
topology design in the numerical homogenization [1, 2], a choice of the appropriate quantities
for the constituents of the microstructure could be achieved on the respective characteristic
unit cell. The origin of this micro macro approach can be traced back to the modelling of elastic
frameworks in continuous structures [3, 4]. By this procedure, overall elastic moduli of the
anisotropic structure can be evaluated through the stiffnesses of the members composing the
unit cell walls.
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By applying these ideas, it is further possible to explain the appearance of negative Poisson’s
ratios and their effects on the behaviour of the structure [3-7]. Recently, it has been shown that
by an appropriate selection of the anisotropic properties of the material or the structure, and
especially by varying its values of Poisson’s ratios, a beneficial effect can be achieved in the
strength characteristics. In particular this is due to a reduction of stress concentration factors
caused by geometric discontinuities within the structure [9-12]. The advantages of the use of
materials with negative Poisson’s ratio have been already appreciated. They permit, among
others, a reduction of the stress concentration factors, and production of layered composite
panels and beams, which allow for smooth treatment by cold metal forming processes [13, 14].

In this paper, ways for designing materials with negative Poisson’s ratios will be indicated,
based on configurations of arrays of inclusions with polygonal shaped and re-entrant corners.
These nonconvex two-dimensional cellular microstructures, where inclusions are made of a
material of lower moduli than the moduli of the matrix of the structure, are convenient to
create composites with negative Poisson’s ratios of different values. They depend on the ratio of
the moduli of the constituents of the composite, as well as on the shape of the inclusions. By
applying methods of numerical analysis, it will be shown in this paper that while the choice of
the material properties of the individual constituents of the composite does not influence
significantly this effect, the shape of the star-shaped micro-inclusions is mainly responsible for
this phenomenon.

2

True bounds of Poisson’s ratios in anisotropic bodies

The positiveness of the stiffness C and the compliance S tensors in anisotropic materials is
imposed by thermodynamic principles based on the fact that the elastic potential should
remain always a positive quantity. The positive definiteness of these two tensors for any
anisotropic material implies that the following four eigenvalues of the minimum polynomial for
S can be expressed by [15]
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The above values for the four roots of the minimum polynomial for S are simplified for the
transversely isotropic body where the 2nd, 3rd principal directions correspond to the trans-
verse plane of symmetry of the material, so that E;, = Ej3 and v, = vi3.

From the above relationships (1), and for positiveness of E,3 and Gy;3, one easily finds for the
components of Poisson’s ratios v,;3 and vy, = v;3 the expressions [16, 17]
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It should be pointed out and emphasized that positiveness of the elastic potential is guar-
anteed only when both above inequalities hold, a fact which has been sometimes overlooked in
the literature and has led to inaccurate conclusions [17]. Then, for othotropic solids the fol-
lowing system of relations must hold [17]:
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For the transversely isotropic body, these relations reduce to the simpler ones

E11 1/2
[Viz| = |vi3| < (E_zz) Jvas| <1, (5)
and
E
ViVas < (1—v35) L Vi, - (6)

It can readily be derived from these relations that the inequalities (4) or (6) are more
restrictive and severe than the respective inequalities (3) or (5). Therefore, they are the re-
lationships which should be considered for evaluating limits of variation of Poisson’s ratios in
composites. Application of these relationships may then protect the researcher from admitting
excessive bounds for this important mechanical property (see, for example, the excessive value
for v,3 = 1.97 given in Ref. [17] for the transverse Poisson’s ratio of some particular compo-
site).

For isotropic elastic materials, the bounds of Poisson’s ratio values are reduced to the well-
known limits varying between (—1.0 and +0.5). The right-side limit corresponds to in-
compressible materials, with rubbery materials and, especially, polymers approaching this
limit. The negative values for Poisson’s ratio appear in special substances and, in particular, in
those possessing low values of the bulk modulus and high values of the respective shear
modulus. The lower limit of the negative units is an extreme value, which may be achieved only
in very special structures of substances. In all other cases, the possibility of the appearance of a
negative Poisson’s ratio, at least in one direction of loading is not excluded from the theory of
general anisotropic elasticity. Instances of this effect will be reviewed in this section [18, 19].

Thus, single crystals with a polygonal structure at the atomic level are reported to have
negative Poisson’s ratio along some directions of loading. Such materials are reported to be
cadmium [20], single crystals of pyrite [21] and lattice-structured pyrolytic graphite [22]. On
the other hand, thermomechanically treated low-density open-cell thermoplastic polymeric
foams are materials which eventually exhibit negative Poisson’s ratios. It is of interest to
remark that such materials are usually porous, have a spongy nature, many voids, and a
complicated microstructure. From the microstructural picture of the latter materials exhibiting
nonconvex cells and containing cells with re-entrant corners, a number of microstructures and
mechanisms have been proposed as an explanation of this effect [13, 23-25]. These examples
are not actually materials which can be found in nature. However, as manufacturing technology
and micromechanics attain a higher level of development, the possibility of constructing ma-
terials with these microstructures as prototypes grows continuously. On the other hand, it
should be remarked that almost all structures in living creatures are practically composed of a
combination of such materials.

Cellular microstructures composed of beams have been used with success for modelling of
linear and nonlinear elastic properties of two-dimensional and three-dimensional cellular
materials or honeycombs; the results correlate well with experimental measurements [3, 4, 7]. It
should be noted that experience gathered up to now indicates that all usual materials and
composites with positive values for Poisson’s ratio should be formed from units containing
exclusively or predominantly convex cells, whereas, foamy materials with very high porosity
containing nonconvex cells constituting re-entrant corners are convenient to create substances
with negative Poisson’s ratio [3, 14, 23].

The importance of creating materials with negative Poisson’s ratio has been recognized with
respect to modern structural analysis applications, especially in the aerospace industry. It was
recognized that these materials should normally have a very high shear modulus relative to
their respective bulk modulus. This is appreciated if the material is used in a sheet or beam
form, as it is actually the case in most structural applications where materials having a high
shear modulus rather than a high bulk modulus are beneficial [14]. Moreover, the deformation
patterns of elastic structures made of these kind of materials generally differ from those made
of classical materials (see ref. [13] for a detailed description). The latter effect requires a new
way of thought for the design of structural elements of structures, but at the same time opens
new possibilities for applications. For example, a sandwich panel or beam with a core made of
this new material will exhibit a dome-like double curvature on flexure. This fact allows an



improved cold metal-forming treatment for the production of shells from initially plane panels,
thus reducing the stress concentration factors which, in turn , enhance the crack and fatigue
strengths of structures.

3

A numerical homogenization method for adapting negative effective Poisson’s ratios

From a series of experimental results on foams with re-entrant corner cells, e.g.[23], and from
the relevant results by applying the numerical homogenization theory, e.g.[2], it can be shown
that we may construct microstructures with an adjustable mechanical behaviour exhibiting
positive or negative Poisson’s ratio. For the study of the overall mechanical properties of these
materials, we assume that they are periodic, i.e. the same microstructural pattern is repeated for
the whole area of a structure. We assume, moreover, that the overall mechanical behaviour of
the material can be described by classical elasticity relations. In this framework, the homo-
genization problem is posed as follows:

find the elasticity constants of the continuous model which lead to the same mechanical
behaviour as the one of the material with the periodic microstructure.

To this end, a detailed analysis of a representative material cell is performed and the best-fit
method is followed. This will be shown in the numerical examples later in this paper. The
possibility to adjust the overall mechanical properties by changing either the geometric or the
material properties of the microstructure constitutes the inverse (optimal) design problem:

find a microstructure for which the material has a given (or optimal in some sense) me-
chanical behaviour.

Let us assume a representative unit cell of the periodic structure, which for simiplicity is
considered to be two-dimensional, (Fig. 1). Let the unit cell be orthogonal, with dimensions
equal to ; and [, along the two coordinate axes. Let it occupy the area 2 with boundary I'. The
boundary is composed of the complementary and nonoverlapping parts I'y, I';, I'} and I}, i.e.

nJr.lyrnyr,=rr\nh=¢.

A unit cell of the real structure (case II in Fig. 1) and a unit cell with the same dimensions of the
sought homogeneous structure (case I in Fig. 1) are considered. The cells I and II are subjected
to three types of unit prestresses
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Problem(l) 01 = 1, gy = 0, 03 = T1p = Tp1 = 0 y
Problem(2): 01 =0, 0, =1, 63 =1, =131 =0 , (7)

Problem(3) : 6, =0, 6, =0, 63 =T =751 =1,

as it is shown in Fig. 1.

The solution of cell I for these load problems can be based on simple engineering mechanics
relations, due to the assumption that the dimensions of the periodic cell are small with respect
to the dimensions of the structure.

For the cell II, the finite element method is employed for the solution of the above static
analysis problems. Moreover, the following periodicity restraints, which result from technical
mechanics consideration, are taken into account as multipoint constraints in the above de-
scribed problems:

- for problems 1 and 2, displacements on boundaries I';, I'; along the horizontal direction 1
are the same;

- for problems 1 and 2, displacements on boundaries I', I, along the vertical direction 2 are
the same; and

- for problem 3, boundaries I';, I';I'; andI”, remain straight lines after deformation.

The essence of the energy-based numerical homogenization method is that the parameters of
the homogeneous cell I need to be appropriately chosen, in order to obtain the same de-
formation energy as in the cell I of the real structure. Both are subjected to the same de-
formation patterns, which should respect the periodicity assumptions, i.e. they are periodic for
the whole structure.

If the parameters defining the mechanical behaviour of the cell I (e.g. the elasticity constants)
are gathered up in the design vector a, the numerical homogenization method can be described
by the following identification problem:

find o as a solution of the optimization problem

18 1(0) . (i) 0 2
a{leligzi;wl ]iZ(e ;o) ]inY(e )¢ (8)
Here, A, is the admissible set for the material parameters of the homogenized cell, index i runs
over all independent periodic deformation patterns el considered, w; are appropriate weights
which transform the multi-objective optimization problem into a classical one with a cost
function as in (8), superscripts I or II stand for the quantities of cells I or II, respectively, and
[[.,, is the internal energy of the considered structure.

The identification problem (8) can be solved either by classical numerical optimization
techniques, or by neural-network based methods as presented in [26]. Here, we use a simple
procedure based on the optimality criteria method for the solution of a certain class of pro-
blems (8). The method avoids formulation and solution of large scale optimization problems,
and, if it can be used, is considered to be suitable for structural analysis applications [1].

Let us assume for simplicity that all w; are equal to one. We assume that the homogenized
unit cell I obeys the classical isotropic elasticity relations, i.e. we have [17]

€1 1%: _1% 0 o1
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The design vector o is chosen as o = [0y, a5]" = [1/E, —v/E]".
The internal energy is expressed by

i) N
= [ oWTedQ for all i = I,1I,j = 1,2, 3,
J
in Q

where Q is the area of the considered cell. For simplicity, we assume that A,; = R%.
For the assumed unit stresses (7) and the elasticity relations (9), we get for the unit cell I
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with all other components equal to zero.
Relations (7) and (10) written for the cell I are introduced in (8) and yield

min<l/{[JI(I)T(a)eI(l)(oc) _611(1)Ten(1)r+[ 2T (g)l® (o) — O_H(Z)TeH(Z)]Z
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Q

+ [af<3>T(a)eI<3> (o) — 1T } }dQ> . (11)
Moreover, the virtual work equality for the cell II reads

/GHU)TeHU) dQ = /SIIO)TuII(j) ar, j=1,2,3, (12)
Q r

for all given unit stresses of (7), i.e.

S'W =1 on Iy, " =0 on Iy, T},

Finally, the optimality conditions for (11) are written by means of (10) in the form of an
equation for o, o

/(al—a(TH )d9%+/(z(al—a2)—a<” )dQMZO, (13)
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By using (12), the surface integrals are transformed into line integrals. Thus, we get the
following optimality conditions:
find o, o, such that

(0611112 — uil(nlz) 14 <O€11112 — u£1(2)11> 14 (2(0(1 — 062)1112 — / O'II(s)TeII(?,)dQ) 2=0 s
Q
(15)

(2(0(1 — )l — / o’II(3)TeII<3)dQ> (-=2)=0. (16)

Q

The variable «; (the elastic modulus E) results from (14) and (15)

WL + ol
2L

(17)

o =

The variable a, (the Poisson ratio v) may now be calculated either from (16), or from the
elasticity relations (9), which have been assumed to hold true.

Analogous relations can be extracted for the more general case, where the homogeneous
model I is assumed to obey orthotropic elasticity relations or general anisotropic elasticity
relations [2].
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4
The inverse problem of defining a material with given homogenized elastic constants

The aim of this chapter is to formulate and implement a procedure to define linear elastic
materials with prescribed constitutive parameters, possessing a periodic microstructure such as
fiber composites. Such materials are prone to be defined for their macroscopic behaviour by
effective average elastic constants through an analysis of the microstructure represented by
representative unit cells. Then, the inverse homogenization problem can be formulated ana-
logously to the direct problem of the previous section. We make here the same assumptions
and consider again the cells I and II and the unit load problems (1), (2), (3) of Fig. 1.

Now the “homogeneous” cell I is given, i.e. relation (9) is valid; the elastic constants are
known and they constitute the goal of the optimal design problem. On the other hand, the real
cell II may now be modified by means of a certain number of design parameters which are
summed up in the design vector P. For instance, either elasticity constants of various con-
stituents in a composite structure, the shape of the inclusions in a reinforced composite or the
type and shape of the microstructure may be considered as design variables by an appropriate
choice of the elements of vector P.

By an analogous reasoning to the one used in the previous section, the optimal design
problem reads like Eq.(8)

find B as a solution of the optimization problem

2

B 1(i) . (i) 0
&%E;M ]iz(e )—IiZ(e N (18)

Here, B,; is the admissible set for the design variables B, and all other quantities are defined
after problem (8).

As with problem (8), problem (18) can be solved by means of various methods. A detailed
presentation of the solution of this homogenization problem is not undertaken in this paper,
since the method is well established and known. The reader may consult [2], [27] and [28]
among others, for recent studies.

The inverse problem is to construct materials with designated properties. It is expected that
a number of differently composed bodies may exhibit the same mechanical behaviour. Then,
one can choose from a practical standpoint the goal to construct the simplest material with the
given parameters, thus solving an optimization problem, whose cost function must be mini-
mized. If the cost function should be the weight of the structure, then the constraints are
expressed by the constitutive parameters to be satisfied, and the design variables should define
the composition and the topology of the body.

Since the composite materials are periodic structures, they are described by a representative
unit cell, which constitutes the smallest repetitive unit of material. A calculation of the effective
moduli of the substance can be obtained by analyzing only the unit cell. Considering that the
typical composite is a complicated microstructure, an analytic approach for the determination
of the properties of the material is rather imposssible and, therefore, a finite-element based
numerical method is better suited, due to its simplicity. Here, we are using the homogenization
procedure in terms of element mutual energies which renders the inverse problem better suited
for optimization. Then, the optimization problem is formulated as a multiple load minimum
weight problem, and solved by a modified version of the optimality criterion method proposed
in [29].

In fiber-reinforced materials, we are concerned with the general constitutive laws in two-
dimensional linear elasticity. We consider here a case of a particular type of microstructure
consisting of a star-shaped inclusion with re-entrant corners, as it is indicated in Fig. 2. It is
related with materials of a specific microstructure, which can be modelled by means of a truss-
like cell. The principal analogue of this example comes from a foamed porous material. Indeed,
the truss structure may be a continuum with holes, with the provision for an analytic solution
of the problem that none of the holes intersect the cell boundaries.

However, this constraint may be relaxed for the case of a solution based on numerical
analysis, provided that the appropriate boundary conditions of the examined cases were
conveniently defined. Then, the homogenization relationships can be solved by a finite element
approach. Here, the individual bars in the truss-like cell are considered as continuum elements
with two modes disposing only of a certain longitudinal stiffness and zero-shear stiffness. In
this way, the same software, which is used in finding the homogenized coefficients for the truss-
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like structure, yields also the continuum-like material. Figure 3 presents a periodic composite
material with star-shaped inclusions convenient for developing negative Poisson’s ratios.

The described asymptotic homogenization procedure provides rigorous convergence esti-
mates for the displacements of the real structure and those derived by using the homogenized
coefficients. Concerning the effective material properties, the method tallies with the approach
based on energy principles that employ average stress and strain theorems [30]. This technique
presents the advantage to effectively use methods and solutions existing for trusses and similar
structures. In this method, three tests of the representative unit cell were considered: two
simple tension tests along either of the principal directions of the unit-cell, and a test where the
unit cell is deformed under simple shear, as described in the previous section.

According to the standard homogenization procedure, the displacement fields developed on
the boundaries of the unit-cell under these three modes of loading are expanded into an
asymptotic series, involving functions which depend on the global macroscopic variable and a
local microscopic one. The series are truncated to the desired order for each problem. They are
used to express the global properties of the material, as indicated in the previous section, taking
also into consideration the periodic boundary conditions imposed on the unit cell during each
simple mode of loading.

In order to explore the possibility of introducing a convenient shape of cross sections of the
inclusions in a fiber composite, which would contribute to the creation of a negative value for
the transverse Poisson’s ratio of the composite, we examine the case of the truss-like structure
in the form of a convex star created by a number of beams and rods, whose principal analogy
derives from open foam and porous materials. It is indeed anticipated that in order for a
porous material to present a negative Poisson’s ratio, its porosity should be rather high and the
material should be classified among the open-foam materials. We start our investigation with
the convex shaped-beam cell of Fig. 2.

The microstructure of the material produced by this cell is schematically shown in Fig. 3.
Using the numerical homogenization concepts of Sec. 4, we model the unit cell of Fig. 2 by

12

D C
3 5
4
1 7
< 2 6
9
10 8
A 7 B
L5 Fig. 3. A star-shaped, two-dimensional beam-like cell
10— with re-entrant corners simulating the unit cell of Fig. 2.
: 15 15 Finite element discretization and mode numbering
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10

means of two-dimensional beam finite elements. Fixed-end boundary conditions (support) are
considered at point 1, and a unit load in the horizontal direction applied at point 7. For the cell
described above, with geometric dimensions as in Fig. 2, we assume that the beams have a cross
section equal to unity, a moment of inertia equal to 1000, and they are made of an elastic
material with elastic modulus equal to E = 1000. For a shear factor equal to 0.3 (resp. to 0.9),
the phenomenological elastic modulus E and Poisson’s ratio v calculated by the numerical
homogenization theory, are plotted in Figs. 4a and 5a respectively, for low values of the shear
modulus G of the structure varying between G = 10? and G = 10°. For higher values of the
shear modulus G, varying between G = 10° and G = 10%, the variation of E and v is plotted in
Figs. 4b and 5b respectively.

From the above results, a negative Poisson’s ratio effect is clearly demonstrated. One should
nevertheless underline here that the above parametric investigation is extrapolated outside the
range of mechanically admissible values for the material constants in order to give a better
visualization of the sought dependence between Poisson’s ratio and structural constants for a
given cell geometry. In fact, a value of G = 333.30 corresponds to a beam material with v = 0.5,
which leads to a Poisson’s ratio for the microstructure equal to —0.2815 for a material with
shear factor equal to 0.3. Whereas, for a material with shear factor equal to 0.9, the respective
value for Poisson’s ratio is equal to —0.1538 for the low range of variation of G (100 < G <
1000). However, a value G = 1000 corresponds to a beam material with v = —0.5 , which leads
to a Poisson’s ratio for the microstructure equal to —0.1524 for a low shear factor 0.3, and equal
to v = —0.0120 for a high shear factor. These results indicate that the shape and the geometry
of the microstructure, and not the material constants of its elements, are mainly responsible for
a negative Poisson’s ratio.
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Fig. 5a,b. The variation of Poisson’s ratio v of the composite versus its shear modlus G for 10> < G < 10° a and
for 10° < G < 10* b



D D3

+"Dq Fig. 6. Parametric investigation of five types of a
star-shaped two-dimensional unit cell expressed

as a truss-like structure

The influence of the shape of the inclusions will be studied subsequently. For this purpose
we consider five different shapes and orientations of inclusions, whose forms and orientation
are indicated in Fig. 6. Indeed, from the shape of square cell type of Fig. 3 with four re-entrant
sides, whose angles at its corners are equal to § = 36°, we create the four successive forms by
increasing progressively the angles 0 to be : 0, = 61°, 0. = 90°, 04 = 134° and 0. = 180°. The
microstructures of the three materials produced by the cells a, ¢ and e are schematically shown
in Fig. 7. The deformation modes of these three types of cells under horizontal tensile unit-
loads applied to the respective frames are shown in Fig. 8. It is schematically shown in this
figure that for case (a) the Poisson’s ratio should be negative, whereas for the two other modes,
either Poisson’s ratio is insignificant (case (c)), or it takes large values (case (e)). For the beam
elements, we consider the following constants: cross area 50, moment of inertia 416.66, shear
factor 0.9, E = 10°, G = 333.30, that is a material with v = 0.5. The previously outlined nu-
merical homogenization method is applied. Numerical analysis and application of the homo-
genization method indicated that these three types of frames exhibit Poisson’s ratios equal to
—0.2715, +0.02928 and +0.40134, respectively. Examples of the variation of the elastic modulus
E, and the Poisson’s ratio for the types of materials with such microstructures are shown in
Figs. 9 and 10, respectively, as found by applying the homogenization and the numerical
analysis technique.

It can be derived from the above results given in Figs. 9 and 10, that a negative Poisson’s
ratio effect is clearly developing with such a type of composite, where the inclusions have a
star-like shaped cross section with sides containing re-entrant corners. Furthermore, the same
figures yield the conclusion that, as the ratio of G/E of the material is reduced and its shear
factor is also reduced absolutely, higher negative values for the Poisson ratio may be attained.

The following conclusion may be derived from the previous results. It can be stated that
mainly the shape and the geometry of microstructure and, secondarily, the particular me-
chanical properties of the composite are responsible for creating composite materials with
negative values of Poisson’s ratio.

Type a Type c Type e

Fig. 7. Three types of microstructures produced by the unit-cells (a), (c) and (e) of Fig. 6
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a (36°) ¢ (90°) e (180

Fig. 8. Initial (thin lines) and deformed (solid lines) configurations for the cells of Fig. 7. The effect of negative,
near zero, and positive Poisson’s ratio are shown

5 /’O —0
4

E x 10°5 (units)

Fig. 9. The variation of the elastic

2 modulus E of the unit cell versus the
angle of the corners of the star-
1 shaped inclusions
0° 30° 60° 90° 120° 150° 180°
Angle 6°
0.4
0.2
0.1
>
0 /
-0.1
/ Fig. 10. The variation of Poisson’s
/
02 ratio v of the unit cell versus the
angle of the corners of the star-
-0.3 shaped inclusions
0° 30° 60° 90° 120° 150° 180°

Angle 6°

Let us now examine a particular microstructure of a fiber composite consisting of arrays of
star-like inclusions with re-entrant corners which are encapsulated by layers of interfaces, as
those indicated in Fig. 2, where the interface layer is strongly exaggerated. The microstructure
of the composite may be considered as consisting of unit cells corresponding to the squares
KLMN of Fig. 2, whose finite-element discretization is shown in Fig. 11.
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For the respective isotropic material, which occupies the region @, (matrix) of the com-
posite, we consider an elastic modulus E; = 100 and Poisson’s ratio v; = 0.3. For the material
of the region €,, that is the reinforcement of the composite, we consider v, = 0.30 and several
values for E,, from a weak material with E, = 10 to a very strong one with E, = 10°. The
dependence of Poisson’s ratio of the composite on the ratio E,/E, is presented in Fig. 12. It is
clear that for low values of the ratio E,/E; (lower than E,/E, = 46) the Poisson ratio of the
structure remains positive. Above this limit this material parameter becomes negative.
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