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Abstract A novel lever-type stiffness-based grounded damping dynamic vibration absorber with grounded
stiffness is presented in this paper, and the analytical design parameters are derived in detail. At the first,
the equations of motion are established and the analytical solution of the primary structure displacement is
obtained. It is found that with the introduction of grounded stiffness, the coupled system could be unstable and
the stability condition is established. Then, the optimum stiffness ratio, the optimum damping ratio and the
optimum grounded stiffness ratio are expressed as the function of mass ratio and lever ratio by minimizing the
mean squared displacement response of the primary structure previously established. From the results analysis,
the system stability is verified, and it is found that with the change in the lever ratio when the mass ratio is
selected, there are three cases for the optimum grounded stiffness ratio, i.e., negative, zero and positive. Thus,
for the vibration reduction of primary structure, the proposed dynamic vibration absorber (DVA) with positive
grounded stiffness has the best control performance among the three cases. Compared with some typical
designed DVAs under harmonic and random excitation, the results show that with the proposed optimum DVA
the resonance amplitude and the frequency band of vibration reduction can greatly reduce and broadened,
respectively, and the random vibration mitigation can be greatly increased. According to the existing literature,
the proposed lever-type stiffness mechanism is justified, which means that the proposed DVA is practical and
can be used in many engineering applications.

Keywords Random excitation · Vibration reduction · H2 optimization · Negative stiffness · Dynamic
vibration absorber

1 Introduction

With the increasing demand for securing structures against external dynamic loads such as winds, earthquakes,
and ground movements, methods of controlling vibration of mechanical equipment are attracting more and
more attention. One of the proposed methods is based on the dynamic vibration absorber (DVA), which is
one of the common mass–spring–damper devices for controlling vibrations. Such device attached to primary
structure reduces its excessive vibrations by designing its parameters reasonably [1]. The damperless dynamic
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vibration absorber was first introducedmore than 100 years ago by [2]. However, this first DVA has only shown
its effectiveness in a narrow frequency range close to the natural frequency of the primary system. An improved
version of DVA including damper in parallel with the spring called Voigt-type DVAwas then proposed by Den
Hartog andOrmondroyd, which could suppress the amplitude of the primary system in a wider frequency range
[3]. Furthermore, for an optimal work of this device, the fixed point theorywas proposed for the first time to find
the tuning parameters of the Voigt-type DVA, which has become a classic conclusion in vibration engineering
textbooks [4, 5]; in addition, the equal modal damping design has been proposed [6]. Subsequently, fixed point
theory was used to design a wider variety of DVA layouts. A first variety of DVAwas proposed in [7, 8], which
constituted a three-element vibration absorber (TEVA)whose optimization plan was schematized. Comparison
of control performance against Voigt-type DVA gave advantages to TEVA in vibration reduction effect. For
even better control performance, DVA with grounded damper configuration called grounded DVA has been
proposed by [9]. The las variety of DVAwas completed in [10] by proposing aMaxwell viscoelastic model that
replaces the grounded damper in [9], resulting in a grounded three-element DVA whose optimal parameters
were found. However, it is found in the performance analysis of the DVAs mentioned above that they require
a large mass ratio between the DVA mass and the controlled primary structure mass, which complicates the
installation and creates a conflict with the architecture of the controlled structure. In addition, work in [11] has
shown that a practical mass ratio must be less than 25%, which limits the performance of the above DVAs.
Considering the above, improving the performance of DVAs could take into account the introduction of new
mechanical elements. Therefore, adaptive passive, semi-active, smart dynamic vibration absorbers have been
proposed by [12].

Research on studying the effect of vibration reduction through negative stiffness components has been
intensively developed in recent years in a wide scope of application due to their advantages of large bearing
capacity, small deformation, and good controllability [13–16]. The negative stiffness element has also been
introduced in the whole aforementioned variety of DVAs [17–20]. Moreover, in recent work, the three-element
DVAbased on the standard linear solid rheologicalmodelwith negative stiffness has been proposed for effective
vibration reduction of vibrating primary system [21]. Based on the optimization results according to the fixed
point theory [5], it was found that DVAs with reasonable grounded negative stiffness elements by [17–20]
have better vibration reduction performance compared to original DVAs without negative stiffness element
by [5, 7–10]. In fact, negative stiffness can reduce the resonance peak of the primary structure response and
widens the vibration suppression bandwidth. However, there are major drawbacks associated with the use of
negative stiffness device; it is complex to achieve in practice, exhibits considerable nonlinearity, make the
system unstable and further amplifies the primary structure response at low-frequencies region. Meanwhile,
improved negative stiffness devices are produced in [22–25].

The concept of lever mechanismwas first introduced by [26, 27] who developed amechanical device called
dynamic anti-resonant vibration isolator (DAVI) to improve the control performance and stability ofmechanical
structures. Thus, anti-resonance in DAVI has been exploited in the aerospace industry for applications such as
isolating the fuselage of a helicopter against vibrations caused by its rotors, as described in [28]. It should be
noted that the DAVI acts as a vibration isolator while DVA acts as vibration absorber. However, DVAI allowed
to introduce for the first time the concept of inerter device which was later better designed in [29] and used by
[30] to design inerter-based absorbers. An example of the DAVI concept can be schematically found in [31].
Although the DAVI system is widely used in industrial and other applications [32–34], the lever mechanism
has recently been introduced into DVAs to improve vibration reduction effect of primary structure. First, the
introduction of grounded positive stiffness in the Ren’s configuration, coupled with lever mechanism showed
better control performance when the inertia of the lever-DVA reaches a certain value [35]. The benefice control
performance of the proposed different versions of DVA based on the lever mechanism and grounded stiffness
including the properties of the two end of inerter device was investigated in [36, 37]. Due to the introduction
of lever mechanism into DVAs as in the preview works, there are some major drawbacks as the inter-layer
installation and the location dependence, and the DVA and the controlled structure operate as two adjacent
structures resulting in operational complexity and require large installation space. Moreover, according to the
equations in [35–37], the effect of the lever mechanism is to amplify the mass of the DVA, which leads to
improved vibration control. However, the current state of the art of DVA systems does not include the use of a
lever-type stiffness mechanism in place of the grounded damping DVAmain spring with grounded stiffness to
improve overall capacity system vibration reduction, including providing closed-form analytical expressions
for design parameters under random excitation.

The main objective of this work is to evaluate the effectiveness of a lever-type stiffness-based grounded
damping dynamic vibration absorber with grounded stiffness connected to a single-degree-of-freedom primary
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Fig. 1 The schematic model of a SDOF primary structure controlled with the proposed GL-grounded type DVA model

structure, thus filling the aforementioned gap in the literature. The lever mechanismwas introduced to form the
lever-type stiffness, which does not modify the installation space of the DVA, only the stiffness characteristics.
The closed-form equations for the optimal design parameters of the proposed DVA are derived using the H2
optimization method [38–42] considering the primary system under random excitation. It is found that with the
change in the lever ratio for a fixedmass ratio, there are three cases of values for the optimal grounding stiffness
ratio, i.e., negative, zero and positive. For these three value cases, numerical simulation is performed to further
ensure the accuracy of the closed-form analytical equations for the optimal design parameters. Analysis of the
effect of the lever ratio shows that it modifies the response characteristics of the primary structure. Therefore,
comparedwith other DVAs, the proposedDVA in all three cases significantly improves the control performance
over a wider band. Furthermore, the positive optimal grounded stiffness will make the maximum displacement
of the primary structure to a level lower than its static response without DVA. These results constitute an
important interest for the fields of application in engineering.

The rest of paper is organized as follows. In the next section, mathematical model of the proposed DVA is
presented and the corresponding displacement transfer function of the primary structure is derived, including
the stability analysis of the coupled system. In Sect. 3, the H2 optimization procedure is conduced and the
closed-form analytical equations for the optimal design parameters are derived, including the results analysis.
In Sect. 4, the performance comparison is performed with respect to others typical DVAs in frequency domain
and time domain, respectively, and some conclusions are drawn in Sect. 5.

2 Mechanical model

The novel lever-type stiffness-based grounded damping dynamic vibration absorber with grounded stiffness
(hereinafter referred to as GL-grounded type DVA model) is proposed here to improve the displacement
vibration reduction of a single-degree-of-freedom (SDOF) primary structure, as displayed in Fig. 1. For this
purpose, the governing equations of the SDOF primary structure equippedwith the proposed vibration absorber
are first derived in this section; then, the dimensionless transfer function relevant to the primary structure
displacement is established for the design optimization. Because the coupled system in Fig. 1 could be unstable
with the introduction of negative stiffness, the stability bounds will be established from the transfer function.

2.1 Governing equations of a SDOF structure

A SDOF primary structure with mass m1, stiffness k1 is considered in Fig. 1. To reduce its displacement
vibrations, the proposed vibration absorber is attached, as shown in Fig. 1. However, the proposed DVA is
composed of a mass m2 connected to the primary structure by the lever-type stiffness with spring k2 and then
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to the ground by a parallel stiffness spring k3 and dashpot c2. According to the lever mechanism in Fig. 1, the
distance between the attached points N and O is noted as �a while the distance between the attached points N
and M is the length rod of the lever denoted as �b. The lever rod can pivoted at point O. Thus, it can be seen
that only the end of the spring k2 fixed to the lever at pointM can be stretched or compressed according to the
relative displacement between the primary massm1 and secondary massm2, so that the stiffness characteristics
of the spring k2 are modified to improve the vibration reduction performance. According to the results in [26,
27, 43], it can be concluded that the proposed vibration absorber with lever mechanism can be easily achieved
and used in the required engineering structures of the fields of vibration control.

Considering the SDOF primary structure under force excitation f (t) as presented in Fig. 1, the displace-
ments of the primary structure and the DVA are denoted by x1 and x2, respectively. Thus, when the small
engineering displacements are considered, the terminal of the spring k2 atM performs only the linear vertical
displacement expressed as [37, 43]

x0 � Lx1 − (L − 1)x2 � L(x1 − βx2) (1)

where L � �b/�a is the lever ratio and β � (L − 1)/L denotes the introduced parameter for simplification.
It can be seen from Eq. (1) that the corner displacement x0 is related to the displacement x1 and x2, which
means that the coupled system in Fig. 1 has two degrees of freedom denoted by x1 and x2. Neglecting the
friction in the motion procedure and applying the energetic method based on the Lagrange formalism [44], the
differential equations of motion for the coupled system in Fig. 1 can be established as follows:{

m1 ẍ1 + L2k2(x1 − βx2) + k1x1 � f (t)
m2 ẍ2 + c2 ẋ2 + L2βk2(βx2 − x1) + k3x2 � 0

(2)

2.2 The dimensionless transfer function

μ � m2

m1
, α � k2

k1
, ξ � c

2m1ω1
, n � k3

k1
, ω1 �

√
k1
m1

, q � ω

ω1
(3)

The following parameters transformation are considered in order to normalize the differential equations of
motion in Eq. (2), that is where the nomenclature of the above parameters is presented in Table 1. Furthermore,
considering the resizing time as t � τ/ω1 one can get d/dt � ω1(d/dτ ) and d2/dt2 � ω2

1(d
2/dτ 2), and the

normalized equations of motion can be derived as{
ẍ1 + L2α(x1 − βx2) + x1 � f (τ )k−1

1
μẍ2 + 2ξ ẋ2 + βL2α(βx2 − x1) + nx2 � 0

(4)

By applying the Laplace transform of Eq. (4), the normalized form of the differential equations of motion
can be expressed in the frequency domain as follows:{

s2X1 + L2α(X1 − βX2) + X1 � f (τ )k−1
1

μs2X2 + 2ξsX2 + βL2α(βX2 − X1) + nX2 � 0
(5)

where s � jq is the dimensionless complex frequency and j � √−1 the imaginary unit number. X and F
are the displacements and force amplitude, respectively. Denoting by H( jq) � K X1/F , the dimensionless
transfer function of the force excitation to the primary structure displacement, and solving Eq. (5) with respect
to X1, one can get

H( jq) � k1X1

F
� b2( jq)2 + b1( jq) + b0

a4( jq)4 + a3( jq)3 + a2( jq)2 + a1( jq) + a0
(6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a4 � μ
a3 � 2ξ
a2 � αβ2L2 + L2αμ + μ + n b2 � μ

a1 � 2L2αξ + 2ξ b1 � 2ξ
a0 � αβ2L2 + L2αn + n b0 � αβ2L2 + n

(7)

where the corresponding values of the coefficients in the numerator and denominator of the above transfer
function can be listed as follows:
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Table 1 Nomenclature

Symbols Representative meanings

m1 The mass of the primary structure
k1 The linear stiffness coefficient of the primary structure
m2 The mass of the vibration absorber
k2 The linear stiffness coefficient of the lever-type stiffness
c2 The damping coefficient of the vibration absorber
k3 The additional grounded stiffness coefficient of the vibration absorber
x1 The displacement of the primary structure
x2 The displacement of the bloc mass of the vibration absorber
f(t) The external force excitation
μ The mass ratio
α The stiffness ratio of the vibration absorber
n The adding grounded stiffness ratio
ξ The damping ratio of the vibration absorber
ω The frequency of the force excitation
ω1 The natural frequency of the primary structure
q The normalized input frequency
X1, X2 The Laplace transform of the displacement x1, x2 and
F That of the force excitation f(t)

2.3 The stability analysis

The grounded spring k3 is introduced into the vibration absorber in order to improve the control performance.
However, if the stiffness value of the grounded spring k3 becomes negative, the coupled system in Fig. 1 can
become unstable for an inappropriate negative stiffness value. Therefore, considering negative stiffness value
of the grounded spring k3, the limits of the stability range within which the coupled system remains stable must
be specified. According to the transfer function expressed in Eq. (6), the polynomial characteristic equation of
the coupled system can be derived as

s4 + (a3/a4)s
3 + (a2/a4)s

2 + (a1/a4)s + (a0/a4) � 0 (8)

Thus, the coupled system is asymptotically stable according to the Routh–Hurwitz stability criterion
[45–47], if and only if all the eigenvalues of Eq. (8) lie in the half of the complex plan and all the polynomial
coefficients of the characteristic equation are positive. This stability criterion can be resumed according to the
following necessary conditions⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(a3/a4) > 0, (a2/a4) > 0

(a1/a4) > 0, (a0/a4) > 0

(a3/a4)(a2/a4) > (a1/a4)

(a3/a4)(a2/a4)(a1/a4) > (a1/a4)
2 + (a3/a4)

2(a0/a4)

(9)

n > − αβ2L2

1 + L2α
� β2

(
−1 +

1

1 + L2α

)
(10)

Using Eqs. (7) in (9), the stability constraint on the possible stiffness value of the grounded spring k3 has

been established as where the lower bound on grounded spring stiffness value is nlw � − αβ2L2

1+L2α
for given

value of stiffness ratio α and lever ratioL . Furthermore, as 0 < 1
1+L2α

< 1 andβ < 1, it can be concluded
from Eq. (10) that the lower bound on the grounded stiffness ratio value n should be always greater than -1 for
any positive stiffness ratio α and lever ratioL . Therefore, the absolute value of stiffness value of the grounded
spring k3 should be always inferior to that of the primary structure k1. In the following section, the stiffness
ratio α can be expressed as a function of mass ratio μ and lever ratioL , which means that the effective lower
bound on grounded stiffness ratio n can be further derived as a function of mass ratio.

3 H2 optimization of the design of the proposed DVA

The H2 optimization is used to derive the optimal design parameters of the vibration absorbers when the
controlled primary structure is considered under random excitation. The objective is to minimize the mean
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squared displacement or the standard deviation (calledH2-norm) of the primary structure for overall frequencies
[38–42]. First, in order to perform the H2 optimization, the performance measure that is the mean squared
displacement value of the primary structure should be established.

3.1 H2 performance measure formulation

σ 2 � E[x21 ]

2π S f ω1/k21
�

〈
x21
〉

2π S f ω1/k21
(11)

considers that the primary structure is under randomwhite noise force excitation process f (t) with uniform
power spectral density (PSD), that is, S f (ω) � S f at the whole excitation frequency range ω ∈ �+. The input
PSD is therefore SX1@ f � S f |H ( jω)|2@ f . Thus, the performance measure formulation is to be minimized,

i.e., the dimensionless squared displacement variance σ 2 has been formulated as

〈
x21
〉 �

∫ +∞

−∞
S f |H ( jω)|2dω � S f ω1

k21

∫ +∞

−∞
|H ( jq)|2dq (12)

where the denominator 2π S f ω1/k21 is introduced to derive the dimensionless displacement variance of the
primary structure. It should be noted that E[ ] and 〈〉 represent the ensemble and the time averages operator,
respectively. By using the last symbol 〈〉, the derived expression of the mean square displacement response of
the primary structure is formulated as.

Substituting Eq. (12) in Eq. (11), the dimensionless mean squared value of the primary structure displace-
ment, which represent the performance measure formulation, can be expressed as

σ 2 � 1

2π

∫ +∞

−∞
|H ( jq)|2dq (13)

To compute the integral (13), the following formula by Gradshteyn and Ryzhik [48] is used. Therefore,
because the transfer function expression is formulated in the form of Eq. (6), the integration problem in Eq. (13)
has been derived as

∫ +∞

−∞
|H( jq)|2dq � π

[ (
b20/a0

)
(a2a3 − a1a4) + a3

(
b21 − 2b0b1

)
+a1

(
b22 − 2b1b3

)
+
(
b23/a4

)
(a1a2 − a0a3)

]

a1(a2a3 − a1a4) − a0a23
(14)

Then, substituting Eqs. (7) in (14) and combining with Eq. (13), the resulting analytical expression of
the mean squared response of the primary structure displacement, considered as the performance measure
formulation in this paper, has been derived as

σ 2 � F(μ,α, n)ξ +
G(μ,α, n)

ξ
(15)

where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F(μ,α, n) � 1

L4β2α2

G(μ,α, n) �

[
L6α3β6 + L4((3n − 2μ)β4 +

(
μ2 − 2μn

)
β2 + μ2n

)
α2

+L2(μ − n)
(
β2μ − 3β2n + 2μn

)
α + n(μ − n)2

]

4L4α2β2
((
L2β2 + L2n

)
α + n

)
(16)
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Fig. 2 Mean squared displacement contours of the primary structure of lever-type stiffness-based grounded damping DVA

3.2 Optimal parameters derivation

The H2 performance measure formulation as the mean squared displacement response of the primary structure
has been derived in Eq. (15) according to Eq. (16). However, from the mean squared value expression in
Eq. (15), the extreme value theory ∂σ 2/∂ξ � 0 can lead to the minimum displacement variance of the primary
structure and its corresponding optimal damping ratio as follows

σ 2
opt � 2

√
G(μ,α, n)F(μ,α, n) (17)

ξopt �
√
G(μ,α, n)

F(μ,α, n)
(18)

αmin,max �
(
6β2 − 3μ ± √

4β4 − 36μβ2 + 9μ2
)
μ

4β4L2 (19)

According to Eq. (17), the mean squared value is related to the three design parameters {μ, α, n}, which
mean that themean squared value can be furtherminimized. However, when considering that themass ratioμ is
given in advance, the resulting problem is to optimize the design parameters {α, n} by simultaneously solving
the extreme conditions ∂σ 2/∂α � ∂σ 2/∂n � 0. By performing this, it can be found that it is not possible
to derive the optimal analytical expressions for the design parameters {α, n} that minimize the mean squared
value in Eq. (17). In other words, there are no optimal solutions for the design of the lever-type stiffness-based
grounded damping DVAwith grounded stiffness (GL-grounded type DVAmodel) when we choose to optimize
the parameters {α, n}. In the particular case where n � 0, the extreme condition ∂σ 2/∂α � 0 leads to two
positive and meaningful solutions for α as follows.

which are relevant to two sub-optimal designs of the lever-type stiffness-based grounded damping DVA
model without grounded stiffness. As a result, the above local minimum and maximum of stiffness ratios are
practical according to the following conditions on the mass ratio μ and lever ratio L given by Eq. (20) as

L > L lw � 2

2 −
√(

12
√
2 + 18

)
μ

, μ <
4

12
√
2 + 18

≈ 0.114 (20)

The dimensionless mean squared displacement of the primary structure of lever-type stiffness-based
grounded damping DVA is calculated from Eq. (15) with the grounded stiffness ratio n � 0, lever ratio
L � 2 and mass ratioμ � 0.1, and the results are displayed in Fig. 2. No global minimum of the mean squared
displacement exists and the local minimum and maximum points of the mean squared displacement of the
primary structure related to the local minimum and maximum of stiffness ratios can be found in Fig. 2 for
illustration.

According to Eq. (20), it is found that the lower bound of the lever ratio for a practical H2-optimized
lever-type stiffness-based grounded damping DVA design is related to the mass ratio, which is convenient for
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Fig. 3 The relationship between mass ratio and lower limit on lever ratio for practical sub-optimal H2-optimized lever-type
stiffness-based grounded damping DVA

μ < 0.114. However, according to Fig. 3, the lower bound on the lever ratio for a practical H2-optimized
lever-type stiffness-based grounded damping DVA design quickly becomes large with increasing mass ratio
in the range μ < 0.114. Thus, according to the results in Eq. (19), and the conditions described by Eq. (20),
there is no a global solution for the H2-optimized lever-type stiffness-based grounded damping DVA design
when we choose to optimize the parameters {ξ , n}. In addition, from Eq. (20) and Fig. 3, it can be concluded
that a practical H2-optimized lever-type stiffness-based grounded damping DVA design with a sub-optimal
stiffness ratio α is useless for mass ratios μ > 0.114 and requires a large lever ratio (for example, when
μ � 0.1, the lever ratio should be greater than 15.4), which is not practical in terms of mechanization and
installation space. From the above, it is relevant to find a global solution for optimal design of the lever-type
stiffness-based grounded damping DVA. Note also that we did not obtain solutions for the optimal design
of the lever-type stiffness-based grounded damping DVA when it comes to optimized parameters {α, n} that
minimize the mean squared value in Eq. (17). Thus, in the following, an approach to derive global solutions of
the design of lever-type stiffness-based grounded damping DVA with grounded stiffness is discussed, which
can be also applied for the design of the lever-type stiffness-based grounded damping DVA without grounded
stiffness.

To derive the global optimal design of the proposed vibration absorber in this paper with lever-type stiffness
and grounded stiffness, we first assume that the stiffness ratio α is given in advance. As result, the objective
becomes to find the optimal values of μ and n which further minimize the mean squared displacement value
in Eq. (17). Thus, to verify the optimization process, the variation of the mean squared displacement value is
investigated in three-dimensional surface plots as shown inFig. 4, for stiffness ratioα � 0.05 and lever ratioL �
2. From Fig. 4, it can be found that the mean squared displacement of the primary structure with attached
lever-type stiffness-based grounded damping DVAwith grounded stiffness has a global minimum value, which
demonstrates that the global solutions of the H2 optimal lever-type stiffness-based grounded damping DVA
with grounded stiffness design can be derived by optimizing the parameters {μ, n} for minimizing the mean
squared value in Eq. (17). Therefore, the adopted optimization process in this paper is correct, which can
be achieved by applied the extreme value theory from the mathematical principle. Thus, by differentiating
Eq. (17) with respect to mass ratio μ and grounded stiffness ratio n, respectively, the result equal to zero can
be presented as.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂σ 2

∂μ
� −

[
L2αβ2 − L2αμ − μ + n

]
2L4α2β2ξopt

� 0

∂σ 2

∂n
�

[
L8α4β6 − 2L6α3β6 + L4(2β4μ − n

(
2β2 + n

)(
3β2 − 2μ

))
α2

+2L2n
(
2μβ2 − n

(
3β2 − 2μ + n

))
α + 2n2(μ − n)

]

−4
(
L2αβ2 + L2αn + n

)2
L4α2β2ξopt

� 0

(21)
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Fig. 4 Three-dimensional surface plots of mean squared displacement of the primary structure with attached lever-type stiffness-
based grounded damping DVA with grounded stiffness varies with the mass ratio and the negative stiffness ratio at the stiffness
ratio α � 0.05 and lever ratio L � 2

By solving Eq. (18) as a set of two parametric equations simultaneously, the optimal mass ratio and the
optimal grounded stiffness ratio can be derived and presented in the analytical mathematical form as the
functions of stiffness α and lever ratio L , respectively, as

μopt � 2L4α2β2

(
L2α + 1

)2 (22)

nopt � L2αβ2
(
L2α − 1

)
L2α + 1

(23)

Furthermore, the optimal grounded stiffness ratio can be expressed as a function of its lower limit as
nopt � nlw

(
1 − L2α

)
. Therefore, as it is assumed that

∣∣1 − L2α
∣∣ < 1 for given {α, L}, it can be concluded

that nopt > nlw. This result means that the H2-optimized dynamic vibration absorber with optimal grounded
stiffness ratio expressed in Eq. (23) remains stable for given any value of stiffness ratio and lever ratio so
that

∣∣1 − L2α
∣∣ < 1. In these conditions, by using Eqs. (22) and (23) into Eqs. (17) and (18), respectively, the

resulting optimal minimum mean squared displacement value of the primary structure and the corresponding
optimal damping ratio can be derived, respectively, as follows

σ 2
opt �

√
4(

L2α + 1
)3 (24)

ξopt �
√√√√ β4L8α4(

L2α + 1
)3 (25)

In practice, themass ratioμ cannot exceed the upper limit of the practical range required by the engineering
applications. Suppose that μup is the upper limit of the mass ratio below which the lever-type stiffness-
based grounded damping DVA with grounded stiffness model can work according to the practical engineering
requirements. Therefore, the practical operating range of the stiffness ratio α can be derived with respect to
the upper value μup by setting μopt ≤ μup. Accordingly, one can get

0 < α ≤
√
2β2μup + μup(
2β2 − μup

)
L2

(26)

In the parameters optimization process of vibrations absorbers, including the H2 optimization method of
DVAs [8, 49], the mass m2 of the DVA, that is, the mass ratio μ, is generally known in advance. This means
that the optimal design parameters of the vibration absorber are more practical when expressed as a function
of mass ratio [3–5, 7–9, 38–42]. Therefore, in the following section, a reformulation process of the optimal
parameters is applied.
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Table 2 The formulas of the H2-optimized DVAs models in this paper

Model of DVA Stiffness ratio αopt Damping ratio ξopt Grounded stiffness ratio nopt

Voigt-type DVA μ(μ+2)
2(μ+1)2

√
μ3(3μ+4)
16(μ+1)3

–

Grounded type DVA μ
1−μ

√
μ3

4(1−μ)2
–

NS-grounded type DVA
√
2μ+μ
2−μ

√
(
√
2μ+μ)

4

(
√
2μ+2)

3
(2−μ)

μ−(1−μ)
√
2μ

2−μ

GL-grounded type DVA
√

2μβ2+μ

(2β2−μ)L2

√
β
(√

2μβ2+μ
)4

(
√
2μ+2β)

3
(2β2−μ)

(
μβ+

(−β2+μ
)√

2μ
)
β

2β2−μ

3.3 Reformulation of optimal parameters versus mass ratio

αopt �
√
2β2μ + μ(

2β2 − μ
)
L2

(27)

Suppose that the optimal mass ratio μopt in the practical engineering situation should be equal to μ(that is
μopt � μ) withμ ≤ μup. According to Eq. (22), it can be found that the given optimal mass ratioμ is related to
only one positive value of the stiffness ratio α. In these conditions, one can establish that the resulting stiffness
ratio α from Eq. (22) expressed as a function of mass ratio μ and lever ratio L corresponding to the optimal
stiffness ratio αopt. Accordingly, by setting μopt � μ in Eq. (22), one can get.

Then, by substituting the obtained optimal stiffness ratioαopt in Eqs. (23)–(25), the global optimal analytical
solutions to the design parameters of the proposed dynamic vibration absorber can be established as a function
of mass ratio μ and lever ratio L and summarized in Table 2. From Table 2, it can be seen that the design
parameters values of the proposed DVA are always positive and practical for any lever ratio L > 1 and mass
ratio μ < 0.25, which covers the most engineering situation in practice. Moreover, the H2-optimized lever-
type stiffness-based grounded damping DVA with grounded stiffness has the global minimum mean squared
displacement according to Fig. 4, which demonstrated the correctness of the optimization process. Indeed,
according to the current results based on the optimized parameters

{
ξopt, αopt

}
, the H2 optimal design of

lever-type stiffness-based grounded damping DVA is no longer limited in the range of mass ratio μ < 0.114
as previously shown in Eq. (20), but can be used for any mass ratio μ < 0.25 and lever ratio L > 1. From the
above results, the contribution of this paper is significant.

For other contributions in this paper, it should be noticed that the proposed dynamic vibration absorber
model (hereinafter referred to as GL-grounded type model) can be degenerated into two typical DVAs. When
L � β � 1, the optimal results for the grounded damping DVA with negative stiffness in Fig. 5a (hereinafter
referred to as NS-grounded type model) can be derived. Furthermore, when L � β � 1, and k3 � 0, the
optimal results for the grounded damping DVA in Fig. 5b (hereinafter referred to as Grounded type model)
can be derived. Moreover, the optimal design parameters of the two DVAs in Fig. 5a and b based on the
H2 optimization are derived for the first time in this paper. The Voigt-type DVA (hereinafter referred to as
Voigt-type model) is introduced here in Fig. 5c for comparison purpose. However, based on the optimization
process in this paper, the optimal parameters of these DVAs are summarized in Table 2.

3.4 Results analysis

The results analysis is carried out for theGL-grounded typeDVA. Its optimal design parameters are summarized
in Table 2, and the mean squared displacement of the primary structure with respect to the mass ratio μ can be
found according to Eqs. (24) and (27). To study the effect of different lever ratios, the mass ratio varies from
0 to 0.2, which is suitable for the mass ratio range of practical engineering. Thus, as the mass ratio increases
within the range of practical values for a select lever ratio, the optimal stiffness ratio αopt and the optimal
damping ratio ξopt all increase while the grounded stiffness ratio nopt first decreases and then increases as
shown in Fig. 6a, b and c, respectively. According to Fig. 6, the increase in the values of the optimal design
parameters becomes more significant when the mass ratio takes larger values. Furthermore, for a given mass
ratio, increasing the lever ratio will decrease both stiffness ratios and damping ratio as shown in Fig. 6a, b and
c, respectively. As displayed in Fig. 6, the effect of the leverage ratio on the optimal design parameters is more



Analytical H2 optimization for the design parameters…

Fig. 5 Three dynamic vibration absorbers. a Grounded damping type DVA with negative stiffness. b Grounded damping type
DVA and c Voigt-type DVA

significant as the mass ratio is higher. However, as shown in Fig. 6b, small mass ratios are more suitable to
avoid high damping ratios.

To validate the results, the optimal grounded stiffness ratio nopt must verify the stability condition given
by Eq. (10). To examine the latter case, the difference nopt − nlw is calculated as follows

nopt − nlw � μβ
(
2β +

√
2μ

)
2
(
2β2 − μ

) (28)

From Eq. (28), it is established that the optimal grounded stiffness ratio nopt guarantees the stability of
the coupled system in Fig. 1 under conditions that nopt > nlw; that is 2β2 − μ > 0, which leads to L > 1/(
1 − √

μ/2
)
for given mass ratio μ. Furthermore, regarding the optimal grounded stiffness ratio expression

nopt in Table 2 relevant to theGS-grounded dampingDVA, an interesting phenomenon can be observed. Indeed,
when the lever ratio is chosen, the increase in the mass ratio causes the optimal grounded stiffness ratio nopt to
pass through negative values, a zero value and positive values, as shown in Fig. 6(c). That is to say, the optimal
grounded stiffness ratio can be negative, zero or positive, which can mathematically be illustrated as follows⎧⎨

⎩
nopt < 0, if L > 1/

(
1 − √

2μ
)

nopt � 0, if L � 1/
(
1 − √

2μ
)

nopt > 0, if 1/
(
1 − √

μ/2
)

< L < 1/
(
1 − √

2μ
) (29)

where L lw � 1/
(
1 − √

μ/2
)
is the lower limit on the lever ratio derived from equations

{
ξopt, αopt

}
> 0.

Furthermore, it should be noticed that the optimal grounded stiffness ratio nopt is expressed with only one
formula but can present three different cases of value, that is, negative, zero and positive. For convenient, these
three cases are referred to in order as case 1, case 2 and case 3 in the following section. Considering Eq. (29),
the value of lever ratio L for given mass ratio μ will determine each case.

The effect of lever ratio on the mean squared displacement reduction performance of the primary structure
is studied in Fig. 6d, with the mass ratio varying from 0 to 0.2 to cover the range of engineering practice. From
this figure, it can be seen that the response value is even weaker as the lever ratio is smaller. However, the lever
ratio must remain superior to unity (L > 1) at a meaningful value.

When the H2 design of GL-grounded dampingDVA is used to reduce the frequency response of the primary
system under harmonic excitation, the damping effect of the above three grounded stiffness ratio cases can be
compared. Figure 7 illustrates this comparison for a mass ratio μ � 0.1. The parameters selected are shown
in Table 3 for each case. The numerical solution is established using the fourth-order Runge–Kutta method.
Case (a) denotes the analytical solution, and case (b) illustrates the numerical solution. From Fig. 7, it can be
seen that in the three cases, the analytical and numerical solution curves of the primary structure completely
consistent, which demonstrated the correctness of the derived analytical solution. Furthermore, from Table 3
and Fig. 7, it can be seen that the DVA gives best control performance in case 3 and worst in case 1. This does
not mean that positive stiffness can be chosen as grounded stiffness under any conditions. There are limitations
on the lever ratio. For further explanation, the response value of the mean squared displacement of the primary
structure in Fig. 6d decreases as the lever ratio becomes smaller, which is suitable for the effect of positive
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Fig. 7 The amplitude–frequency response curves in three different cases of nopt

Table 3 The specific parameters of the GS-grounded damping LDVA in different case of nopt

Cases Mass ratio μ Lever ratio L Stiffness ratio αopt Damping ratio ξopt Grounded stiffness ratio nopt

Case 1 0.1 2 0.2023 0.0672 − 0.0214
Case 2 0.1 1.809 0.3056 0.0707 0
Case 3 0.1 1.5 0.9057 0.0871 0.07736

grounded stiffness ratio. However, according to the lever mechanism in Fig. 1, the lever ratio must remain
greater than unity (L > 1), which is theoretically confirmed by the lower limit L lw � 1 /

(
1 − √

μ/2
)
set on

the lever ratio.

4 Performance comparison

To illustrate the vibration reduction performance of the DVA proposed in this paper in Fig. 1, Fig. 5 shows three
compared DVAs. The two first DVAs in Fig. 5 are optimized for the first time in this paper, and the optimal
parameters are presented in Table 2. The third DVA in Fig. 5 is the Voigt-type DVA with the parameters
presented in the literature [49] and in this paper are given in Table 2.

4.1 The response of the primary structure to harmonic excitation

In order to compare the control performance under harmonic excitation, the optimal design parameters based
on the H2 optimization are considered for all the DVAs, and the value of the mass ratio is chosen as μ � 0.1.
From this value, the corresponding optimal parameter values of the compared DVAs in Fig. 5 can be calculated
according to Table 2, and those of the presented DVA in this paper are displayed in Table 3 in the three different
cases of lever ratio, that is, the three cases of grounded stiffness ratio. The normalized amplitude–frequency
curves are compared in Fig. 8. Two performance criteria are investigated from this figure, which is the peak
amplitude reduction and the frequency suppression bandwidth of vibration suppression, the definition of
which is illustrated in Fig. 8. Accordingly, their values related to each DVA are summarized in Table 4.
Based on this table, the proposed H2-optimized GL-grounded type DVA has the superior performance in
vibration control than other H2-optimized DVAs displayed in Fig. 5, which is demonstrated by the broadest
suppression bandwidth and theminimal peak amplitude of controlled primary structure. To quantify this control
performance, the vibration reduction percentage γPA(%) of the response peak amplitude and the improvement
suppression bandwidth percentage γSB(%) by the H2-optimized GL-grounded type DVA with respect to other
H2-optimized DVAs in Fig. 5 can be described by the following relationships

γPA(%) �
(

(PA)other type − (PA)GL - type

(PA)other type

)
× 100 (30)
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Fig. 8 The amplitude–frequency response curves of the compared H2-optimized DVAs-equipped primary structure

Table 4 Frequency bandwidths of vibration reduction and peak amplitude of the primary structure with attached four different
DVAs for μ � 0.1

Voigt type Grounded type NS-type GL-type (case 1) GL-type (case 2) GL-type (case 3)

Peak amplitude
(PA)

5.2366 4.3791 1.8528 1.3167 1.1924 0.7814

Suppression
bandwidth (SB)

0.2317 0.2500 0.6006 0.9180 1.114 1.6140

γSB(%) �
(
SBGL - type − SBother type

SBGL - type

)
× 100 (31)

Thus, when theH2-optimizedGL-grounded typeDVA is comparedwith theH2-optimizedVoigt-typeDVA,
grounded type DVA and NS-grounded type DVA, respectively, according to Table 4 and Eqs. (30) and (31),
one can get the following results. For peak amplitude reduction improvement, 74.86%, 69.93% and 28.93%
in case 1; 77.23%, 72.77% and 35.64% in case 2; and 85.08%, 82.16% and 57.83% in case 3 have been
obtained, respectively. For a broader suppression bandwidth improvement, 61.42%, 59.92% and 58.37% in
case 1; 61.42%, 59.92% and 58.37% in case 2; and 61.42%, 59.92% and 58.37% in case 3 have been obtained,
respectively. To understand these control performances, it can be seen that as the value of the lever ratio
increases, the resonant frequencies of the primary structure increase. This effect leads into a great vibration
suppression and a broader suppression bandwidth. It is also shown that the case 3 of the proposed DVA with
positive grounded stiffness has the best control performance when compared the DVAwith other typical DVAs
in Fig. 5 under harmonic excitation.

Next, the time history response analysis for swept sine force excitation signal is conducted to validate the
efficiency of the proposed DVA in three cases. Therefore, the considered swept sine force excitation signal is
presented in Eq. (32) as [50]

f (τ ) � sin

[
�1T

ln(�2/�1)
exp

(
τ

T
ln

(
�2

�1

))]
(32)

where � 1 is the initial frequency, � 2 is the final frequency and T is the time duration of the swept sine force
excitation. Because the resonant frequency of the primary structure is located between � ∈ [0.5, 1.5], � 1 �
0.5 and� 2 � 1.5 are selected for the swept sine excitation signal plotted in Fig. 9 considering T � 100. Based
on the fourth-order Runge–Kutta method under optimum parameters in Table 2 for μ � 0.1, the responses
of the primary structures can be derived. Here, we take the primary mass as m1 � 1 kg and stiffness of the
primary system as k1 � 100 N/m. For performed time histories, it is assumed that the structures are rest when
τ=0.

Figure 10 shows the normalized displacement response of the primary structure with absorbers. Clearly,
when the DVAs are used, the response of the primary system is mitigated, with a large reduction provided by
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Fig. 9 The swept sine force excitation signal generation

Fig. 10 Normalized displacement response of the primary system under swept sine force excitation

the proposed GL-grounded type DVA with positive grounded stiffness, as predicted by the previous compar-
isons. More precisely, the maximum dynamic response of the primary structure controlled by Voigt-type DVA,
grounded type DVA, NS-grounded type DVA and the GL-grounded type DVA in case 3 is evaluated 0.0478,
0.0463, 0.0185, 0.0078. The dynamic response of GL-grounded typeDVA-controlled primary structure is com-
pared to the other DVAs controlled primary structure. Accordingly, the dynamic response reduction capacity
of GL-grounded type is 83.68%, 83.15%, and 57.84% superior to Voigt type, grounded type, NS-grounded
type, respectively.

4.2 The response of the primary structure to random excitation

In many practical engineering situations, random response of primary structure to random force excitation
should be reduced. Accordingly, the control performance of the proposed H2-optimized GL-grounded type
DVA is investigated in comparison with other typical DVAs in Fig. 5 under random force excitation of primary
structure. For this purpose, in the following sections, two performance criteria are evaluated, namely the
analytical mean squared displacement reduction and the time history displacement response reduction of the
primary structure, respectively.
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Table 5 The analytical formulas of the minimal mean squared displacements

Voigt type Grounded type NS-grounded type GL-grounded type

σ 2
opt

√
3μ+4

4μ(μ+1)

√
(1−μ)2

μ

√
4(2−μ)3

(
√
2μ+2)

3

√
4(2β2−μ)

3

β3(
√
2μ+2β)

3

Table 6 The displacement variances and decrease ratios of the primary structures

DVA Models Displacement variances/m2 Decrease ratios (%)

Uncontrolled 1.6666 ×10−04 –
Voigt-type DVA 2.4121 ×10−05 85.53
Grounded-type DVA 2.1794 ×10−05 86.92
NS-grounded type DVA 9.9340 ×10−06 94.04
DVA in this paper
Case 1 6.1303 ×10−06 96.32
Case 2 5.2740 ×10−06 96.84
Case 3 2.3383 ×10−06 98.60

4.2.1 The analytical mean squared displacement reduction

The analytical minimal mean squared displacement responses of the considered DVAs in this paper are sum-
marized in Tables 5, under a white noise power spectrum of force excitation. These mean squared values are
compared in Fig. 11 for the practical mass ratio range of 0.01 ≤ μ ≤ 0.2. Only the case 3 of the proposed DVA
with positive grounded stiffness and lever ratio L � 1.5 is considered for this comparison. Thus, from Fig. 11a,
it can be seen that the proposed DVA has the smallest mean squared value with respect to the other DVAs. As
result, Fig. 11b shows that when the proposed DVA is used in the case 3, 82.40–98.94% improvement can be
obtained as compared with Voigt-type DVA, 81.79–98.70% improvement can be attained as compared with the
grounded type DVA, and 21.94–97.94% improvement can also be achieved as compared with the NS-grounded
type DVA. So, the proposed GL-grounded type DVA outperforms the considered DVAs in Fig. 5. However,
the above results can be more understand considering the time domain evaluation.

4.2.2 The time history response reduction

The performance in the time history response reduction of the primary structure is evaluated. For this purpose,
50 s random white noise excitation is constructed as the input force excitation by 5000 normalized random
numbers with zero mean value and unit variance. As a result, the time history of the random force excitation is
shown in Fig. 12. To examine the random response of primary structure, consider the primary mass as m1 � 1
kg and the primary stiffness as k1 � 100N/m[20, 21, 37]. Accordingly, the corresponding optimal parameter
values m2, ki (i � 2, 3) and c2 related to each DVA can be derived from the analytical results in Tables 2. For
the numerical simulation, the fourth-order Runge–Kutta method is used, and the time history response of the
primary structure without control is first presented in Fig. 13. However, for the controlled primary structure,
the time history response result for each DVA is displayed in Figs. 14–19. The displacement variances and
decrease ratios of the primary structure with different DVA are summarized in Table 6, including the case of
uncontrolled one.

From Figs. 13, 14, 15, 16, 17, 18 and 19 and Table 6, it is obvious that the proposed H2-optimized
GL-grounded type DVA in this paper shows superior random vibration reduction performance than other
H2 optimized DVAs in Fig. 5, even when the primary structure is under random force excitation. These
results also verify that the proposed H2-optimized DVA in different cases can greatly reduce the peak value
of the statistical response of the primary structure displacement in the whole-frequency range, especially
with the positive grounded stiffness. Thus, under random excitation, the lever-type stiffness-based grounded
damping dynamic vibration absorber with grounded stiffness displays superior performance, indicating that
the introduction of lever-type stiffness to the DVA model has a beneficial random vibration reduction effect.
Therefore, the combined application of the lever-type stiffness and positive grounded stiffness has a significant
vibration reduction effect and can provide ideas and beneficial choice for the design of vibration isolation
system in seismic protection of buildings, as illustrated in Fig. 20. Figure 20 is the simplifying representation,
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Fig. 12 The time history of the random force excitation

Fig. 13 The time history of uncontrolled primary structure

Fig. 14 The time history of the Voigt-type DVA-equipped primary structure
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Fig. 15 The time history of the grounded-type DVA-equipped primary structure

Fig. 16 The time history of the NS-grounded type DVA-equipped primary structure

where mtot is the total mass of building under dynamic load (F), and kb and cb are the stiffness and inherent
damping of the conventional base isolation, respectively.

5 Conclusion

Anovel lever-type stiffness-based grounded dampingDVAwith grounded stiffness is investigated in this paper.
The optimum stiffness ratio, the optimum damping ratio and the optimum grounded stiffness ratio are derived
as the function of mass ratio μ and lever ratio L by minimizing the mean squared displacement response of
the primary structure previously established. From the results analysis, it is found that with the change in the
lever ratio for fixed value of mass ratio, there are three different values for the optimum grounded stiffness
ratio, i.e., negative, zero and positive. The optimum grounded is negative if L > 1/

(
1 − √

2μ
)
, zero if L � 1/(

1 − √
2μ

)
, and positive if 1/

(
1 − √

μ/2
)

< L < 1/
(
1 − √

2μ
)
. Thus, the results shown that the smaller the

value of the lever ratio L , the better the vibration reduction of primary structure for the proposed DVA with
positive grounded stiffness. However, among the three cases of grounded stiffness, the negative stiffness has
the worst control performance, but under certain practical conditions, it would be necessary to choose it. By
comparing with respect to other designed DVAs in the same conditions as harmonic and random excitations,
the results shown that with the DVA in this paper, the resonance amplitude and the frequency band of vibration
reduction can greatly reduce and broadened, respectively, and the random vibration mitigation can be greatly
increased. According to the existing literature, the proposed lever-type stiffness mechanism is justified, which
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Fig. 17 The time history of the GL-grounded type DVA-equipped primary structure in case 1

Fig. 18 The time history of the GL-grounded type DVA-equipped primary structure in case 2

Fig. 19 The time history of the GL-grounded type DVA-equipped primary structure in case 3
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Fig. 20 The lever-type stiffness-based grounded damping dynamic vibration absorber with grounded stiffness as system isolation
for seismic protection of buildings

means that the proposedDVA is practical and can be used inmany engineering applications, as system isolation
for seismic protection of buildings.
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