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Spheroidal inhomogeneity in a transversely isotropic
piezoelectric medium

V. M. Levin, Th. Michelitsch, 1. Sevostianov

Summary Piezoelectric material containing an inhomogeneity with different electroelastic
properties is considered. The coupled electroelastic fields within the inclusion satisfy a system
of integral equations solved in a closed form in the case of an ellipsoidal inclusion. The solution
is utilized to find the concentration of the electroelastic fields around an inhomogeneity,

and to derive the expression for the electric enthalpy of the electroelastic medium with an
ellipsoidal inclusion that is relevant for various applications. Explicit closed-form expressions
are found for the electroelastic fields within a spheroidal inclusion embedded in the trans-
versely isotropic matrix. Results are specialized for a cylinder, a flat rigid disk and a crack. For
a penny-shaped crack, the quantities entering the crack propagation criterion are found
explicitly.
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1

Introduction

Solutions for spheroidal inhomogeneities in a piezoelectric material are of key importance in
connection with several problems. First, they constitute the basic building block for modeling
the effective electroelastic properties of piezocomposites. Second, they yield concentration
factors for the electroelastic fields near inclusions. Third, in the limiting case of a crack, the
results yield the quantities that enter the crack propagation criterion, [1].

The problem of a spheroidal inclusion in a piezoelectric material has been considered by
several authors. The classical approach of Eshelby was extended to the piezoelectric material in
[2], but results were not derived in an explicit form. In [3, 4], electroelastic fields in the case of
an ellipsoidal inclusion and in the limiting case of an elliptical crack were derived; however, the
results were given in the form of integrals, containing Green’s function that was unknown at
that time and could not, therefore, be readily used. General representation for an inhomoge-
neity of an arbitrary (not necessary ellipsoidal) shape was given in [5]. In [6, 7], Eshelby’s
tensor was considered for an ellipsoidal inhomogeneity in a transversely isotropic and an
orthotropic medium, correspondingly; however, similarly to [3, 4], these results were given in
an integral, nonexplicit form due to the fact that Green’s function was not available in an
explicit form at that time. Explicit expressions for components of Eshelby’s tensor for the
spheroidal inhomogeneity were obtained in [8]. Similar results were derived by a different
method in [9], where the limiting case of an infinite cylinder (a “fiber”) was also analyzed in
detail.
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The present work constitutes further progress in studies of spheroidal inclusions in piezo-
electric media. The new results obtained here can be outlined as follows. First, the electroelastic
compliance tensors that describe the contribution of an inhomogeneity to the overall elec-
troelastic response (and, thus, are of direct relevance for the effective electroelastic properties
of a composite with multiple inclusions) are derived in the explicit form, in terms of elementary
functions. These tensors constitute a generalization of the inclusion compliance tensors in the
elasticity of materials with inclusions, [10, 11]. Second, general expressions for coefficients of
electromechanical fields concentrations are derived. Third, in the case of a circular crack, the
quantities that enter the crack propagation criterion proposed in [1] are explicitly calculated.
Finally, the important asymptotic cases of strongly oblate and strongly prolate spheroids are
analyzed in detail.

2

Electric and elastic fields in a medium with an inhomogeneity

In this section, we review some general results and modify them to a form suitable for the
present work. We consider a homogeneous piezoelastic material under isothermal condition.
The governing equations for such a material have the form

T
0ij = Cijxiers — eijkEx, Di = ejex + Ny Ex (1)
j j ij

where o, € are the stress and strain tensors, E, D are the electric field intensity and electric
induction vectors, C is the tensor of elastic moduli, 1 is the tensor of dielectric permeabilities
and e is the tensor of piezoelectric constants characterizing coupled electroelastic effects (the
superscript T means the transpose).

Relations (1) can be written in the following short form:
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where the symbolic matrix % must be regarded as a linear operator, which transforms the
tensor-vector pair |6, D] into the pair [g, E].
The relations inverse to (1) have the form
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where
S=(C+ enfleT)fl, K= (n+ eTC*Ie)fl, d=Sen ' =Clex .

Let us consider now an infinite homogeneous piezoelectric body with the operator of elec-
troelastic characteristics #°, containing an inclusion with different operator of electroelastic
constants ¥ occupying a region v. The strain ¢;(x) and electric intensity E;(x) fields in an
arbitrary point x of the medium with inhomogeneity satisfy the following system of integral
equations, [12]:

F(x) = F(x) + / P(x—x)L'F(¥)dx , (4)

def 0

1 _ o 0
0 gudl L =L

P(x) =999, D= H

Here, F°(x) stands for the external elastic and electric fields which would have taken place in
the homogeneous matrix (without the inclusion) under the same boundary conditions. We
assume in the present work that, in the absence of the inclusion, fields F°(x) can be taken as
constant at the length scale of v. The kernel of this equation #(x) is concentrated in the region
v and expressed via the second derivatives of Green’s function %(x) of the equilibrium equa-
tions of the coupled electroelasticity. This function satisfies the following equation:
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Relations (4) yield the equation for the pair ] = [o, D], in terms of the external fields ¢° and D°
100 =)+ [ 2x= %) (x)ax

' (7)
2(x) = —(L%(x) + L°2(x) L), M = M — A° .
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Let the inclusion be of an ellipsoidal shape, with semiaxes a;, a,, as. As is well known (see, for
example, [13-15]) the constancy of F® in v implies that the fields ¢j and E; inside v are uniform
as well. We will need the expressions for the fields inside the inclusion in terms of F°. They were
derived in [13-15]. However, their expressions were given in terms of Fourier integrals, and are
unsuitable for our purposes. Therefore, we re-derive these expressions in a closed form.

The electroelastic Green’s function can be represented in the following general form:

{é(x):;g*(ar), a’:;, r=|x| . (8)

As follows from %(x) being a quadratic function of its argument, function ¥” is symmetric with
respect to the center of the unit sphere: ¥*(a*) = ¥*(—a"). Introducing the local tangential
basis of the spherical system of coordinates (r, 0, @)

) o 1 Ox g 10x

=5 Y T rm0oe’ * 730
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we have

3 a® 9,0
_ 2010, o a” 3 40 10
V=ag+s VLV sin0dp 230 (10)

and, as follows from Egs. (9) and (10),
V%(x) = r—gl, G =V'G —ga | (11)

where function ¢! is defined on the unit sphere. In contrast to 4%, function ¥ Lis antisymmetric
with respect to the center of this sphere: 4'(—a’) = —%'(a"). This fact is essential for solving
the electroelastic analogue of Eshelby’s problem.

Assuming that vectors x and X’ originate at the center of the ellipsoid (x € v) and denoting
R = x' — x, we have

/vg(x—x /dR/ V'G — 4a)ds, | (12)

v

where R; denotes the value of R = |R| on the ellipsoid’s surface and §; indicates the unit sphere
with the center at point x. Let T be the second rank tensor

al®a' a’®a’ a’wal
T="+——+—— | (13)
ai a; as

al,a?, a® being unit vectors along the ellipsoid’s axes so that x*- T - x* = 1 is the equation of
ellipsoid’s surface. Since R = x’ — x, x* = R® 4 x, we have (R,a" +x) - T - (Rsa”" + x) = 1. This is
a quadratic equation with respect to R, having only one positive root
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Rsz(ar-T-ar)_l[—ar-T-)H— \/ar-T-x—(a’-T-ar)(x-T-x—l) . (14)

Since x*-T-x*—1=0, we have x- T -x — 1 <0 for x € v. Therefore, the expression under
square root in Eq. (14) is positive and R, > 0.
To utilize (14), we rewrite Eq. (12) in the form

/ V% (x —x)dx = — / (V%" —4*a")R,dS, , (15)
Sy

v

We observe that representation of function Ry(a") given by Eq. (14) constitutes a decompo-
sition of R, into the symmetric and antisymmetric parts. Since multiplication of two anti-
symmetric functions results in a symmetric function, placing R, from Eq. (14) in the right-hand
side of Eq. (15) produces a sum of symmetric and antisymmetric functions. An integral of an
anti-symmetric function over a unit sphere is zero, therefore,

/Vg(x—x’)dx'—%-x (x€v), (16)
where
#=T. / (@ - T-a) & (V9" (a7) — 9" (a")a')dS, | (17)

v

is an operator that when written in the matrix form (similar to (2)), has constant components.
Thus, fields ¢° and E° are uniform in ellipsoidal domain v, Eq. (13) transforms to the algebraic
one and solving for F yields

F=odF, o= (5-22)" s :‘ I’g" ;k ' . Lk = iy - (18)
Similarly, solving Eq. (7) yields
J=2F, B=(s+24")", 2= +2%" (19)

where constant operator 2 can be obtained from by an appropriate symmetrization, and is
given for the spheroidal inclusion in Sec. 6.

3

Concentration of electroelastic fields at the inclusion

We now express the electroelastic fields outside of inclusion on its surface (fields concentration
coefficients). Let the volume forces and electric dipoles, with intensities g,3(x) and y,(x),
respectively, be distributed in a domain v bounded by a sufficiently smooth surface dv. The
strain &(x) and the electric field E(x) in an arbitrary point x of the medium are presented by the
following expression:

qsp (x)
Lo (X)

F(x) = /g’(x —xX ) (xX)dx, A(x)= ’ . (20)

Here, function F(x) is continuous inside and outside of v, but is discontinuous on 9v. The jump
can be determined analogously to the purely elastic case, [16]. We present integral (20) in the
following form:

F(x) = /,@(x — X)) [AH(X) — A (x)]dX +/@(x— x)dx' - A (x) . (21)



For the smooth and bounded function #'(x), the first term in the right-hand side of Eq. (21) is
continuous on 0v. Let us consider the limit of the second integral in (21) when point x tends to
point xy on Ov inside and outside of domain v.

We introduce the cartesian coordinates yi, y,, y3 with the origin at x, and axis y; directed
along external normal n(xp) to Ov. As a first step, we consider the limit of the integral

7(y) = / P4 —y)dy (22)

wheny — 0 and y ¢ v. Let us fix the point y = y, ¢ v and introduce the dimensionless variables
Gi=vy,/lyol (i=1,2,3). Since function #(y) is homogeneous of power —3 we have

ﬂwzﬂmmszpfwwwx (23)

where U({) is the characteristic function of the region v. Substituting y = y, into the integral
and letting y, — 0, vector {;, = y,/|y,| is the unit vector that determines the direction in which
point y, approaches the origin. In the limit y, — 0, region v is transformed to half-space

(3 <0, ie U((y,8,0) — 1 —H((3), where H({) is the Heavyside’s function. It follows from
here

1
(2m)’

lim #(0) = [ 26— MO = [ 2 0H K ep(-ik- Gtk . (24)
Yo—0

where f*(k) is Fourier transformation of f(x) and where it is denoted

H({1,8,0) =1-H(G) - (25)

Taking into account the relation

H*(ky, ks, ks) = (21)*6(ky)d (k) [né(k3) +k—13] , (26)
we obtain
yloiglof(yo) =3[2°(0) =2 (n)] = 77(0), y v . (27)

The limit of #(y,) at y, — 0 and y € v can be found analogously

lim, 7 (y,) =3[2(0) + 2" ()] = S~ (0), o€V . (28)
Hence, the jump of the integral #(y) on interface Ov is given by

)] = 77(0) = 7 (0) = ~(n) (29)
This implies, with the account of Eq. (20), that

[F(x0)] = F' (%) = F~ (x0) = 2" (o) # (xo) , (30)

where ny = n(xo) is the vector of inward normal to Ov in point x, € Ov.
Returning to Eq. (4), we can present function F(x) as the following sum:

F(x) = F°(x) + F'(x), F'(x)= /?(x —xX)?'F(x)dx (31)
v
where F(x) is assumed to be a continuous function. Therefore, the jump of the field F(x) is

determined by F!(x) only. This function can be interpreted as representing the electroelastic
fields in the homogeneous medium with the properties #° induced by dipoles with density
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H(x) = le(x) , (32)
distributed in domain v. Hence, we can write
F (x0) — Ft(x0) = —2*(ng) Z'F*(x¢) . (33)

It follows that the limiting values F" and F~ of the electroelastic fields inside and outside of
domain v are interrelated as follows:

F(x0) = [f - 9*(n0)$1]F+(x0) . (34)
Taking into account (18), we finally obtain, in the case of the ellipsoidal inclusion,

F~(ng) = #" (no)F°, #"(ng) =[S — 2" (no) L] o, (35)
where %" (ng) can be interpreted as an operator of tensor coefficients of electroelastic fields

concentration on the inclusion in the piezoelectric medium.
Analogously, one can find

I (no) = A ()%, (no) = [# — 2" (o) '] % . (36)

where %’ (ny) can be regarded as an operator of concentration coefficients of fields ¢ and D.

4
Electric enthalpy of a solid with an inhomogeneity
We consider the electric enthalpy that was defined for the piezoelectric solid in [1] as follows:

W =1 (oye; — E:D;) = 1] - F . (37)

so that the stress and the electric induction are given by

_W o W (38)
_6£l~j’ T 6Ei '

T

The density of electric enthalpy in a certain volume V containing an inhomogeneity is given by
the expression

_wo L m_ 10 1o
W=w +2V/(]F J° - FOdv | (39)
\4

where W? =11, J°- F*dV is the electric enthalpy for the homogeneous matrix material under
the same boundary conditions. Using equations of the elastic and electric equilibrium:
0jo;; = 0,0;D; = 0, and applying Gauss’ theorem, we obtain

1
W =Ww"+AW, AW:W/ZO.(U—UO)ds, (40)
ov
where
U .
U= QDI , X= Dljnj , Z-U:(aijui—i—Dj@)n}- , (41)

and where u; is the elastic displacement, ¢ is the electric potential and n; is the unit outward
normal to OV.

The expression for AW in (40) can be transformed to the quadratic form in J° the same way
that was used in [17] for the uncoupled elasticity. Representing fields U, F and D in the form



U=U4+U, F=F+F, D=D"+D, (42)

where the primed quantities denote perturbations due to the inclusion, we have, taking into
account that U’ =0 on 0V,

1l [sopas=Lpra=L]|[p.F 0. p

AW_2V/2 Uds—2V/] Fdv= /] de+/} Fdv| . (43)
ov 14 v V—v

Since

]O'F/:]O' (eﬂO]/) — (%0]0) .]/ :FO_]/ ) (44)

in the domain V — v, expression (43) can be rewritten as

1
AW = /EO-U’ds—/U°.z’ds+/U0'2'd5 : (45)
ov v ov

and, since J' = 0 on OV, expression (45) with the account of (42) takes the form

1 1
AW=— [(U-Z-U" Z)ds=—— [ J°u']d 46
ZV/( )Szv/] Jdv , (46)
ov v
if the boundary conditions are given in terms of stress and electric induction D. Similarly, it can
be shown that

1 1
AW:_/(UO.Z_U.Zo)dsz—/Foledv. (47)
2V 2V

ov v

Formulae (46) and (47) are full analogues of Eshelby’s results for the elastic energy of a medium
with an inhomogeneity.

Let us consider the case when the external fields ¢° and D° (or ¢° and E°) are uniform in the
ellipsoidal domain v. Substituting the expressions for F and J from (18) and (19) in (46) and
(47), we finally obtain

W= Wo +%]°/%B]°, ME = B (48)
if the external fields ¢° and D° are given on 0V, and

W= w° +%F°§FAF°, P =P (49)

if ¢ and E° are given on QV. In these expressions, v = %na1a2a3 is the ellipsoid’s volume.

The obtained formulae allow one to find the expressions for the effective electroelastic
characteristics of the piezoelectric materials containing a random set of inhomogeneities in the
case of dilute concentration, and may be useful in various self-consistent schemes.

5

Green'’s function for the transversely isotropic piezoelectric medium

The general formulae (18), (19), (49) and (4.14) are valid for the arbitrary anisotropic materials
of the inclusion and of the matrix. We consider now the special case when the matrix has
hexagonal (transversely isotropic) symmetry. Such materials are characterized by five
independent elastic moduli (written in standard Voigt’s two-indices notation):

C= {C]l, C13, C33, C44, C66 = (Cu — Clz)/Z}, three piezoelectric constants e = {631, €15, 633}
and two permeability coefficients n = {#,;, 733 }. The electroelastic Green’s function was con-
structed earlier in [18-21]. The most compact and closed form with the convenient separation
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on ¢ and 0 dependence of this function was given in [21]. Following this approach, we utilize
the Fourier transform of operator 7 (V) in Eq. (6) in the form

k
’ n:m ) (50)

T,'k (n) ti(n)

70 =K\ Tm) <(n)

where k is the wavevector of the three-dimensional Fourier transform and where it is denoted

2,2 1,1 1,3 | 3,1 3,3
Ti(n) = Ty e7e; + Treje, + Toe(e;e; + € e) + Teejey,

ti(n) = tye} +te; .

(51)

Here, unit vectors e', e’ and e® are elements of the following vector basis:.5
11 21 3
e =—(n,m,0), e =—(—ny,n,0), e =(0,0,1), (52)
np np
e’ being in the direction of the axis of symmetry of the transversely isotropic medium and
ny = \/n} + n3. Scalar quantities Ty, , Ty, Tpc, T, tp, t and 7 are as follows:
0,2 0,2 0 2 0,2 0 0
Tyr = Cetyy + Cagtts,  To = Cymy + Cyynz, Toe = (Cyz + Cyy)mpns,
0,2 0 2 0 0 0.2, 0 .2
T. = Cyny + Cisns,  ty = (€3 + €)5)mpnz,  te = e)sny, + e33n;, (53)
— 0,2 0 2
T ==, + 133m3) -

Matrix %(k) = 7 (k) can now be written in the form

G = 5 %m), Flm) = , (54)

1
f(n)

22 1,1 1,3 3.1 3.3
Gik(n) = Gy eje; + Gpejer + Gic(ejep + eje;) + Geeie

‘ Gik(n) 7;(n)
7%(@m)  g(n)

7i(m) = ppe} + e}

Here, the following scalar quantities are introduced:

Gpr = 1(TpTe — Tp,) — (82T — 26t Tpe + ;Tc),  Gp = Tpu (T — £7),

Goe = —Tpi (Toet — tote), Ge=To (Tot —17), 7y = Tpi(Tocte — Tetp), (55)
Ve = —Tor(Tote = Tocts), g = To (ToTe — Tp) -

The determinant f(n) of 7 (n) in (54) then takes the form

f(0) = Tp1(n)Gp.(n) . (56)
Introducing Egs. (53)-(55) in Eq. (56) shows that only those terms that are proportional to

neny > (s =0,1,...,4) appear. Thus G, is a polynomial of third degree in a = n} /n3.
Therefore,

Gy, = (A@® + Ba®> + Ca+ D)n§ | (57)
where the coefficients of the third degree polynomial are given by

A= *(’7?1C(1)1C24 + C(l)l(e(lJS)z)7
2 2
B = —’7(3)3(;?1@1)4 - ’7(1)1(C(1)1Cg3 - 2C?3C24 - (C?s) ) — C24(e(1)5) - ZC(I)le(l)SegS
+ 2(6(1)3 + C24)e(1)5(e(3)1 + e(l)S) - C24(e(3]1 + 6(1)5)27



2
C= 1123(C?1C23 - 2C?3C24 - (C?s) ) — ’7(1)1C(3)3C24 - 2C24e(1)5623
- (3(3)3)2(:?1 + 2623(‘3(3)1 + e(l)S)(C(l)S + C24) - C(3)3(e(3)1 + 6(1)5)2’ (58)

D= _(’723C23C24 + (3(3)3)2(:24) )
so that

f(n) =n3CxA(a+ Ar)(a+ Ay)(a+ As)(a+ Ay) (59)

with Ty, (n) = C%(a + A;)nd, A; = CJ,/Cl, and A, As, Ay being the roots of the equation
Aa® —Ba*+Ca—-D=0 , (60)

the coefficients of which (58) are expressed in terms of the components of tensors C°, e® and n°.

Furthermore, the subdeterminants (55) yield

Gpi(a) = Aa® +Ba* +Ca+D = A(a+ Ay)(a+ A3)(a+ Ay),

Gy(a) = —(C26a + C24) [(’7?1“ + 11(3)3)(C24a + C(s)s) + (e(l]Sa + 3(3)3)2]7

Gyc(a) = \/E(C26a + C24) [(3(3)1 + 3(1)5)<e(1)5a + 6(3)3) + (’7[1)1‘1 + "gs)(c(l)s + C4(1)4)]7

G(a) = —(Cesa + C24) [(’7(1)1‘1 + "gs)(c(l)la + C24) + a(egl + e(l]s)z]’ (61)
Tp(a) = \/H(Cgéa + 624) [(C?3 + C24)(e(1’5a + eg3) - (624‘1 + C(3)3)<egl + e(l)S)]a

Vc(a) = _(Cgsa + C24) [(C(l)la + C24)(e(1)5a + 6(3)3) - a(C(l)3 + C24)(e‘3)1 + 3(1)5)}7

gla) = (Cgﬁa + C24) [aZC(l]IC24 + a(C?1 C(3)3 - 2C(1)3C24 - (Cgs)z) + C(3)3C24] :

The dependence on a is obtained by setting n, = v/a and n; = 1 in Egs. (53) and (56),

respectively.
The k-representation of Green’s function (54) yields operator #*(n)

1 || Pig(n)  piy(n)
Q* n)=—— 1] i
™= Fw | i) mm)

Pyy(n) = nGy(m)m),  pi(n) = ngy)(n)nk,  m(n) = nimg(n) .

(62)

The r-representation of the Green’s function %(r) can be obtained by residue calculation.
Omitting details of the derivation, we present the results.

The electroelastic Green’s function for the medium with hexagonal symmetry can be written
in the form

)

9(e) = 9(0.9), 9(0,9) = H Gi(0.9) 7:(6,¢) '

(0, 0) g(0,0)
Gi(0, ) = Gpp(0)elel + Gyp(0)efe; + Gpz(0)(e] e + efer) + G (0)elef,
’Vi(97 (P) = Vp( )e + })2(9) )

where 7, @, 6 are the spherical coordinates, and where the following quantities are introduced:
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Gool0) = 323 5 3,y (G040 + Tu(-40 cor’d
G,y (0) ﬁ; - All 73 (o1 (40 Ty~ cof’ 0],

1 GRTe(—4) 1 ~Ge(—4)
GpZ(H)——EZ&A—I(O)cotH, G”(Q)_E;&Al(())’ (64)

1

— 4
g(g):lzg( Al)a A(0) = VAsin 0+ cos20, &=ACs [ (4-4) .
J=1G#)

In these expressions, e”,e? and e” are the basis vectors
e’ = (cos ¢,sinp,0), e? = (—singp,cose,0), € =(0,0,1) , (65)

vector e* coincides with the symmetry axis of the transversely isotropic medium. It is also
denoted

Gy, () — Gy(a) = aly(a), The(a) = %Gbxa), go(a) = \/%Ma) | (66)

6

Operators 2” and .o/ for a spheroidal inhomogeneity in a transversely

isotropic piezoelectric medium

We consider a spheroidal inclusion (a; = a, = a, a3) in the transversely isotropic piezoelectric
medium, with the axis 2a; parallel to the symmetry axis x5 (also coinciding with z-axis of the
spherical coordinate system). Then,

e =e’sin 0 +e’cos 0, e’ =e”cos O — e sin 0,
. 1 0 0
* = ‘PSiHQ@—F(e”cosO—ezsinH)@,
1 a (67)
T = = (H,j + é%fef), 0i = 05 — ejef, &= o’

1
e -T-e =—(sin’ 0+ & cos® 0) .
a

The result of calculation of operator & for Green’s function (50) and spheroidal inclusion can
be presented in the form

P = H Poa Pk (68)
P Tk
To calculate tensor mj, we note that, in accordance with general formula (17),
7 2n
Tk = asz/(sin2 0 + &* cos? 6)_1 / e, (V;ig(0) — e;g(0))de| sin 0 dO | (69)
0 0

where g(0) is given by (63). Integration with respect to ¢ yields

2n

| e(Tigl0) - ig(0)do =21 001+ fOmam | m =5 (70)

0



where

_ 0g(0) . o0 1 Gng(—A) Agsin? 0
f1(0) = 30 sin O cos 0 — g(0) sin® 6 = o IEZI z A?(G) 7
og(0) . ) 1 G~g(—A)) A2 cos? 0 (71)
0) =— 0cosO — g(0 0=—— E il Bt
12(0) 20 sin 0 cos £(0) cos in z AIS(Q) ,

1
Ay(0) = (A;sin® 0 + cos® 9)2 .
Introducing these expressions into (53) and performing integration with respect to 0 we obtain

Tk = MOk + mammy,

1 g(—4A) O IGg(A) 40 (72)
T = —Z;Th , T = —E;Tlf L
where it is denoted (u = cos 0)
| 2
]fl)ZAz/ (1 —u?)du 3:2&12{1_152A1111n<)v1+1>}
U+ (@ = Dw][A+ (1 - A 2 Ar—1
1
2 (73)
7= / u_du =22 Fam(iﬁ 1) . 1],
U+ (@ = D] [A+ (1 - A 2 A—1

_1
2

= (1-48)",

Expressions (73) remains valid when 4; is complex. These integrals, being functions of the
aspect ratio of the inclusion, represent shape factors.

The other components of operator Z can be obtained by performing analogous but lengthier
calculations. For the explicit presentation of these tensors it is convenient to use the following
tensorial basis, formed by unit vector m = e* and tensor Qij = 51~j — m;m;:

1 _ 2 _ . 3 _ .. 4 mems
Tijkl_ei(kel)ja szkl_gljgkl? T,'jkl—gymkmly Tjjkl_mlmjekla

T = Oywmymg,  Tigy = mimymemy,  Ug, = Oymy, (74)

Ui?'k = 2m(i0j)k, Uis'k = m;m;my, fl-lj = 61']', l‘l-zj = m;m; .
This tensorial basis is convenient for the following reasons: the contraction of the T-basis
tensors over two indices gives tensors of the same basis; the contraction of the U-basis tensors
over one index gives tensors of the T-basis, and over two indices - tensors of the t-basis. As for
as the t-basis is concerned, it is orthogonal with respect to contraction over one index:
ti,t,j = Orst;; (no summation over r). Tensorial operations in this basis are discussed in
Appendix 1.

Thus, we have

1
P=PT’ +P, <T1 - 5Tz) + P (T + T%) + PsT° + PeT® (75)

1~ Gy(—A 1 1
pi= =g BEAN0 py — LS LG + G (AN
! = ¢!

=1
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1 G~ Tpe(—A4))
P3:—§Zlel< éAfz >,

=1

=——Z { — A1) + Go (AT + The(— Al)( 52A]2) Ge(— Al)h(l)}v
:-—Z A’)éfz‘” ,

p = U +p, UP4psU° | (76)

1 -Tw(—4) [ 0)
p1= —gz & <]1 - szlfz );

I=1

:%ii[ ) (1 - 24 + 27,40,

l

14yc 2
*_EZ g, UZ’

=1
n=mt + mt* | (77)

where 7; and n; are given by (72).
In accordance with (18), operator .o7 for the spheroidal inhomogeneity can be written in the
form

A a

aT o

of —

’ (78)

1
A=AT +4, <T2 — ETz) + AsT? + AT + AST® + AT,

a=aU'+a,U+a;U°, a =dU'+dU+a,U0°, a=ot" +ot® .

Operations in the above-mentioned tensorial basis yield

1 3Qs 1 _ 1 _35Q
Al ZAA <B6 bz )7 A2 — Bz ) A3 - AA <B3 bz ))
1 q1Qs 42Q; ! 2 a1 Qi
4 AA ( 4 — bz )7 5 ( 5 b] ) } 6 AA ( 1 b2 )

_ a1 Q Q3Q3> ( Q3Q1> < %Qs)]
Ap=2|(B; — Bg — — | B3 — By — 79
i=2| (8- B2 (5 - B2 (8- B2) (5, - B2 | 79)

o 2Qu 20
a, = —A—Z(BsQl - B3Q3)a a; = — st : y a3 = Az( 1Q3 — B4Q1)’
1 A 1
d = Qah tah), &= = (2g4s + go).
b2 Zbl b2

-1
o = <b1 - 4q];Q2> ,  Ap=2(B1Bs — B3B,),
5

5 -1
o = {bz — A_B[(qlB6 — @3B4)Q1 + (q3B1 — qlB3)Q3]}



where it is denoted

_ 1 _ 1 1 _ 1 1 o _ 1
B, = : Pi(Cl; + C},) — PsCj; — prey;, By =1—2P,Cl,
B; = —2P\Cj; — PsCy — press, By = —P3(Cyy + Cpy) — PsCys — pseyy,

Bs =2(1—PsCy, — 2pse;s), Bs=1— PsCy; — 2P5Cj5 — psess,

1
Q = —(2P1e;1 +P3331;3 _P1”;3>v Q=- <§P53i5 _P2’711>a (80)

Qs = —(2Pse3; + Psel; — paniss),

g1 = —[p1(Ciy + Cpy) +psCis + mez ], g2 = —(2p2Cy + mieys),
s = —(2p1C1; + p3C3; + mae3;),

by =1—2pe;s +munyy, by=1—2piey; — pses; + mois; -

These formulae yield operator %4 in (33) in the form

ch et
A

p— 1
&7 AT _yAll (81)

C* = J(Cl} + CI)T? + 2G4 (T! —4T%) + Ci5(T° + T*) + 4C, T + G5, T,

el = U + e U + e U, oyt =it + st

where

(Gl + Cy) = (Cly + Cpp) A1+ CisAs + €310y, Cgg = Cyeha,

Cis = 2C13A1 + Cy3As + e33a],  Cyy = 1Cy,As + e15ay,

Cs = Ci34s +2C134; + e3;a5, (82)
ey = (Cl, + Cl)a1 + Clsas + €},00,  els = 2C,a; + €150,

ety = 2C1,a1 + Chas + e3;0,

A 1 1 A 1 1 1
M1 = —2e15a2 + 1,00, 33 = —2e3.41 — e33a3 + 13300 .

Quantities marked by superscript “1” stand for the difference between the inclusion and matrix

electroelastic constants
C'=C-C e =e—-¢, pt=np-—0n". (83)

In the next section, we specialize these results to several special cases of the spheroidal ge-
ometry.

7

Special cases

We now specialize the general results obtained above to several special cases of spheroid’s
geometry and of the contrast between the matrix and inclusion properties.
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71
Infinite circular cylinder

In the case of a cylinder (continuous cylindrical fiber), a; — oo, whereas a remains fixed.
Expressions (75)-(77) take the form

Gb( Ap) |
p,=—= = —- —[Gp(—A Gy (—A
1 Z . 4;@@1[ »(—A7) + Gy (—4A1)],
Py = 1ir“(_’4’) P =~ 13 LG ) + Tl
3 = 4 - gl ) 5 — 2 - gl c l bc 1)l
(84)
1 Th(—A) 1 Y ( Al
Ps=0 = — =— ¢
s=0, P 4; & 2=\~ Z )
p3=0, = :—lig(_Al) m, =0
3 ) 1 2 - (O@l ) 2
Taking into account the following relations (Appendix 2)
Z Gb(—Al) _ 1 i ij_(—Al) _ 1
—~ & o’ — &) '
4 4 2\ ~
pe(—A) G.(—4)) 0 (6[1)5)
12:; &1 12:; 8 “ %
(85)
4 4
I'p(—4) 7e(—A1) 1
z & 0, z - & (6247111 GO
=1 I=1
SoaA) (0 ()
—~ & Cis
one obtains
1 1/1 1 "
P:——Tz__<_+ )(Tl__T2> 1 T5
4CY, 4\C,  CY 2A,
els < Chs 1 0 0 012
P:—4—A0Ua nZZ—AOt’ Ao = 1), Cyy + (e75)" - (86)
These expressions, together with general formulae (81), (82), yield
1 cl, + ! cl+cL\ ! Cl 1\]"
- CA CA — 11 12 1 11 12 CA — Cl 1 66 -
2 ( 11 + 12) 2 + zc(l)l ? 66 66 +— 2 C(l)1 + Cgé ’
cl+cL\ ! 1 o,
Ciq3 = C%3 (1 "‘W) ) szx - A_f [CL} +to 2A, (Ci4’711 + (615) )}
cL) ch+cL) ™
CA — Cl _( 13 1 11 12 87
33 33 C?l J’_ 2C?1 ’ ( )

cl +ch\ 1 2
3?1 = ‘%1 <1 +W) ) ‘31145 :A [ €15 + A (Ciﬂ’ln (eis) )]’



-1

A 1 Clse3, 1 CL + G

€33 = €33 0 20 )
11 11

1 ’7 2
’7?1 Af l:’/lll + ZX (@4’711 + (eis) ):| ’ ’733

Chy 2C},

~1
’7 n (41)2 (1 + C111 + C%z) }
33 )
1
Ap =14 (e(l)seis + C24’7}1) L+ (‘315615 + Ci4’711)
2A, A

1 0 1 0 1 1.0
AZ (C44e15 C44915) (’711615 - ’711315> .
These results are in agreement with the ones obtained earlier in [9] and [22]. We note that the

multiplier v/2V in (48) is transformed for the continuous fiber to 7a®/S, where § is the
reference area in the plane perpendicular to the fiber axis.

7.2

Strongly oblate spheroid

We now consider the limit of a strongly oblate, disk-like inclusion, £ — oco. In the expansion of
shape factors ]1(1)’ ]2(l> in powers of ¢, we retain terms up to the second order for the purpose
of inversion. Thus,

mw _n 2 . m
So that
PO 0 Pl 1
? = ' P ‘Zo 1T 7’; +O<éz> ) (89)

where tensors P°, p® and ¥ can be presented in the tensorial basis (74) as follows:

1 1
P{=0, P)=0, Py=0, P{=—>> ——[Gy(~A)+ Gy (A)],

24 814
N D o £
=0 nl=- ggi;;‘\ll)
Using the results of summation presented in Appendix 2, we obtain
R Rl i T RACH

Tensors P! p! and wn! can be presented in the same tensorial basis as follows:
4

1 G A p! 1 1
p= —-Z I P g A )

Dy (
B

D T 1
P! = _Z;&\/E {zrbc(_Al) + Ge(—A1) = - [Go(—A1) + GbL(Al)]}’
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1RG4
24 &AL

-

Py = (92)

Pt A ISy -
Voa aA T T 8 6W/A ‘ ’
o=t S(-A) 1584 :__Z
P2 /A T A sWA éﬁA4F

Operators M and #* in (49) and (48) do not contribute to the expression for the electric
enthalpy W (multiplier v/V having the order of 1/¢), except for the two special cases con-
sidered below.

The problem needs more attention in the cases of rigid and absolutely permeable disc or an
impermeable crack-like pore. These cases are analyzed below.

7.3
Rigid ideally permeable disc (C= , = x)
In this case,

-1
P p ch e
yA:—(’ pT - ) = - eAT _nA (93)
ct=(P-pr'p) ", e*=Pppt, pt=(z-p'Pp) .
Retaining only the leading terms of the order of £ in these tensors yields
cllet o
Fh == 0o(1 94
=15 ]l +ow (94)
1
CA _TZ Tl _ _TZ A _tl )
PTT ( T

In the uncoupled case (e’ = 0), the expressions for P}, P} and n; are simplified as follows:

pl — 2C?1C24(\/ Uy ++/u3) al = 1
1= 5 1= 5
C24 + v C(I]IC(3)3 4/ ’7?1’723

C3, + /0 CY AR

P = 8CY, |4 + 11433 # (95)
Ch(Vuz + /us) Cos

where u, and u; are the roots of the quadratic equation

Cy Cagu® + ((C?3>2 +2C%Cyy — C(I)ICgS)u +C3Chy =0 . (96)

74
Strongly oblate impermeable pore (C=0, n=0)
Elliptical and penny-shaped cracks in piezoelectric media where considered in many publi-
cations (see, for example, [3]). Here, we present the explicit expressions for components of
operator .#/® in the case of the penny-shaped crack in the plane of isotropy of the transversely
isotropic electroelastic solid. It allows, based on the Griffith’s fracture criterion, to find the
critical electroelastic loads for a crack.

Operator .#® in (49) takes the form

1

M= (L + L°22°) (97)



We introduce the matrix notation for the inverse operator

B\ 1 D d
where tensors D,d and J are expressed in the tensorial basis (74) as follows:
1 4
D = D,T? + D, <T1 . 5T2> 42 Tops
i / ¢ ¢ (99)
d:Ed3U37 5:51t1+252t2,

| 0 16 o 0 0 0
D, = P (Cu + C12) A (633C13 + e31C33), D; = 2Css;
C

Ds = P§(C},)" + 4p;Ciyels + i (e)s)”,

Ds = C33(PsC3; + 2P5Cys + piess) + 2C15 (2P Cls + P3Cis + press)
+ €33 (291 Cls + p3C5; + myess),

ds = 2¢3, (2P Cl; + P3C3; + press) + €55 (PgCa; + 2P3Cls + pesy)
— 135 (2p1C1s + p3C55 + me55),

Ao 2 2 2
o = o0 d; = 4Pj(€5,)" + 4P;¢3,€3; + Pg(€3;)” — 4pin3ses, — 2pzessizs + 1y (n55)°
44

where Ay and A, are given by (86) and (91).

The components of tensors D, d and 8 that are not given in (99) do not contribute to the
singular (at ¢ — o) components of operator .#%. Determination of the inverse operator in
(94) with the account of the expressions

SR
%f = BT _gB|| (10())
8= (D-ds'd") ", #=-D'de*, o= (5-d'D'd) ",
and formulae of Appendix 1 yields
1 0 d

sf =& (Lys 02y : sB:—é—suﬁ

7 \ Dq A T A (101)

D

o = §—"’t2, A, = Dgd, — 2,

T A
For the uncoupled electroelasticity (e” = 0), the results (101), take the well-known form

¢
S8 == (B> + SBT® B_248¢ 102
n(s +6)7 o n‘733 ) (102)
~1
B_ 4 Ch, Ch, — (Cy)* n C_ge
5 )
C24 C24 V C(l)l C(s)s(\/ Uy + us) C24
SB_ZC?1(\/”2+\/”3) B _ 2

6 = y  O33 = )
C?l Cgs - (C(l)s)z V ’7(1)1’7(3)3

where u, and u; are the roots of Eq. (96).
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The critical stresses (¢%)° and electric displacements (D?)‘, at which the crack propagation

starts, can be determined from Griffith’s criterion
g 2

— (2na*y —AW) =0 , (103)
a

where y denotes the surface energy density of the piezoelectric material and

2 3
AW = ?n%]‘l/%f]" . (104)

For example, in the simplest case of uniaxial tension J° = [43;, 0], we find the following critical

stress (03;)":

27y A
052

(03)° = (105)

If the piezoelectric coupling is ignored and the material is elastically isotropic, Eq. (105) im-
plies the well-known result

) =\t =) (106)

where yi; is the shear modulus and v, is the Poisson’s ratio of the matrix.
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Appendix 1
The tensorial basis (74) used throughout the present work is discussed here. It allows one to
substantially simplify and standardize tensorial operations.

If a certain tensor A is expressed in the T-basis

1
A=AT 4+ A, <T1 - 5T2> + AsT? + AgT* + AsT® + AT | (A1.1)
then the inverse tensor A~' is determined by the expression

. Ag 1 1 As Ay 4 24,
Al=2ry —(T—ZT?) _Z22 Pt ty — E0re Al1.2
2A +A2< 2 AL TA TR A (A12)

A B 2(A1A6 - A3A4> .

If two tensors A and B are given in the T-basis, the contraction of these tensors over two indices
is

AjjBiimn = (2A1B, + AsB)T2,  + AB (T.l. _ a2 ) + (24,Bs + A3Bg)T?

ijmn ijmn 2% ijmn ijmn

+ (244By + AsB4) Tj, +3AsBs T}, + (A6Bs + 244B5) T, - (A1.3)
We consider now two tensors C and D presented in the U-basis
3 3
Cik = Y CUf, Dj=Y DUy , (A14)
r=1 s=1
the contraction of these tensors over one index gives tensor of the T-basis
CiimDpgy = CiD1 Tig + C1Ds Ty + C3Dy Ty + 4D Tiy + CsDs Ty, (AL.5)

The contraction of tensors C and D over two indices gives a tensor that is presented in the t-
basis as follows:

CiDij = 2C:Datj; + (2C1Dy + CsDs )t (AL.6)

The t-basis can be shown to be orthogonal, i.e. if

OCiJ' = OC11’1’1]' + OCZtizjv ﬁz] = ﬁlt}j + :thz;j ’ (A1.7)
then
kB = oty + %Pty (A1.8)
and

(A1.9)
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The following results are also useful:

AjjmnConk = (2A1C1 + A3C3) Uy, + Asczuzk + (244G, +A6c3)U,]k,

ChunAmnkt = (2C1A1 + G AU +1GAsUS + (2C1As5 + CAq) Uy,
(A1.10)
lim gy = 02C1Ujg + 01CoUgg + 02C3Upy,

1 2 3
Ciijka = C10(2 Ule + C2061 Ule + C30€2 Ul]k .

Appendix 2
We evaluate the sums entering Eqs. (85). To this end, we consider expressions of the form
p(=4)

S Sy + 7951 +6S5, = A21
aS3 + fiSy + 951 + 050 = Zé’;Al ; (A2.1)
Where p(—A;) is a polynomial of third order in —A;
pla) =aa + pa* +ya+9 . (A2.2)
Consider now the following function:

1
h(a) = pla) _ _ p(a) (42.3)

fla)  ACl (a+A1)(a+Az)(a+As)(a+A)

Since the numerator p(a) is a third-order polynomial and the denominator f(a) a fourth-order
polynomial, we can reduce h(a) to the form

=y b (A2.4)
a+ A

I=1
where coefficients h; are given by
h = (a+ A)h(a)|,—_,, - (A2.5)
From this equation, one obtains

hy :p(;;q,) ; (A2.6)

where the definition (64) of &; is used

4
E1=CoA- TI (A4 —A) . (A2.7)
j=1j#l

Thus, we can write

- _ 1 p(a)
Z: a—i—Al - ACY . (a+A))(a+Ay)(a+As)(a+Ay) (A28)

Equation (A2.8) holds if p(a) is a polynomial of, at most, the third degree. Setting a = 0 in this
equation, one obtains

4
p(— 0 0
E . = A29
L Acg6 A1A)A3A, CYD (A29)



where 0 = p(a = 0), see Eq. (A2.2). In this case, only the zeroth order term S, contributes to
the sum. Terms S, corresponding to the powers A} (n = 1,2,3) yield vanishing contributions.
From Eq. (A2.9), we obtain therefore

4 2
A A
E %ﬁlﬂ):o , (A2.10)
I

I=1

It follows from Eq. (A2.10) that the terms containing quadratic functions of 4; in their nu-
merators are vanishing. It has the following implications for Egs. (85):

24: L(@;Al) =0, Z LC Zgb : (A2.11)

I=1 I=1
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To evaluate the remaining sums entering Eqs. (85), with cubic functions of A; in the numer-
ators, we have to evaluate the following sum:

4 43

Al
=-y L. A2.12
27, (A2.12)

Because of (A2.10), % can be written in the form

4
(A2 —A)(As — A(A — A)
& — A2.13
2 7 7 (A2.13)
that can be evaluated in a straightforward manner
Ay —A)(As—A)(As— A 1
5”:( 2 (4 1)(As l): , (A2.14)
&1 CesA
so that
4 43
A 1
[ el A ) A2.15
2.5 @ (42.1)

It has been seen that terms with [ = 2, 3,4 vanish in (A2.13) and the only term that remains is
the one with [ = 1. Utilizing (A2.15), together with (A2.10) we arrive at

4
y:_ZaAf+ﬁAlz+yAl+5_ o

7 =ca (A2.16)

I=1

where a, f3, 7, 0 are arbitratry constants. Thus, only the powers A} contribute to (A2.16). Using
(A2.16), we calculate the remaining sum

-1
Z Gp(—A1) _ 1 24: Gy (—A1) _ b 24: Ge(— Al) o+ (e(fs)z
51 C(l)l ) gl Cgé ) gl 44 ’70 ’

I=1 =1 =1 11

(A2.17)

4 4 02\ !
7(—A7) g(— (1)
Z : & :e?S(C24’7(1]1 315 Z 51 —(n + 5(5) ‘ (A2.18)

=1 44




