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Modelling of functionally graded materials
by numerical homogenization

S. Schmauder, U. Weber

Summary In this contribution, the mechanical behaviour of different ZrO,/NiCr 80 20 com-
positions is analysed and compared with experimental findings. The microwave-sintered ma-
terial is found to possess a slightly dominant ceramic matrix for intermediate volume fractions.
Its thermal expansion coefficient deviates from the rule of mixture. The modulus and the stress
strain behaviour can be simulated by a numerical homogenization procedure, and the influence
of residual stresses is found to be negligible. A newly introduced parameter (matricity) de-
scribes the mutual circumvention of the phases and is found to strongly control the stress level
of the composite, globally as well as locally. Finally, a graded component and a metal/ceramic
bi-material are compared for thermal as well as mechanical loading.

Key words finite element method, interpenetrating microstructures, matricity, residual stress,
homogenization

1
Introduction
Functionally graded materials (FGMs) are difficult to simulate because of the lacking material
data for different compositions at different locations. The main reason for this situation is the
nonlinear dependence of the elastic-plastic properties on the phase composition of composites.
Therefore, a great deal of work has been performed recently to overcome this problem and to
estimate the properties of composites.

The following examples are chosen to demonstrate some recent achievements in this respect.
In [1], a micromechanical model is applied to study random and discrete microstructures and
their interrelations with residual stresses; crystal plasticity effects are taken into account in
differently graded FGMs with a layer structure. This model is compared with continuous
models, and their equivalence is demonstrated with respect to macroscopic behaviour while
strong local stress and strain concentrations are found. The analysis of the influence of thermal
stresses and failed particles on macroscopic stress-strain curves, based on a constitutive Es-
helby-type solution is restricted to dilute particle-reinforced materials, [2]. Calculations of the
thermo-elastic response in C/SiC composite systems showed that effective moduli, expansion
coefficients and heat conductivities do not require detailed micromechanical analyses, but
rather can be derived from homogenization models or, in the case of interpenetrating mi-
crostructures, from self-consistent estimates, [3]. Nonlinear effects have not been taken into
account in this study. The influence of thermal residual stresses on the coefficient of thermal
expansion for metal-matrix, ceramic-matrix and interpenetrating Al/SiC composites, taking
temperature dependent material properties — especially of Al - into account, are given in [4]
using unit cell-type FE-models. They were compared with upper and lower analytical bounds of
composites with homogeneous phase distributions. Some FE-analysis of macroscopic and
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microscopic elasto-plastic deformation due to thermal and mechanical axial and bending
loading of layered Ni/Al,0; composites with graded interfaces based on a single unit cell-type
model with hexagonal or square packing and with mesomechanical cells of the random-
arrangement type (taking hundreds of hexagonal grains into account) has been performed
in [5]. FE-models have been also applied in [6] for the same Ni/Al,0; composite with and
without graded interfaces, for different specimen geometries, demonstrating the reduction in
maximum residual stresses except for the shear stresses at interface edges by gradation.

However, a major drawback of most literature examples is the lack of experimental com-
parison for the calculated thermal-mechanical properties. Moreover, these numerical and
analytical-numerical models are rather complicated, and typically restricted to two dimensions.
In the following, another more promising procedure is described.

Recently, a systematic study has been successfully performed on the strengthening effects of
inclusion-type 2D and 3D microstructures, [7-10]. In this paper, thermo-elastic-plastic prop-
erties of ZrO,/NiCr 80 20 composites and FGMs are predicted, based on a new numerical
homogenization technique, [11-17], and results will be compared to experiments.

Composites consisting of phases with strongly different properties have the potential to be
applied in new application fields as they comprise otherwise incompatible properties. While the
deformation behaviour of inclusion-type microstructures has been successfully modelled in the
past for brittle fiber or particulate reinforced metal matrix composites, [7, 8], this was not
achieved until recently in the case of interpenetrating microstructures where both phases are
connected throughout the material. Such microstructures are typically observed in the com-
position range of 30-70%, while inclusion-type microstructures are typical for dilute systems
with phase volume fractions between 0-30%. Specifically, FGMs can depict the full composition
range in material transitions. As processing techniques are nowadays available to design ma-
terial transitions from inclusion to interpenetrating type of microstructures, experience in
modelling of the full composition range is still lacking. This paper is intended to bridge this gap
in the case of ZrO,/NiCr 80 20 composites where the full compositional range is available from
a powder-metallurgical route, [18], such that comparison in properties and predictions can be
made.

2

Models

Three models are used for the simulation of the elastic properties of ZrO,/NiCr 80 20 com-
posites with phases o = ZrO, (E = 46 GPa, p = 0.29, o = 10.3E-06 1/K) and f§ = NiCr 80 20
(E = 121 GPa, p = 0.29, o = 17.3E-06 1/K) in this paper, while the thermo-elastic-plastic
behaviour will be analysed numerically. The microstructure of a ZrO,/NiCr 80 20 composite
with a volume fraction of ceramic fz,0, = 30% is shown in Fig. 1. In the case of an inclusion-
type microstructure, the self-consistent embedded cell model is applied which is described in

Fig. 1. Micrograph of ZrO,/NiCr 80 20 with 30% volume fraction of ceramic. Left side: greyscale picture
(grey = NiCr 80 20, dark = ZrO,, black = porosity), right side: binary image with skeleton lines
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[7-10, 19]. The embedded cell model is a special numerical homogenization technique and has
been newly introduced to simulate the mechanical behaviour of composites with randomly
distributed inclusions. The volume fraction of the inclusions is the first main parameter in the
model. To take the matricity as a further microstructural parameter into account, the self-
consistent embedded cell model has been extended by a second self-consistent embedded cell
model, Fig. 2. In this “matricity model”, we are able to define the matricity in the same manner
as it is defined for a real microstructure: first, the single phases are reduced to skeleton lines S,
and Sg by shrinking each phase to a single line, [starting from interfaces] and using standard
image analyses procedures, [20]. Then, matricity M; of a phase i (i = «, f§) is defined as the
normalised skeleton line length M, = S,/(S, + Sp) and Mg = Sy/(S, + Sp) with M, + My = 1.
The lengths of the skeleton lines of the inclusions (Fig. 2; left: 8, right: «) are zero as the
inclusions are perfectly spherical and are, therefore, reduced to a point in the process of
obtaining the matricity of the phase.

The lengths of the skeleton lines S, and S; in the matrices are given as the circumference of a
circle with a diameter which is obtained from the arithmetic average of the diameter of the
embedded cell and the diameter of the inclusion phase (Fig. 2; left: S,, right: Sg). The diameters
of the embedded cells are denominated as W, and W,. The diameters of the inclusion part of
the embedded cells depend on the volume fraction of the inclusions and the corresponding
factors W or W,. The matricity M can be calculated as a function of the sizes of the embedded
cells and the volume fraction of one of the two phases, and the volume fraction of the phases is
held constant in both parts of the matricity model.

As can be seen in Fig. 2, the volume fractions and, thus, the diameters W; and W, of the
embedded cells are adjustable. To achieve a matricity value M; (i = o, §) as obtained in the
experiments, the measured volume fraction of the phases in the model is realized, and the
diameters W, and W, are calculated according to [15],

=W (V1 —-fp+1)————
Wy, =Wi(y/1—f,+1)

Mg _
W, =1 for Mg > 0,5,

1-

Mﬁ(\/_+ 1)
1
(\/EH)

If the geometrical boundary conditions are modelled at a distance of about five times the radius
of the embedded cell, they are of almost no influence on the model’s mechanical behaviour; the
continuum mechanical stress-stain state in the embedded cell is hardly influenced as well. Due
to the virtual independency from remote boundaries, it is not necessary to model the matricity
as an absolute parameter of the FE mesh. Rather, it is possible to introduce the matricity by
adjusting the weighting factors W; and W, only in the evaluation of the results from the
inclusion type geometries. As the stresses and strains of the model have to be determined by an
iterative procedure in about three to five iterations, the adjusting weighting factors W, and W,
must be introduced in the evaluation of each iteration step.

In principle, stress-strain curves of the two-phase composite are determined from the ma-
tricity model in the same iterative manner as it is done for the simple self-consistent embedded

(1)

W; =1 for M, > 0,5 .

o

Fig. 2. Matricity model (schematic) consisting of two parts with skeleton lines to adjust for the measured
parameter of matricity in the 2D or 3D (axisymmetric) model via the factors W; and W,



cell model, [8, 9]: in each increment of the iteration, the components for stress and strain are
determined. This is done by a weighted averaging of all stress and strain values over all
integration points of both embedded cells.

Interpenetrating microstructures, where both phases can show percolation throughout the
material, are characterized by the above introduced matricity parameter M with values between
zero and one, describing the mutual material circumscription of the phases in addition to their
volume fractions. The matricity model is based on 2D or 3D (axisymmetric) inclusions of a
given volume fraction and with circular cross section in the present context, [11-17, 21]. Thus,
this model shows the same effect as a single model with two included composites a-ff and f-o as
in the experiment, cf [14, 15]. In this paper, all calculations were performed with the 3D
(axisymmetric) version of the model.

The model in Fig. 2 allows for additional consideration of thermal residual stresses and can
be used to predict the elastic properties, the thermal expansion coefficient and the elastic-
plastic stress-strain curves for different phase arrangements as well as to predict phase
properties of the phases in the composite. For comparison reasons, the Tuchinskii model is
introduced as a second one which allows to predict upper and lower bounds of the elastic
modulus E of a composite with interpenetrating microstructures by the following formulae,
(22],

E _ Ep\ 2 (Ep/Ex)c(1 —¢)
E (1—¢) + (E()C + Ct By E)(1— lower bound,
1 (2)
E_ 1—c¢ + ¢ upper bound
B, |0—)+(E/E)@  (1—of + (By/B)2—c)c| TF !

where E; = Young’s modulus of phase i, f; = volume fraction of phase i (i = o, f) while
fs = (3-2¢)¢” is the relation between the volume fraction f and the geometry parameter c (real
solution between 0 and 1).

In a third model by Pompe, the calculation of the thermo-elastic constants is also based on
the solution of an inclusion problem, [23]. Due to the ellipsoidal shape of the inclusions, the
fields inside the inclusions are homogeneous and can be determined analytically. Throughout
this paper, we assume the special case of spherical inclusions. Interaction between the media
can be considered through assumptions about the surrounding material. This is often realized
by the effective medium theory (EMA). For the mean stress and strain fields, self-consistency is
claimed leading to an implicit equation system which allows for the determination of the
effective constants. The effective values for Young’s modulus, thermal expansion coefficient,
[14], as well as residual stresses, [24], are then determined numerically.

3
Results and discussion

3.1

Microscopic results

The matricity character M of ZrO, has been measured and found to deviate up to 25% from a
linear 1:1-relationship, especially at intermediate volume fractions. This result means that ZrO,
typically represents rather the matrix than an inclusion. Except when the influence of M was
investigated, f = M was, therefore, employed for all values of f, Fig. 3.

The thermal expansion coefficient, obtained using the matricity and Pompe models, was
determined to behave nonlinearly in a similar manner and to decrease with increasing volume
fraction of ZrO,, Fig. 4.

It is interesting to note that the thermal expansion coefficient is nearly independent on the
matricity parameter M, Fig. 5.

Furthermore, the elastic modulus was obtained from the Tuchinski’s, Pompe’s and matricity
models. Upper and lower bounds of the Tuchinski’s model as well as that of Pompe were in
close agreement to the matricity model. However, the experimental values were scattered in a
wide range and, therefore, only partly a good agreement between experiment and simulation
was achieved, Fig. 6. Residual stresses are not considered in the models used to calculate the
Young’s modulus. When residual stresses are taken into account, the stress-strain curve of
the composite calculated by the matricity model does not frequently show an initial elastic
behaviour.
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Fig. 3. Matricity of ZrO, vs. volume fraction of ceramic (ZrO,) in ZrO,/NiCr 80 20 composite
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Fig. 4. Thermal expansion coefficient vs. volume fraction of ceramic (ZrO,). Comparison between
experiment, matricity model, rule of mixture and Pompe model, [23]
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Fig. 5. Thermal expansion coefficient as a function of matricity parameter M = Mjy,o,. Volume fraction
of ceramic fz;0, = 40%

In Fig. 7, the influence of the volume fraction of ZrO, on the stress-strain curves of ZrO,/
NiCr 80 20 composites is studied. Strong variations in the plastic behaviour are found espe-
cially for fz;0, = 30%-60%, the regime of the phase interpenetration. Therefore, this regime of
volume fractions is relevant when a variation of the mechanical behaviour of the composite is
required without manipulating matricity.

Matricity plays a major role specifically at low ceramic volume fractions, Fig. 8, while re-
sidual stresses are of less importance at all volume fractions. From this result it is obvious, that
the matricity parameter provides a strong potential for designing the mechanical behaviour of
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Fig. 6. Elastic modulus vs. volume fraction of ceramic (ZrO,). Comparison between the matricity model,
Tuchinskii model, [22], and Pompe model, [23], (no residual stresses)
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Fig. 7. Stress-strain curves for several volume fractions fz.0, of ceramic. Matricity of the ceramic phase
(Zr0O,) according to Fig. 3 (with residual stresses)
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Fig. 8. Stress-strain curves for a volume fraction of ceramic fz;0, = 40%. Variation of matricity Mz,
(with and without residual stresses)

the composite. On the other hand, residual stresses can be of major importance with respect to
failure in the phases.

The ZrO, phase depicts typically compressive residual stresses with a sharp peak value, while
the NiCr phase depicts tensile residual stresses with a broad, wide distribution. This is mainly
due to the fact that, at low volume fractions, ZrO, is basically present as a small inclusion, thus
following Eshelby’s constant stress rule for spherical inclusions, [25], while NiCr, as mainly a
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matrix phase, shows a wide variation of stress levels, as expected from inhomogeneous strains
in local shear bands around the ZrO, inclusions, [9]. The average stresses (circumferential
component) in the phases are shifted to higher values at a higher volume fraction of ZrO,
(Fig. 9) as a result of the increasing influence of the stiffer ceramic.

It is obvious that the stress distributions depict width due to the fact that in one part o
surrounds f3, and v.v in the other part of the model. This is also the reason for the effect that the
stresses in the low volume phase ZrO, show two peaks for fz;0, = 40% in Fig. 9b.

The agreement between calculations and experiments for the average stress values in either
phase is found to be rather good for both phases, Fig. 10, [24]. This fact suggests the effec-
tiveness of the matricity model as a new homogenization procedure. It’s superiority in
predicting local surface properties has been demonstrated recently for metal/metal com-
posites, [15].

3.2

Macroscopic Results

The knowledge of the mechanical properties of ZrO,/NiCr 80 20 composites can be used by
applying it to simulate FGM. The dependence of the macroscopic behaviour of a graded metal/
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ceramic composite can be derived by taking the local material behaviour into account. In the
present context, locally different microstructural compositions, and thus different material
properties, are considered by a layered model with different material properties in each layer.
As a model, a bending specimen is chosen, where the transition from the ceramic to the metal
phase was realised by four layers (FGM specimen) as well as by a sharp interface (nongraded
specimen). The FE mesh, boundary conditions as well as layer subdivision of ungraded and
graded specimen are shown in Fig. 11. For the FGM specimen, the matricities (and according to
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Fig. 11. Graded a and non-graded b bending specimen

a Axis of Symmetry

Ceramic |

|'|llIll-:--unll=||nuu-u-'!:“.,u.g-,...-,,lm_"",.,."_"~ B
i

Graded
Material

Metal

>
Residual Stresses (MPa)

b Axis of Symmetriy

Ceramic

Metal

: >
|'Residual Stresses (MPa)

150
130
110

-110
=130
150 |

150
130
110

Fig. 12. Distribution of residual stresses in a graded a and in a non-graded b specimen after cooling down
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Sec. 3.1, therefore, its properties) are varied from layer to layer, besides the volume fractions.
In addition to the measured matricity value M (M ~ f, Fig. 3), three different matricities M = 0,
M = 0.5 and M = 1 were assumed in the layers containing 20%-80% ceramic phase. In the
present context, M = My,0,, thus M = 1 defines an inclusion phase with ceramic matrix. In the
first step, the specimen is cooled down from an assumed stress-free state by 750 K, in order to
simulate the manufacturing process of the specimen. In Fig. 12, the residual stresses parallel to
the layers are shown as fringe plots. As expected, the graded specimen (Fig. 12a) shows sig-
nificantly smaller residual stresses compared to the nongraded specimen (Fig. 12b). A further
reduction of residual stresses parallel to the layers can be expected from even more gradual
property transitions in the graded region.

However, the distribution of stresses perpendicular to the layers inside the specimen are
hardly influenced by the composition of the specimen, while the nongraded composite shows
stronger disturbances of the stresses at the free edge, Fig. 13. In the second step, the specimen
is heated up to 500 °C and then loaded by an area load of 600 N/mm? corresponding to a
resultant force of 24 kN. By this, the behaviour of the specimen is simulated under thermal-
mechanical loading. Figure 14 shows the macroscopic force-displacement behaviour of the
graded and ungraded bending specimen. It is found that the macroscopic behaviour of the
bending specimen can be significantly influenced by the matricity character of the single layers.
The larger My,0,, and, therefore, the more metallic phase is circumvented by ceramic phase, the
higher the stiffness of the bending specimen. Interestingly, the ungraded metal/ceramic
bending specimen shows a similar macroscopic stiffness as compared to the graded specimen
with measured matricities, although the stress jumps at the layer interfaces are much smaller in
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Fig. 13. Distribution of residual stresses in a graded a and in a non-graded b specimen after cooling down
by —750 K; stresses perpendicular to the layers
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the FGM material. Generally, the macroscopic mechanical behaviour of the bending specimen
is strongly influenced by the matricity parameter.

4

Conclusions

While the numerical self-consistent embedding cell technique allows to take into account
microstructures with randomly arranged inclusions, the matricity model is a sophisticated
improved homogenization technique which allows for modelling interpenetrating micro-
structures. This allows for designing microstructures as well as graded composites, while the
proof for manufacturing these microstructure is still to be brought.
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