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Control of transient thermoelastic displacement
of a two-layered composite plate constructed
of isotropic elastic and piezoelectric layers due
to nonuniform heating

Y. Ootao, Y. Tanigawa

Summary In this study, the theoretical analysis of the control of transient thermoelastic
displacement is developed for a two-layered composite rectangular plate constructed of an
isotropic elastic and a piezoelectric layer due to nonuniform heat supply. The transient
three-dimensional temperature in a two-layered composite rectangular plate is analyzed by the
methods of Laplace and finite cosine transformations. Exact solutions for isotropic elastic and
piezoelectric plates of crystal class mm2 are used in the theoretical analysis. A three-dimen-
sional transient piezothermoelastic solution is developed for a simple-supported combined
plate. The analysis yields an appropriate electric potential which when applied to the piezo-
electric plate, suppresses the induced thermoelastic displacement in the thickness direction at
the midpoint on the free surface of the isotropic plate. As an example, numerical calculations
are carried out for an isotropic rectangular plate made of steel, bonded to a piezoelectric plate
of cadmium selenide. Some numerical results are shown for temperature change, displacement
and stress in transient state, when the transient thermoelastic displacement are controlled.
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1

Introduction

Piezoelectric materials exhibit coupled effects between the elastic and electric field, and have
become of major interest lately as functional materials used in actuators or sensors [1]. It is
possible to make a system of intelligent composite materials by combining piezoelectric ma-
terials with structural materials. Several analytical studies concerning piezothermoelasticity of
intelligent composite materials have been reported. In particular, the control of thermoelastic
displacements was treated in [2-7]. The piezothermoelastic problem concerning control of
thermally induced elastic displacements of an isotropic plate with a piezoelectric plate of crystal
class 6mm was investigated in [2-4]. In order to reduce the applied electric potential, the same
piezothermoelastic problem concerning multiple piezoelectric plates of crystal class 6mm was
investigated in [5]. The shape control of a cylindrical panel or a rectangular hybrid plate with
some piezoelectric layers under thermomechanical load were reported in [6, 7], however, these
papers are restricted to three-dimensional steady state piezothermoelastic problems.

It is well known that thermal stress distributions in transient states significantly differ from
those in steady states. Therefore, we recently analyzed the three-dimensional transient piezo-
thermoelastic problem for a rectangular composite plate composed of cross-ply and piezo-
electric laminae, [8], and functionally graded rectangular plate bonded to a piezoelectric plate
[9]. The numerical results for the temperature change, displacement, stress, electric potential
and electric displacement distribution in a transient state under nonuniform heat supply were
showed.

In the present paper, we analyze the transient three-dimensional piezothermoelastic problem
of the control of thermoelastic displacements of a two-layered composite rectangular plate
constructed of an isotropic elastic and a piezoelectric layer of crystal class mm2 due to
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nonuniform heat supply. The analysis of the problem leads to an appropriate electric potential
applied to the piezoelectric plate which suppresses the induced thermoelastic displacement in
the thickness direction at the midpoint on the free surface of the isotropic plate from the early
stage of the heating to the steady state. Some numerical results for the temperature change,
displacement and stress in a transient state are shown.

2
Theoretical development

2.1

Heat conduction problem

We consider a two-layered composite rectangular plate constructed of an isotropic elastic and a
piezoelectric layer as shown in Fig. 1. The thicknesses of the elastic and the piezoelectric plates
are represented by B and b, respectively. The lengths of the sides of the rectangular plate are
denoted by 2L, and 2L,, respectively. Coordinate axes x, y and z are chosen as shown in Fig. 1.
Moreover, coordinate z; represents a local coordinate system of ith layer, the origin of which is
taken at the bottom side of the ith layer. Throughout the paper, the quantities with subscripts
i = 1and i = 2 denote those for the elastic and the piezoelectric plates, respectively. We assume
that the two-layered composite plate is initially at zero temperature, and is suddenly heated
nonuniformly from the bottom surface by surrounding medium, the temperature of which is
denoted by the function T,f,(x)g.(y). The relative heat transfer coefficients on bottom and top
surfaces of the combined plate are designated h, and hy, respectively. We assume that the end
surfaces of the two-layered composite are held at zero temperature. Then, the transient heat
conduction equation for the ith layer in dimensionless form is given as
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and the initial and thermal boundary conditions in dimensionless form are taken in the
following forms:
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where T; is the temperature change of the ith layer, x and i (k = x, y,2) are thermal diffu-

sivity, /, and A, are thermal conductivity, ¢ is time and Ty, ko and Ay are typical values of

temperature, thermal diffusivity and thermal conductivity, respectively. The relation between
the local coordinate z; and the global coordinate Z is given as follows:

z=z+({-1), i=12. (11)

For the sake of brevity, we introduce the following symmetric conditions for the temperature
functions f,(x) and g,(y) without loss of generality:

fa(=%) = fa(%),  ga(—)) = ga(¥) - (12)

Introducing the finite cosine transformations with respect to the variables x and y and the
Laplace transformation with respect to the variable 7, the solution of Eqgs. (1) and (2) can be
obtained so as to satisfy conditions (3)-(10). This solution is shown as follows:

oo oo

T, = ZZ T cosqexcossy, i=1,2, (13)
=1 =1

where
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= dep(-wit)
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where A is a determinant of the 4 x 4 matrix [ay], and the coefficients A; and B; are defined as
the determinant of the matrix which is similar to the coefficient matrix [ay] but in which the
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(2i — 1)th column or 2ith column is exchanged by the constant vector {c}. The nonzero
element ay; and ¢, among the coefficient matrix [ay] and the constant vector {c} are given
from Egs. (4-7). In Egs. (13) and (14), quantities g, s, A'(a)j), P> ﬂij and 7ij are

(2k—1)n 2l—-1)n
Qk =, S = —_— ),
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and w; represent the jth positive roots of the following transcendental equation:
Alw) =0 . (16)

The condition for the eigenvalue w; is given as

01 <0y < <Oy <A\JR(GR A+ ) <Opa <--- ifi=1,
(17)
01 <y <o < O < \JRxGp +RyS] < Oy <0 ifi=2.

The details of the steady-temperature solution are omitted here for the sake of brevity.

2.2

Piezothermoelastic problem

We now develop the three-dimensional analysis for transient piezothermoelasticity in a simply
supported two-layered composite rectangular plate constructed of an isotropic elastic and a

piezoelectric layer.
In the piezoelectric plate, the stress-strain relations are expressed in dimensionless form as

follows:

Oxx2 [Cii C, Cs 0 0 0 Exxy — Ox T2 0 0 ey

Tyy2 C Cp Cs 0 0 0 Eyy2 — 0y T 0 0 e3 i
Oz . 613 623 633 0 0 0 &2z0 — 0,1 . 0 0 es3 Ex
Gy |0 0 0 Cu 0 0 Vyz2 0 ey O 7
6-ZX2 0 0 0 0 755 0 ?zxZ élS 0 0 ‘
Gy (0 0 0 0 0 Cg) Va2 (0 0 0

The constitutive equations for the electric field are

Dy = eisy, + ’7]11Ex> Dy = 524“7)/2 + 77’2213: ’ Dz = €316xx 5325)1)/ + €338, + 77/33Ez +§ZT .

(19)

The relations between the electric field intensities and the electric potential ¢ are defined by



E_x = _(7)_’}7 E_y = _(%_yu EZ = _(}72 ’ (20)

where a comma denotes partial differentiation with respect to the variable which follows. If the
free charge is absent, the equation of electrostatics is expressed in dimensionless form as
follows:

ijc —|— Dy_y + Dz’g = 0 . (21)

Substituting Eq. (20) and the displacement-strain relations into Eqgs. (18) and (19), and later

into the equilibrium equations and Eq. (21), the governing equations of the displacement

components and the electric potential ¢ in dimensionless form are written as

Cnﬁz.ﬂ + Casﬁz.y—y + Cssﬁz,z + (C2 + 666)172,@ +(Ci3 + Css)ﬁ’z,ﬁ + (é31 + élS)@ﬁ
= (Cnox + Cio8ly + Ci3%;) Toz,

(Cés + Cr2)il 55 + CosVazx + CaaVagy + CaaVazz + (Cos + Caa) Wa 3z + (€32 + 524)&,%
= (Cia8x + Cply + Cy30,) To 3,

(Ci3 + Css)ily 5z + (Cas + 623)172_}/7 + Csswyzm + 64471’2@ + CssWoz + €15 5=
+eudyt+endz = (Ci30x + Co3y + (_3335(:4) Tz,

(22)

(€15 + €31)lrxz + (824 + €32) V27 + E1sWazx + oWz + €33Wa 2 — 111§ 5=

- ﬁzz‘b,ﬁ - ’_733(15,5 =Tz .
In the case of the elastic plate, the displacement equations of equilibrium are written as

(o4 2R) iy + ity 35 + th ) + (2 + B) (7155 + W15) = (32 4+ 20)a T ,

(A4 1) (mm + Wigz) + (Vs + 7z) + (24 20) 7y = (34 +2) 0Ty, (23)
(A + 1) (e +95) + R0z + wg) + (2+20) Wz = (32+20)aThz -

If the bottom and top surfaces of the combined plate are traction free, and the interface of
the two layers are perfectly bonded then the boundary conditions of bottom and top surfaces
and the conditions of continuity at the interface can be represented as follows:
21=0:0,1=0, 0 =0, Oyz1 = 0,

21 =1:2,=0:0z1 = 022, Ozx1 = Ozx2, 6}/21 = 6-)/227 (24)

ﬁl = a27 171 = 1727 wl = wZ;

Zy=b:06,2=0, Gz =0, Oy = 0.

The boundary conditions in the thickness direction for the electric field are expressed by

Z=0:9=0, (25)
Z,=b:¢=Vy(0)F(X)Gy) . (26)
We now consider the case of a simply supported plate and assume that the end surfaces of

the piezoelectric rectangular layer are electrically grounded. The boundary conditions are
given as follows:

(27)

X=24Ly:00i=0, =0, w; =0, ¢ =0,
J==L,: Gy, =0, 4;=0, w;=0, ¢=0.

In expressions (18-27), we have introduced the following dimensionless values:
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where oy; is the stress component, g; is the normal strain component, y,; is the shearing
strain component, (u;, v;, w;)are the displacement components, o and oy are the coefficients
of linear thermal expansion, Cy, is the elastic stiffness constant, Ej is the electric field intensity,
Dy is the electric displacement, ey is the piezoelectric coefficient, 1, is the dielectric constant,
p: is the pyroelectric constant, d; is the piezoelectric modulus and o and Y; are the typical
values of the coefficient of linear thermal expansion and Young’s modulus of elasticity,
respectively, while 1 and p are Lamé’s constants.

The boundary conditions (27) are satisfied automatically if the displacement components
and electric potential are given in the following forms:

= > [Uelz) + Upini(2;)] sin gix cos sy,
k=1 =1
v = Z Z[Vcikl(2i> + Vyiri(Zi)] cos gix sinsy,
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. (29)
Wi=> > [We(Z) + Wpini(2:)] cos gk cossiy, i=1,2,
k=1 =1
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~
Il
_
—
I
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In expressions (29), the first term of the right-hand side shows the homogeneous solution
of Eq. (22) or (23), and the second term of the right-hand side shows the particular solution

of Eq. (22) or (23).
In the case of the elastic layer, U.ix(Zzi), Veii(Zi), and We(z;) are given by the following

expressions, [10]:

Uak(z1) = (01511) + ‘1(311)21 + agll)zf) exp(ppz1) + (agll) + ‘15111)21 + agﬁf) exp(—ppz1),

Van(z1) = (‘152) + agz)zl + aéz) ) exp(puz1) + (ag) + ailz)zl + aé?ﬁ) exp(—puz1),

Wan(z1) = (alf +aliz + all2) exp(pyz) + (al) + a2 + a2 exp(—puiz1) -

(30)

In these expressions, aiy are unknown constants and the following relations among these
constants exist:

aV =gV =0 1=1,2,3,

51 — Yol T
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o7+ 30) qkay, 1412 T Prify3
(1) QA+ R) ( (1) (1) (1))
a = - a + sja — a .
41 o+ 30) qray 19y, — Pr4z3



In the case of the piezoelectric layer, U.ixi(Z;), Veiri(Zi), Weiri(2;) and @ (Z;) are given based on
Heyliger’s solution, [11]. Assuming that

{Uan(z2), Vari(22), Waki(z2), @eri(22)} = (U Vs Woa, @) exp(pza) (32)

and substituting the homogeneous solution into the homogeneous form of Eq. (22) leads to
equations for (UY;, VY, W5, ®%,). From the condition that nontrivial solutions of these
equations exist, an eighth-order equation for p is obtained. This equation can be written as the
fourth-order equation

e’ +drf ter+f=0, (33)

where

2

r=p,
c= % {’733 [6_’44 (Anéss — Aﬁ) + Css (A336_'44 + Ay Cas — A§3)] + 2, (A1, Caq + A Css)

+ 2233[Css (A34Cas — AnsAzs) — Ar3A1sCaa] + Cs [655 (Agzl - A44C44) + A%4C44] }7
d= % {’733 [A11A§3 + A2, Ay — 2A12A53A15 — As3(A11Cag + A2 Css) + Css (Af2 — A11A22)]

+2833(A13AnAis + AnAnAsy — ApAnAiy — AnAnArs — AnAsCiy — ApAsCss)
+ &35 (A}, — AnAn) + Css(2A23424A31 + ApAusCss + As3AnCay — AQjAu — A3, A5
—A3,Cus) + Cas(A11AuCss — AL Au + 24134145, — Al Ass) + (AsAss — AuAn)’},
. ) ) _ _
A {(AnAx — AL,) (7133433 + 2833434 — Cs3A4) + (A3, — A33Au4)(CssA2 + CuAn)
+2[A12A24(A13A34 — A1sAs3) + ApAr3(A1sAsy — A3Ay)
— As(AnAnAu + AsAnAu)] + Ass (AnAy, + Al An) + Au(ATAn + Audss) |,
f = (A34A44 A§4) (A11A22 - A%Z)’
A= —Cssé44 (Cssilzs + &55) - G4
Ay = Cngi + Cossi, A= (Cia+ Coo)qist, Az = (Cis + Css)qr, A = (831 + &15)qi,
Ay = Ceoqi + Caasi, Az = (Cos + Cag)st,  Azs = (852 + €)s1,  Ass = Cosqy + Cuas],
A34 = Elsqi + 524312a A44 = _(ﬁllqi + ﬁzzsf) :
(53)

For Eq. (33) there might be four real roots, two real roots and one pair of conjugate complex
roots, or two pairs of conjugate complex roots. Piezoelectric material, which is considered in
the next numerical calculation, corresponds to the case of four real roots. For this case,
Uaki(z2), Veari(22), Wak(z2) and ®@4(z,) are given by the following expressions:

4 4
Unoi(z2) = Z U (z2), Van(z) = ZLij Uiy (22),
= - (36)
Wk (22) ZMkl] Wiy (22),  @eu(22) ZNkl] Wiy (22)
J=1

where

Uiy (z2) = FiyCuy(z2) + GiySiy (22), Wiy (z2) = GryyCry(22) + oy FrySiyy (22) (37)
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1 m
Ly = D (fum}1 + Ofkl]fum% +f13), My = F] (f21m}1 + OCkl]fzzm% +f23)7
] ]

(38)
m
Ny = D—]] (f31m}l + OCkl]f32m; +f33), Dy = ockzjg1m? + gzm}‘ + akugsmf + g,
Cuy(z2) = cosh(myzy), Swy(z2) = sinh(mjzy), my =/, oy=1 if r; >0,
Ck[](éz) = COS(TYL]Zz), Sk[](Zz) = sin(mjéz), my = /=, Akl = —1 if r < 0.
(39)

Here, Fjy; and Gy are unknown constants. Expressions for the coefficients in Eq. (38) and for
the complex roots are omitted here for the sake of brevity.

On the other hand, Uyixi(Z;), Vpiki(Zi), Wpiki(zi) and ®pp(z;) of the particular solutions are
obtained as the function system like the temperature solutions. The details of the particular
solutions are omitted here.

In the case of the elastic plate, the stress components can be evaluated by substituting
Eq. (29) into the displacement-strain relations, and later into the stress-strain relations. In the
case of the piezoelectric plate, the stress components and the electric displacements can be
evaluated by substituting Eq. (29) into the Eqs. (20) and the displacement-strain relations, and
later into Egs. (18) and (19). The unknown constants in Egs. (30) and (37) are determined so as
to satisfy the boundary conditions (24)-(26).

23

Control of transient thermoelastic displacement

We consider the control of the thermoelastic displacement in the thickness direction at the
midpoint on the free surface of the elastic layer by an electric potential applied to the piezo-
electric layer. First, we assume the functions F(x) and G(y) of Eq. (26). Next we decide the
volume Vy(ty) of Eq. (26) by repeated calculation, in order to reduce the induced thermoelastic
displacement w at the midpoint on the free surface of the plate to zero in any discrete time 7y
from the early stage of the heating to the steady state.

3

Numerical results

To illustrate the foregoing analysis, we consider the piezoelectric layer, composed of cadmium
selenide and the elastic layer composed of steel. Numerical results are presented for the fol-
lowing values:

0, b=0.1,
fa(X) = (1 _RZ/%)H(’ZO — |x]), ga(y) = ( _)72/)73)H()70 - |)7|)7 X0 = 1.0, y,= 1.0,

F(x) = cos(nx/2L,) .

_ case 1,
G(5) = cos(n7/2L,)
F(x) = cos*(nx/2Ly) 5

case 2 ,
G(y) = cos*(ny/2L,)
(40)

where H(X) is the Heaviside’s function. Material constants for steel are taken as
J1 =516 WmK, x=1388x10°m?/s, a«=11.8x10 °1/K, (a1)

Y =206.0 Gpa, v=0.3,
and for cadmium selenide, [2],

oy = oy = 4.396 x 10 °1/K, o, =2.458 x 10 °1/K, Cj; = Cp = 74.1GPa,
C12 =45.2 GPa, C13 = C23 =393 GPa, C33 = 83.6 GPa, C44 = C55 =13.17 GPa,
Ces = 14.45GPa, e3 = ez = —0.16C/m?, es3 = 0.347 C/m?,



e1s = ey = —0.138C/m*, 1y, =1, = 8.25 x 1071 C*/Nm?,
N3 = 9.03 x 107" C*/Nm?, p,=-2.94x10°C/m*’K, d;, =—3.92x 10 "2C/N,
dx = Ay = 8.6 W/mK, Ay = 1.54, .
(42)

Since the coefficients of thermal conductivity for cadmium selenide could not be found in the
literature, the following values are assumed:

Ky =K, =328%x10°°m’/s, K, =15k . (43)

The typical values of material properties such as kg, A, % and Yy, used to normalize the
numerical data, are based on those of steel.

Figure 2 shows the variation of the temperature change on the x-axis (y =0, z=0). The
temperature rise can clearly be seen in the heated region. Figure 3 shows the variation with time
of the applied electric potential Vj in order to reduce the induced thermolastic displacement w
at the midpoint on the free surface of the plate to zero. The applied electric potential V, in case
1 is small compared with that of case 2.
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Fig. 2. Variation of temperature on the x-axis
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Figures 4-7 show the numerical calculations of case 1. Figure 4 shows the variation of the
thermal displacement w on the x-axis (y = 0, z = 0), while Figs. 5 and 6 show the variations of
the normal stresses G, and G,, at the midpoint of the plate, respectively. As shown in Fig. 5, it
can be seen that a discontinuity occurs on the interface between the elastic layer and the
piezoelectric plate and large compressive stress occur in piezoelectric plate. As shown in Fig. 6,
it can be seen that the stress variation becomes substantial with the progress of time and
maximum tensile stress occurs in a transient state. Figure 7a and 7b show the distributions of
normal stress G, and shearing stress d,, on the interface (y = 0, zZ = 1.0), respectively.

Figures 8a and 8b show the numerical calculation for case 2. The distributions of normal
stress G,, and shearing stress &, on the interface (y = 0, z = 1.0) are shown in Figs. 8a and 8b,
respectively. It can be seen from Figs. 7 and 8 that the distributions on the interface for case 2
are different from those of case 1.

In order to examine the influence of the shape control on the displacement and the stresses,
the numerical results for the case when the deformation is not controlled are shown in Figs. 9,
10a and 10b. Figure 9 shows the variation of the thermal displacement w on the x-axis
(y =0, z=0). Figures 10a and 10b show the variations of normal stress &, and shearing stress
. on the interface (y = 0, z = 1.0), respectively. When the deformation is not controlled, the
numerical results are obtained by using the next boundary condition

1 rrrrrrTTT T T et rTrrTTT T
|; |- 7=0.01 y:o )
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. X X . i (x=0, y=0) (case 1)
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the x-axis when the deformation is not con-
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b X
Zy=b, D,=0, (44)

in place of Eq. (26). From Figs. 7, 8, and 10, it can be seen that when the deformation is
controlled the stress distribution shows considerably larger values than that when the defor-
mation is not controlled.

4

Concluding remarks

In this study, the theoretical analysis of the control of transient thermoelastic displacements is
developed for a two-layered composite rectangular plate constructed of an elastic and a pei-
zoelectric layer due to nonuniform heat supply. As an illustration, we carried out numerical
calculations for the elastic layer of steel bonded to a piezoelectric plate of cadmium selenide,
and examined the temperature change, the displacement and the stress distributions when the
deformation is controlled. It is found that the transverse stress distribution on the interface
when the deformation is controlled shows considerably larger values as compared with that
when the deformation is not controlled.
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