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Abstract This research aims to establish the semi-analytical approach for nonlinear dynamic buckling and
vibration responses of functionally graded graphene platelet reinforced composite (FG-GPLRC) circular plates
and spherical shells subjected to time-dependent radial pressure and thermal loads. The higher-order shear
deformation theory with von Karman’s nonlinearities and the nonlinear viscoelastic foundation model is used
to establish the expression of the fundamental equations of considered structures. The shells and plates are
considered with clamped and immovable edge, and shallow curvature of the shells is applied. The Lagrange
function is applied to establish the total energy of structures, and the potential function of viscous damping
of the viscoelastic foundation is expressed using the Rayleigh dissipation function. The motion equation of
the structures can be formulated using the Euler–Lagrange function. The dynamic responses are obtained
using the numerical method, and the critical dynamic buckling loads are obtained using the dynamic buckling
criterion of Budiansky–Roth. The large effects of material parameters, geometrical parameters, and nonlinear
viscoelastic foundation on dynamic responses of considered structures are investigated and discussed in many
numerical examples.

Keywords Euler–Lagrange function · Nonlinear dynamic buckling · Nonlinear elastic foundation ·
Higher-order shear deformation theory · Rayleigh dissipation function · Mechanical and thermal load

1 Introduction

Circular plates are typical structures in engineering with many applications. The more complex structures of
circular plates are the shallow spherical shells with only a shallow curvature, the load-carrying capacity of
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the structures significantly improved, and their applications are popular, and the research on their mechanical
behavior is an important problem in the world [1–3].

Functionally graded material (FGM) is an advanced type of multifunctional composite, with variations
in component materials for the important purpose of controlling variation in electro-thermo-mechanical, or
other technical properties. Reddy et al. [4] used the classical, first-order shear deformation theory (FSDT)
and higher-order shear deformation theory (HSDT) to analyze the linear bending behavior of FGM circular
plates with axisymmetric displacements. The variable-thickness circular FGM plates were analyzed using the
FSDT and differential quadrature method with the plate–foundation interaction by Ghomshei [5]. Shariyat and
Alipour [6] presented the semi-analytical formulations to analyze the dynamic stress of sandwich FGMcircular
plates with a consistent power series solution. Dynamic behavior and vibration of FGM circular plates were
mentioned in the thermally postbuckled state [7], with generalized differential quadrature rule [8], and using
the nonlinear Chebyshev-based collocation technique [9]. FGM square and circular plates were considered
in bending and linear frequency problems using a strain-based finite element formulation [10]. By using the
Donnell–Mushtari–Vlasov theory, the thermal and mechanical buckling behavior of FGM spherical shells was
investigated [11] considering the simplified kinematic relations of Sanders. The FGMdeep spherical shells with
piezoelectric actuators were considered [12] in the thermal buckling problem using an analytical approach. An
analytical solution for elasticwaves in FGMspherical shells was proposed [13] using the separation of variables
technique to displacements. An adjacent equilibrium is established to investigate the linear buckling problem
of FGM annular spherical segments with parallel stiffeners using the Galerkinmethod [14]. Different boundary
conditions were considered to investigate the bending and vibration of FGM annular plates on the nanoscale
using FSDT and a nonlocal stress-driven model [15]. The superior load-carrying capacity of sandwich plates
and shells was mentioned and validated in many studies [16–19]. First-order shear deformable multilayer
FGM and sandwich porous FGM spherical shells were mentioned in the nonlinear vibration problem with
shell–foundation interaction and thermal temperature [17, 18]. By using the Ritz energy method, the nonlinear
thermo-mechanical buckling behavior of higher-order shear deformable FGM sandwich spherical shells was
performed with the effects of porous core [19].

The functionally graded graphene platelet reinforced composite (FG-GPLRC) is known as the next type of
FGM. Many studies showed that the load-carrying capacity of FG-GPLRC structures increases significantly
with only a small amount of graphene platelet (GPL) added to the isotropicmatrix. The thermal backbone curve,
dynamic response, and dynamic instability of beams made from FG-GPLRC were investigated with beam—
foundation interaction [20], with moving load [21], and with isotropic core [22]. Nonlinear large deflection,
vibration, thermal dynamic response, bending, buckling, and postbuckling analyses of FG-GPLRC rectangu-
lar plates and doubly curved shell panels were studied using the generalized differential quadrature (GDQ)
method [23, 24], using the variational differential quadrature and finite element methods [25], using the Navier
technique [26, 27], using the Ritz method [28, 29], and using the Chebyshev polynomials [30]. Some other
special structures such as rotating microplates [31], folded plates [32], and conical shells [33] made from
FG-GPLRC were also investigated in vibration, dynamic response, bending, and buckling problems, respec-
tively. Bending, buckling, and vibration responses of FG-GPLRC circular plates were mentioned using the
3D poroelasticity theory [34], the mesh-free approach [35], and the GDQ method [36]. FG-GPLRC annular
plates were mentioned [37–39] in the problems of thermal buckling and vibration analysis using the FSDT and
HSDT. Thermo-elastic, bending, and mechanical buckling responses of FG-GPLRC spherical shells using the
Galerkin method [40], using the layerwise differential quadrature method [41], using the state space method
[42], and using the finite element method [43]. By using the HSDT and Ritz energy method, the nonlinear
thermal and mechanic buckling behavior of FG-GPLRC spherical shells was studied [44, 45] taking into
account the effects of porous core [44] and the effects of nonlinearity of foundation [45]. Nonlinear thermal
buckling responses of FG-GPLRC circular plates and spherical shells were investigated [46] using the FSDT
and Galerkin method with the trigonometric forms of deflection and rotation.

Vibration and dynamic buckling behavior has many important meanings in engineering, typically in com-
plex mechanical systems [47], in rotor systems [48, 49], in ship pipeline systems [50], and in piles with large
slenderness ratios [51]. For FGM and FG-GPLRC circular plate and spherical shell structures, the vibration
and dynamic buckling behavior was also mentioned [7–9, 17, 18, 36, 42, 43].

The advantages of HSDT compared with classical plate and shell theories and FSDT were shown and
validated in many reports with the well-suitable thick composite plates and shells. However, the literature
also showed a lack of research on the nonlinear dynamic thermo-mechanical behavior of circular plates and
spherical shells.



According to the great knowledge of the authors, there is no study on the dynamic responses of higher-
order shear deformable FG-GPLRC spherical shells and circular plates resting on the nonlinear viscoelastic
foundation. In this study, the motion equation including the potential energy of damping of the foundation of
the structures is expressed by using the Lagrange function, Euler–Lagrange equations, and Rayleigh dispassion
function. The time-dependent radial pressure and time-dependent thermal load are applied to the structures, and
the fundamental frequencies, vibration responses, phase planes, and thermal dynamic buckling are investigated.
In the numerical examples, the significant effects of the geometrical,material, and elastic foundation parameters
on the dynamic behavior of the FG-GPLRC spherical shells and circular plates are validated and evaluated.

2 Geometrical and material features of FG-GPLRC spherical shells and circular plates
and fundamental formulas

The shallow curvature of spherical shells is assumed in Fig. 1, and the quasi-polar coordinate system (r , θ , z)
is approximated from the spherical coordinate system (ϕ, θ , z) with r � R0 sin ϕ, the circumferential and
meridional directions θ and ϕ, the main radius R0, base radius R1, and centripetal axis z. The displacements
of circular plates and spherical shells are assumed to be axisymmetric, and time-dependent radial pressure q
and thermal load �T are applied with the nonlinear viscoelastic interaction of the foundation.

The shells and plates are considered with five distributions of GPLs: U, X, O, V, and � distributions,
according to the linear functions through the shell and plate thicknesses
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where W ∗
GPL is the average GPL mass fraction.

The volume fraction of the GPLs can be defined as

VGPL � ρmWGPL

ρmWGPL + ρGPL(1 − WGPL)
, (2)

where Vm + VGPL � 1, the subscripts GPL and m denote the GPL and matrix, respectively, ρ is the denote of
density, and V is the denote of volume fraction.

The elastic modulus of the shells and plates can be estimated based on the Halpin–Tsai model, as [38]

E � 3Em(1 + �1�1VGPL)

8(1 − �1VGPL)
+
5Em(1 + �2�2VGPL)

8(1 − �2VGPL)
, (3)

where

�1 � EGPL − Em

EGPL + �1Em
, �2 � EGPL − Em

EGPL + �2Em
, �1 � 2aGPL

tGPL
, �2 � 2bGPL

tGPL
, (4)

where E is the elastic modulus, aGPL and bGPL are, respectively, the length and width, and tGPL is the thickness
of the GPLs.

The Poisson ratio ν, thermal expansion coefficient α, and density ρ of FG-GPLRC shells and plates are
determined according to the mixture rule as

ν � νmVm + νGPLVGPL,

α � αmVm + αGPLVGPL,

ρ � ρmVm + ρGPLVGPL.

(5)

By adding the thermal stresses caused by the uniformly distributed thermal load �T (counted from the
initial free thermal stress state to the final thermal stress state), Hookian law is applied to the FG-GPLRC
shells and plates, as [19]
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Fig. 1 Configurations, material distributions, and coordinate system of considered structures

where the reduced stiffnesses of shells and plates can be calculated by

Q11 � Q22 � E

1 − ν2
, Q12 � Eν

1 − ν2
, Q44 � E

2 + 2ν
. (7)

The axisymmetric displacements at a distance z from the mid-surface of the spherical shells and circular
plates can be derived using the theory of the HSDT, as [44]
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where u � u(r , z), v � v(r , z), and w � w(r , z); φ(r) is the rotation; and w∗(r) is the imperfect deflection
of structures.

The expressions of the strains at a distance z from the mid-surface can be applied as [44]
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where λ � 4
/
3h2.

The mid-surface strains εr , εθ , εr z combined with the nonlinearities of von Karman, presented as [19]
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The fundamental relations are generally written for the spherical shells, and the results for circular plates
are obtained by applying the infinity for the main radius (R0 → ∞).

The extension forces, shear forces, moments, higher-order moments, and higher-order shear forces of the
shells and plates with axisymmetrical deformation are determined by integrating Hooke’s law, as
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where
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Considering the foundation reaction of the nonlinear foundationmodel [36], and assuming that the in-plane
and rotary kinetic energy components are small and neglected [1, 3, 8, 17, 18], the thermo-elastic strain energy
of the structures and the work done by the external loads taking into account the nonlinear interaction of the
foundation are expressed, respectively, by
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where the linear Winkler stiffness is denoted by K1 (N/m3), the linear Pasternak stiffness is denoted by K2
(N/m), and the nonlinear stiffness is K3 (N/m5). The nonlinear stiffness K3 may be negative or positive,
respectively, modeling the softening or hardening foundations.

From Eqs. (12), (13), and (14), the total potential energy is obtained as

U � UT −U int +U ext. (15)



3 Solution forms and solving procedure

The clamped, immovable, and axisymmetric boundary conditions of the structures are considered as

At r � 0 : u � 0, φ � 0, w,r � 0, w � finite,

At r � R1 : w � 0, w,r � 0, φ � 0, u � 0 .
(16)

The solutions that satisfied the considered boundary conditions can be assumed to be in the forms, as [45]
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where κ is the size of the geometrical imperfection, and the imperfection w∗ is chosen to be the same form of
deflection of the structures.

To simulate the viscous damping effect of the foundation, the Rayleigh dissipation function is used and
combined with the Euler–Lagrange equations, as
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where the viscoelastic potential function of the foundation d1 � π
R1∫

0
τẇ2rdr .

Substituting Eq. (17) into the total potential energy (15), and then into Eq. (18), the motion equations of
the structures are obtained as

b11U + b12� + b13W + b14W (W + 2κh) � 0, (19)
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The amplitudesU and� can be obtained by solving Eqs. (19) and (20); then, substituting them into Eq. (21)
leads to
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where

c11 � b12b23 − b13b22
b11b22 − b212

, c12 � b12b24 − b14b22
b11b22 − b212

,

c21 � b12b13 − b11b23
b11b22 − b212

, c22 � b12b14 − b11b24
b11b22 − b212

.

For forced vibration behavior, the exited load is applied in the harmonic form over time q � Q sin�t into
Eq. (22), and then, the Runge–Kutta method is used to solve the obtained equation to obtain the time–deflection
responses of the structures. For free vibration, by neglecting the nonlinearities, the viscous damping component,
and the forced load, the linear and free equation of motion is obtained. The expression of the natural frequency
can be obtained as

ω �
√

−5(c11b31 + c21b32 + �Tb39 + b38)

b312πR2
1

. (23)

For the dynamic buckling behavior, linearly time-dependent mechanical and thermal loads are applied.
That is, q � ζ t and�T � ξ t , where ζ (Pa/s) is the loading speed of mechanical load and ξ (K/s) is the loading
speed of thermal load. The Runge–Kutta method is used to determine the dynamic response curve of structures.
The dynamic buckling load can be chosen at any point of buckling region according to the Budiansky–Roth



Table 1 Comparisons of dimensionless fundamental frequenciesω � ωR2
√

ρmh
/
Dm of FG-GPLRC circular plates (R1 � 1 m,

Dm � Emh3
/
12

(
1 − ν2m

)
, Em � 3.0GPa, νm � 0.34, ρm � 1200 kg/m3, W ∗

GPL � 1%)

Distribution Source R1
/
h

5 10 29.4118

U plates Chien and Phuc [35] 19.0329 20.5657 21.2205
Javani et al. [36] 19.1378 20.6418 21.1638
Present 19.6549 20.9684 21.4086

X plates Chien and Phuc [35] 20.6648 23.1168 24.1789
Javani et al. [36] 21.7190 23.9322 24.7333
Present 21.6710 24.1887 25.1197

O plates Chien and Phuc [35] 16.3881 17.3051 17.7029
Javani et al. [36] 15.7053 16.5524 16.8334
Present 16.0492 16.6377 16.8242

Table 2 Validation of dimensionless fundamental frequenciesω∗ � ω
/[

h
R1

√
Em

/(
ρm R2

1

)]
for isotropic spherical shells (H0 �

R2
1

/
(2R0))

H0
/
h

2 5

Varadan and Pandalai [1] 6.08 12.72
Sathyamoorthy [2] 6.14 13.08
Phuong et al. [17] 6.51 12.45
Haboussi et al. [43] 6.18 13.37
Present 6.51 13.24

criterion. In this paper, the inflection point of the buckling region of the dynamic responses of structures is
chosen for the buckling point, obtained when

d2W

d�T 2

∣∣
∣∣
�T��Tcr

� 0. (24)

The static bifurcation buckling criterion can be obtained in the case of the perfect circular plates
(κ � 0, R0 → ∞); from Eq. (22), the expression of the static buckling thermal loads is obtained when
W → 0, as

�Tcr � −b31c11 + b32c21 + b38
b39

. (25)

4 Numerical results and discussions

In this paper, the numerical results on the fundamental frequencies for the FG-GPLRC circular plates are used
to validate the present approach. Two results on the fundamental frequency parameters of Chien and Phuc [35]
based on themesh-freemethod, and of Javani et al. [36] based on the generalized differential quadraturemethod,
are compared with those of the present results, as presented in Table 1. Next, the validation of dimensionless
fundamental frequencies for isotropic spherical shells is mentioned in Table 2, with the works of Varadan and
Pandalai [1] using the energy method, Sathyamoorthy [2] and Phuong et al. [17] using the Galerkin method,
and Haboussi et al. [43] using finite element method. As can be seen, the results of these comparisons affirm
the validity of the present approach.

In this section, to illustrate the present semi-analytical approach, the copper matrix/GPLs spherical shells
and circular plates are numerically investigated. By referring to the work of Wang et al. [38], the material
parameters of GPLs and copper matrix can be determined.

Fundamental frequencies of circular plates and circular spherical shells with different GPL distributions
and mass fractions are investigated in Table 3. As can be observed, with only the shallow curvature, the
fundamental frequencies of spherical shells are significantly larger than those of corresponding circular plates.



Fig. 2 Effects of material and geometrical parameters on the dynamic responses of FG-GPLRC spherical shells and circular
plates

Table 3 Fundamental frequencies (rad/s) of FG-GPLRC circular plates and circular spherical shells with different GPL dis-
tributions and mass fractions (h � 0.012 m, R1 � 20h, R0 � R1

/
0.2, κ � 0, �T � 100 K, K1 � 10 MN/m3, K2 � 0.1

MN/m)

W ∗
GPL(%) U X V � O

Circular plates 0 1459.0 1459.0 1459.0 1459.0 1459.0
0.3 1613.5 1761.3 1597.9 1597.9 1449.4
0.5 1713.1 1936.1 1676.4 1676.4 1452.1
0.7 1810.1 2095.8 1748.5 1748.5 1461.5
1 1951.6 2313.9 1849.2 1849.2 1486.4
0 4866.3 4866.3 4866.3 4866.3 4866.3
0.3 5310.3 5353.8 5299.0 5305.6 5259.5

Spherical shells 0.5 5586.5 5650.6 5561.5 5572.5 5503.6
0.7 5849.5 5929.2 5807.8 5823.1 5735.7
1 6223.0 6318.2 6152.4 6174.0 6064.3

In both cases of plates and spherical shells, great fundamental frequencies can be observed with X structures.
The large GPL mass fraction far from the mid-surface of the structures causes the increase of stiffnesses of the
X structures than those of other structures with other distribution types. With a small amount of GPL added to
the structures (no more than 1% in mass fraction), the fundamental frequencies increase markedly.

The forced vibration responses of FG-GPLRC spherical shells and circular plates with different GPL
distribution laws are investigated in Fig. 2a. It seems that the vibration periods of the plates with different GPL
distribution laws do not differ significantly. However, the vibration amplitude of the X plate is significantly
smaller than that of other plates with different distribution laws. Effects of GPL mass fraction on the vibration
responses of FG-GPLRC circular plates can be observed in Fig. 2b. When the GPL mass fraction increases,
the vibration amplitude of the plate largely decreases, and the vibration response form significantly changes
after a long enough period. Effects of structure curvature of spherical shells on the vibration responses are
investigated in Fig. 2c. In the comparison of the vibration amplitude of circular plate and spherical shells, it



Fig. 3 Effects of load amplitude, imperfection, nonlinear foundation stiffness, and damping coefficient of foundation on the
dynamic responses of FG-GPLRC spherical shells and circular plates

can be seen that the vibration amplitude of structures significantly decreases with only the shallow curvature.
Additionally, the vibration amplitude of the spherical shell increases when the shell thickness decreases as
shown in Fig. 2d.

The harmonic beat phenomenon of FG-GPLRC spherical shells can be observed in Fig. 3a. As can be seen,
the harmonic beat phenomenon occurs if the forced frequency of harmonic loads approaches the fundamental
frequency of FG-GPLRC spherical shells. In addition, the nonlinear vibration amplitude and the beat length
rapidly increase when the forced frequency approaches the fundamental frequency of the shell. The large
effects of imperfection on the nonlinear vibration responses of plates are investigated in Fig. 3b. The vibration
amplitude of the imperfect plate is clearly larger than that of the perfect plate, and the response curve of a
perfect plate is much smoother than that of an imperfect plate.

The effects of the nonlinear parameter of the foundation are investigated in Fig. 3c. As can be observed,
taking the case of zero nonlinear foundation coefficient as the reference, the positive nonlinear foundation
coefficient strongly reduces the vibration amplitude, whereas the negative nonlinear foundation coefficient
increases the vibration amplitude significantly. The viscous damping coefficient of the foundation also greatly
affects the vibration responses of the circular plate (see Fig. 3d). The results show that the vibration amplitude
decreases sharply when the viscous damping coefficient increases after a large enough number of periods.

The phase planes of FG-GPLRC circular plates and spherical shells are studied in Fig. 4a–d, when the
forced frequency is approximately the fundamental frequency. For both cases of FG-GPLRC plates and shells,
as can be seen, when the amplitude of forced loads is small, the attraction area is clearly shown. However,
when the amplitude of forced loads increases, the attraction area tends to split into two.

The static and dynamic critical thermal buckling loads of FG-GPLRC circular plates are presented in Table
4. In these investigations, the thermal loads increase rapidly and linearly with the thermal loading speed ξ , over
time. The obtained results show that the static thermal buckling load is always smaller than the dynamic thermal
buckling load, and the dynamic thermal buckling load increases when the thermal loading speed increases. The
thermal buckling loads of the X circular plates are much larger than those of the circular plates with different
distribution laws.



Fig. 4 Phase planes of circular plates and spherical shells

Table 4 Dynamic critical thermal buckling load�Tcr (K) of FG-GPLRC circular plates (W ∗
GPL � 0.7%, h � 0.012 m, R1 � 20h,

κ � 0, q � 0 N/m2, τ � 0.1 kN.s/m3, K1 � 100 MN/m3, K2 � 1.0 MN/m)

Type Static Dynamic

ξ � 100 (K/s) ξ � 200 (K/s)

U 155.1 158.5 160.4
X 174.5 177.8 179.9
V 151.8 155.1 157.5
� 151.8 155.0 157.5
O 136.2 139.4 141.6

The dynamic mechanical responses of FG-GPLRC circular plates and spherical shells subjected to linearly
time-dependent radial pressure are investigated in Fig. 5a, b, respectively. The results in Fig. 5a show that the
buckling region does not appear for FG-GPLRC circular plates, and the response curve is lowered as the GPL
mass fraction increases. Oppositely, the buckling region can be observed relatively clearly for FG-GPLRC
spherical shells. It is shownmore clearly with a negative nonlinear foundation stiffness, whereas it is not clearly
shown with a positive nonlinear foundation stiffness.

Figure 5c–f presents the thermal responses of FG-GPLRC circular plates and spherical shells subjected to
linearly time-dependent thermal loads. The dynamic thermal buckling region can be observed for FG-GPLRC
plates (Fig. 5c, e, f), and oppositely for spherical shells (Fig. 5d). It seems that the slope of the buckling region
does not vary significantly with different GPL distribution laws. Due to the curvature of the spherical shell,
reverse deflection can be observed as the temperature increases as shown in Fig. 5c. The dynamic thermal
response curves of FG-GPLRC circular plates with different thermal loading speeds are investigated in Fig. 5e.
When the thermal loading speed increases, the maximal amplitude of buckling region increases and vibration
amplitude of postbuckling state also increases. The dynamic thermal buckling load slightly changes when the
nonlinear foundation stiffness changes; however, the trend of the dynamic curve changes significantly.



Fig. 5 Dynamic mechanical and thermal responses of FG-GPLRC circular plates and spherical shells

5 Conclusions

A new semi-analytical approach to investigate the nonlinear dynamic response behavior of FG-GPLRC cir-
cular plates and spherical shells subjected to time-dependent radial pressure and thermal loads is presented in
this paper. The HSDT with a nonlinear viscoelastic foundation model is used to establish the expression of
the fundamental equations. The Lagrange function is applied to establish the total energy of structures, and
the potential function of viscous damping of the viscoelastic foundation is expressed using the Rayleigh dissi-
pation function. The motion equation of the structures can be formulated using the Euler–Lagrange function.
Budiansky–Roth criterion is applied to determine the dynamic thermal buckling loads of the structures. Some
important remarks are achieved from the numerical investigations as:

• The vibration amplitude of the plate largely decreases, and the vibration response form significantly changes
after a long enough period when the GPL mass fraction increases,



• Taking the case of zero nonlinear foundation coefficient as the reference, the positive nonlinear foundation
coefficient strongly reduces the vibration amplitude, whereas the negative nonlinear foundation coefficient
increases the vibration amplitude significantly.

• For both cases of FG-GPLRC plates and shells, as can be seen, when the amplitude of forced loads is small,
the attraction area is clearly shown. However, when the amplitude of forced loads increases, the attraction
area tends to split into two.

• The dynamic thermal buckling region can be observed for FG-GPLRC plates, and oppositely for spherical
shells.
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