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Abstract The thermomechanical buckling of imperfect sandwich plates made of functionally graded material
(FGM) is addressed analytically in this study. A novel hyperbolic four-variable integral shear deformation
theory is used to arrive at the solution. Sandwich plates come in two varieties: the first with homogeneous core
and FG face sheets and the second with the opposite. The displacement field is constructed using undetermined
integrals in order to reduce the number of unknown variables which consequently reduces the calculation time
unlike other similar theories. The proposed model does not require a shear correction factor and ensures the
free-stress at the upper and lower surfaces of structure. The materials properties of the structure are computed
via power-law function with considering the porosity effect which may appear during manufacturing due
to the difference in solidification temperature of the constituents (ceramic/metal). Four types of geometric
imperfection are examined with even, uneven, logarithmic uneven and linear uneven distributions. On the
basis of the minimal total potential energy concept, the governing equations are developed. The Navier’s
method is used to solve these equations for simply supported plates. The results of simply supported FGM
sandwich plates’ critical buckling load and temperature increment are contrasted with the available solutions
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in the literature. Even, uneven, linear uneven and logarithmic uneven models of distribution are taken into
consideration and studied in order to incorporate porosity in the FG face sheet and core. Investigation is
conducted into the effects of layer thickness, porosity models, porosity coefficients and geometrical parameters
on the thermomechanical buckling response of imperfect FG sandwich plates.

Keywords FG sandwich plates · Integral shear deformation theory · Thermomechanical buckling · Porosity
effect

1 Introduction

Sandwich structures are widely used in the aircraft, aerospace, flexible electronics and biomedical fields due
to their many advantages, including as their light weight and excellent bending stiffness [1]. A typical sand-
wich structure consists of a homogeneous core sandwiched between two homogenous face sheets. Sandwich
structures have recently become even more appealing as a result of the development of materials that are not
homogeneous, functionally graded materials (FGMs) for example, Garg et al. [2]. FGMs improve sandwich
structures’ mechanical and thermal properties by reducing interlaminar stresses and thermal stresses as choices
for the face sheets and/or the core [3–11]. Two forms of FG sandwich structures are primarily covered in the lit-
erature: Type-A sandwich structures have FGM face sheets and a homogeneous core [12–16], whereas type-B
sandwich structures do the opposite [17–19]. FGM sandwich structures provide exceptional potential in many
engineering domains, such as submarines, return capsules, planetary exploratory landers and so on [20, 21].
They combine the two benefits of sandwich structures and FGMs. Researchers have looked into the buckling
behavior of FG sandwich constructions as one of the important failure types. However, the majority among
them limited to FGM sandwich plates when subjected to thermal load or mechanical load [22–35]. There are
not many publications that take mechanical and thermal load into account. For an accurate prediction of the
buckling issue, it is crucial to take both into account because in actuality, sandwich plates made of FGMs
are regularly subjected to simultaneous mechanical and thermal loads. In order to investigate the type-A FG
sandwich plate’s buckle under mechanical load and uniform temperature escalation, the Galerkin-differential
quadrature method is used by Yang et al. [36] utilizing a high-order equivalent-single-layer (ESL) theory. Shen
and his colleagues [37, 38] investigated the buckling and post-buckling of type-A FG sandwich plates under
thermal and mechanical loads using a method called two-step perturbation. Yaghoobi and Yaghoobi [39] stud-
ied the effects of both thermal and mechanical buckling of type-A FG sandwich plates supported by an elastic
base using a first-order ESL theory. Using a first-order ESL theory, Tung [40] performed a thermomechanical
post-buckling analysis of FG sandwich plates under mechanical load and uniform temperature rise.

Inside the plate made of FGMs, micro-voids or porosities are created during the production. Different
temperatures of solidification for the components that make up FGMs result in the creation of porosity or
micro-voids inside the plate for the period ofmanufacturing. Porosities ormicro-voids in thematerials diminish
the plate’s mechanical rigidity, which could result in structural failure [41–43]. Investigating the structural
response of porous FG plates requires taking into account the plate’s porosity. To determine the structural
response of porous FG sandwich models, a variety of even and uneven porosity models have been proposed
and developed [44–46]. By taking into account in-surface curvilinear motions, Karami and Ghayesh [47]
investigate the vibrations of sandwich micro-shells with functionally graded porous face sheets. Hadji et al.
[48] have analyzed the naturel frequency of the natural frequency of the sandwich FG-plate comprised the
micro-voids in the face sheets and reposed on Winkler–Pasternak foundation with the help of the kinematic
of the third-order shear deformation theory. Ghazwani et al. [49] examined the impact of various distribution
of the porosity on the vibrational response of the FG-nanobeams based on Hamilton’s principle and Eringen’s
theory. The trigonometric shear deformation theory (TrSDT) is used by Avcar et al. [50] to examine the natural
frequency of perfect/imperfect FG sandwich beam reposed on two-parameter elastic foundation. The analysis
is performed for various edges boundary conditions. Avcar et al. [51] examined the flexural behaviors of FG
sandwich beam with including the porosity effect by modifying the rule of mixtures of material. The analysis
has performed via hyperbolic shear deformation theory. Also, the dynamic analysis of the FG- sandwich
beams is investigated based on the trigonometric shear deformation theory by Avcar et al. [52]. The effect
of the porosity volume fractions with different types of porosity distribution pattern is also discussed. The
effects of the boundary conditions, porosity volume fraction, lay-up scheme and side-to-thickness ratio on the
vibrational analysis of FG sandwich plates are studied analytical by Hadji and Avcar [53] by employing the
hyperbolic shear displacement theory. Also, recent various works are published to investigate the impact of
the geometric imperfection on the structures responses as [54–57].
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Fig. 1 Sandwich plates with FGM come in two varieties a FG face sheets and a homogenous core characterize type A. b FG core
and homogenous face-sheets for type-B

The literature research revealed that the scant amount of information that is currently accessible is insuffi-
cient for supplying a thorough familiarity with the behavior that buckles FG sandwich plates when subjected to
thermal and mechanical loads. There have not been any studies looking into the detrimental impact of voids on
the buckling behavior of FG sandwich plates. Based on the four integral shear deformation theory, a methodical
solution for the thermomechanical buckling analysis of imperfect FG sandwich plate has been performed in the
current work. The current displacements field is simplified and contains only four unknowns compared to five
or more in the similar models and ensures the zero shear stresses at the top and bottom surfaces of the FG sand-
wich plates based on the hyperbolic warping function in order to avoid the introduction of correction factors.
The effect of the porosity in the materials properties is considered because of the possibility of the appearance
of porosity in the micro-void form due to the difference of solidification temperature of the (ceramic/metal)
constituents in the manufacturing phase. Even, uneven, logarithmic uneven and linear uneven porosity distri-
butions are considered in order to include porosity in the sandwich plate’s upper and lower FGM faces and
core. This study also includes sandwich plates using type-A and type-B FGM. Considerations are made for
both a graded and a uniform temperature rise. Here, power-law FGM is adopted. Temperature independence of
the material characteristics is assumed [58, 59]. The Navier method is used to solve the governing equations,
which are derived from the idea of minimum total potential energy. By contrasting computed results with
those from the existing literature, the validity of the proposed theory was established. The thermomechanical
buckling of FG sandwich plates was computed numerically while taking into account the effects of geometrical
parameters, porosity coefficient and porosity distribution model.

2 Theoretical formulations

2.1 Geometry and concept of FG sandwich plate

2.1.1 Sandwich plate Type-A

Figure 1 illustrates how the face sheets in type-A sandwich plates are functionally graded across thickness
while the sandwich core is homogeneous. The type-A sandwich plate’s ceramic volume fraction is provided
by [24]:

V (1) �
(

z − h0
h1 − h0

)p

z ∈ [h0, h1]

V (2) � 1 z ∈ [h1, h2]

V (3) �
(

z − h3
h2 − h3

)p

z ∈ [h2, h3]

(1)
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2.1.2 Sandwich plate Type-B

As shown in Fig. 1, type-B sandwich plates have uniform face sheets but functionally graded core layers that
vary in thickness. The following is the amount of ceramics of sandwich plate type-B [24]:

V (1) � 0 z ∈ [h0, h1]

V (2) �
(

z − h1
h2 − h1

)p

z ∈ [h1, h2]

V (3) � 1 z ∈ [h2, h3]

(2)

2.2 Porosity distribution models

By employing Voigt’s model and taking into account the power law, the effective material parameters of the
FG sandwich plate are determined. Four even and uneven porosity models are taken into account in the current
work to account for the porosity in FG faces or cores of FG sandwich plates. The materials that work best for
porous FG sandwich plates are given below [60].

2.2.1 Even porosity (Imperfect I)

Type A Sandwich Plate

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�1(z) � (�c − �m)V (1) + �m(T ) − ξ

2
(�c + �m)

�2(z) � (�c − �m)V (2) + �m(T )

�3(z) � (�c − �m)V (3) + �m(T ) − ξ

2
(�c + �m)

(3)

Type B Sandwich Plate

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1(z) � (�c − �m)V (1) + �m(T )

�2(z) � (�c − �m)V (2) + �m(T ) − ξ

2
(�c + �m)

�3(z) � (�c − �m)V (3) + �m(T )

(4)

2.2.2 Uneven porosity (Imperfect 2)

Type A Sandwich Plate

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�1(z) � (�c − �m)V (1) + �m(T ) − ξ

2
(�c + �m)

[
1 − |2z − (z0 + z1)|

z1 − z0

]

�2(z) � (�c − �m)V (2) + �m(T )

�3(z) � (�c − �m)V (3) + �m(T ) − ξ

2
(�c + �m)

[
1 − |2z − (z2 + z3)|

z3 − z2

] (5)

Type B Sandwich Plate

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1(z) � (�c − �m)V (1) + �m(T )

�2(z) � (�c − �m)V (2) + �m(T ) − ξ

2
(�c + �m)

[
1 − |2z − (z1 + z2)|

z2 − z1

]

�3(z) � (�c − �m)V (3) + �m(T )

(6)

2.2.3 Uneven porosities (Imperfect 3)

Type A Sandwich Plate

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�1(z) � (�c − �m)V (1) + �m(T ) − log

(
1 +

ξ

2

)
(�c + �m)

[
1 − |2z − (z0 + z1)|

z1 − z0

]

�2(z) � (�c − �m)V (2) + �m(T )

�3(z) � (�c − �m)V (3) + �m(T ) − log

(
1 +

ξ

2

)
(�c + �m)

[
1 − |2z − (z2 + z3)|

z3 − z2

] (7)

Type B Sandwich Plate

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1(z) � (�c − �m)V (1) + �m(T )

�2(z) � (�c − �m)V (2) + �m(T ) − log

(
1 +

ξ

2

)
(�c + �m)

[
1 − |2z − (z1 + z2)|

z2 − z1

]

�3(z) � (�c − �m)V (3) + �m(T )

(8)
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2.2.4 Linear uneven porosities (Imperfect 4)

Type A Sandwich Plate

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�1(z) � (�c − �m)V (1) + �m(T ) − ξ

2
(�c + �m)

[
1 − z − z0

z0 − z1

]

�2(z) � (�c − �m)V (2) + �m(T )

�3(z) � (�c − �m)V (3) + �m(T ) − ξ

2
(�c + �m)

[
1 − z − z3

z2 − z3

] (9)

Type B Sandwich Plate

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1(z) � (�c − �m)V (1) + �m(T )

�2(z) � (�c − �m)V (2) + �m(T ) − ξ

2
(�c + �m)

[
1 − z − z1

z1 − z2

]

�3(z) � (�c − �m)V (3) + �m(T )

(10)

2.3 Kinematics and strains

The indeterminate integrals are used to reconstruct the conventional five shear deformation theory, reducing
the number of variables to just four. It is shown how the generalized displacement field looks like [24]:

u(x , y, z, t) � u0(x , y, t) − z
∂w0

∂x
+ f (z)φx (x , y, t)

v(x , y, z, t) � v0(x , y, t) − z
∂w0

∂y
+ f (z)φy(x , y, t)

w(x , y, z, t) � w0(x , y, t)

(11)

where u0; v0; w0, φx , φy are five unknown displacements of the mid-plane of the plate, f (z) denotes shape
function representing the variation of the transverse shear strains and stresses within the thickness. By con-
sidering that φx � ∫

θ (x , y)dx and φy � ∫
θ (x , y)dy, the displacement field of the present model can be

expressed in a simpler form as:

u(x , y, z, t) � u0(x , y, t) − z
∂w0

∂x
+ k1 f (z)

∫
θ (x , y, t) dx

v(x , y, z, t) � v0(x , y, t) − z
∂w0

∂y
+ k2 f (z)

∫
θ (x , y, t) dy

w(x , y, z, t) � w0(x , y, t)

(12)

The current higher-order shear deformation plate theory is obtained in this paper by setting [61]:

f (z) � h sinh
( z
h

)
− z cosh

(
1

2

)
(13)

It can be seen that the displacement field in Eq. (12) introduces only four unknowns (u0,v0,w0 and θ ). The
nonzero von Karman strains associated with the displacement field in Eq. (12) are:

⎧⎨
⎩

εx
εy
γxy

⎫⎬
⎭ �

⎧⎨
⎩

ε0x
ε0y
γ 0
xy

⎫⎬
⎭ + z

⎧⎨
⎩

kbx
kby
kbxy

⎫⎬
⎭ + f (z)

⎧⎨
⎩

ksx
ksy
ksxy

⎫⎬
⎭,

{
γyz
γxz

}
� g(z)

{
γ 0
yz

γ 0
xz

}
(14)
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where

⎧⎨
⎩

ε0x
ε0y
γ 0
xy

⎫⎬
⎭ �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u0
∂x + 1

2

(
∂w0
∂x

)2
∂v0
∂x + 1

2

(
∂w0
∂y

)2
∂u0
∂y + ∂v0

∂x +
(

∂w0
∂x

)(
∂w0
∂y

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

⎧⎨
⎩

kbx
kby
kbxy

⎫⎬
⎭ �

⎧⎪⎪⎨
⎪⎪⎩

− ∂2w0
∂x2

− ∂2w0
∂y2

−2 ∂2w0
∂x∂y

⎫⎪⎪⎬
⎪⎪⎭

(15a)

⎧⎨
⎩

ksx
ksy
ksxy

⎫⎬
⎭ �

⎧⎨
⎩

k1θ
k2θ

k1
∂
∂y

∫
θ dx + k2

∂
∂x

∫
θ dy

⎫⎬
⎭,

{
γ 0
yz

γ 0
xz

}
�
{
k2
∫

θ dy
k1
∫

θ dx

}
(15b)

and

g(z) � d f (z)

dz
(16)

The integrals defined in the above equations shall be resolved by a Navier type method and can be written
as follows:

∂

∂y

∫
θ dx � A′ ∂2θ

∂x∂y
,

∂

∂x

∫
θ dy � B ′ ∂2θ

∂x∂y
,
∫

θ dx � A′ ∂θ

∂x
,
∫

θ dy � B ′ ∂θ

∂y
(17)

where the coefficients A′ and B ′ are expressed according to the type of solution used. In this case via Navier,
therefore, A′, B ′, k1 and k2 are expressed as follows:

A′ � − 1

α2 , B ′ � − 1

β2 , k1 � α2, k2 � β2 (18)

where α and β are defined in expression (31).
For the n-th layer, the stress–strain relationships that take into account thermal effects can be expressed as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σx
σy

τyz
τxz
τxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(n)

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ 0
x

σ 0
y

τ 0yz
τ 0xz
τ 0xy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(n)

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ T
x

σ T
y

τ T
yz

τ T
xz

τ T
xy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(n)

�

⎡
⎢⎢⎢⎢⎣

C11 C12 0 0 0
C12 C22 0 0 0
0 0 C44 0 0
0 0 0 C55 0
0 0 0 0 C66

⎤
⎥⎥⎥⎥⎦

(n)
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εx
εy
γyz
γxz
γxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(n)

− αT

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

1

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

n⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, (n � 1, 2, 3) (19)

Stiffness coefficients, Ci j , can be expressed as [22]:

C (n)
11 � C

(n)

22 � E
(n)
(z)

1 − ν2
, (20.a)

C
(n)

12 � νC
(n)

11 , (20.b)

C
(n)

44 � C
(n)

55 � C
(n)

66 � E
(n)
(z)

2(1 + ν)
, (20.c)

2.4 Governing equations

The minimum total potential energy principle, which may be expressed as follows, is employed in this work
[61].

δ(U +Ue) � 0 (21)

U � 1

2

∫
V

[
σ 0
x εx + σ 0

y εy + τ 0xyδ γxy + τ 0yzδ γyz + τ 0xzδ γxz

]
dV +

1

2

∫
V

[
σ T
x

(
∂w

∂x

)2

+ σ T
y

(
∂w

∂y

)2
]
dV

(22)
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Table 1 Material properties [62]

Al Ti-6Al-4V ZrO2 Al2O3

Young’s modulus (GPa) 70 66.2 244.27 380
Poisson’s ratio 0.3 0.3 0.3 0.3
Coefficient of thermal expansion (10−6/K) 23 10.3 12.766

The calculation of the external force’s potential energy uses [62]:

Ue � 1

2

∫
V

[
N 0
x

(
∂w

∂x

)2

+ N 0
y

(
∂w

∂y

)2
]
dV (23)

where N 0
x and N 0

y depict dispersed, compressive, x- and y-directional forces (per unit length) in a plane.
By substituting Eqs. (14) and (19) into Eq. (21), the following can be derived:

δ u0 :
∂Nx

∂x
+

∂Nxy

∂y
� 0

δ v0 :
∂Nxy

∂x
+

∂Ny

∂y
� 0

δ w0 :
∂2Mb

x

∂x2
+ 2

∂2Mb
xy

∂x∂y
+

∂2Mb
y

∂y2
+ N + N

T � 0

δ θ : −k1 M
s
x − k2 M

s
y − (k1A′ + k2 B

′)∂2Ms
xy

∂x∂y
+ k1 A

′ ∂Ssxz
∂x

+ k2 B
′ ∂S

s
yz

∂y
+ N + N

T � 0 (24)

where the stress resultants N , M and S are defined by

(
Ni ,M

b
i ,M

s
i

)
�

h/2∫
−h/2

(1, z, f )σi dz, (i � x , y, xy) and
(
Ssxz , S

s
yz

)
�

h/2∫
−h/2

g
(
τxz , τyz

)
dz (25)

And

N � N 0
x
∂2(w0)

∂x2
+ N 0

y
∂2(w0)

∂y2
(26)

N
T � −NT

x
∂2(w0)

∂x2
− NT

y
∂2(w0)

∂y2
(27)

In which [62]:

{
NT
x

NT
y

}
�

3∑
n�1

hn∫
hn−1

{
(C11 + C12)αT
(C11 + C12)αT

}(n)

dz (28)

2.5 Temperature field

2.5.1 Temperature increase that is uniform

The temperature of the FG sandwich plate is uniformly raised from its initial temperature Ti to the desired
temperature T f in this scenario as the sandwich plate buckles. T � T f − Ti is the temperature increment.



I. Laoufi et al.

Table 2 Dimensionless type-A square sandwich plate critical buckling load N 0

p References N 0

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 Zenkour [12] 6.5030 6.5030 6.5030 6.5030 6.5030 6.5030
Neves et al. [22] 6.5025 6.5025 6.5025 6.5025 6.5025 6.5025
Thai et al. [25] 6.4774 6.4774 6.4774 6.4774 6.4774 6.4774
Li et al. [62] 6.5025 6.5025 6.5025 6.5025 6.5025 6.5025
Present 6.6392 6.6392 6.6392 6.6392 6.6392 6.6392

1 Zenkour [12] 2.5842 2.9206 3.0973 3.2327 3.4749 3.7531
Neves et al. [22] 2.5392 2.8651 3.0368 3.1678 3.4027 3.6718
Thai et al. [25] 2.6190 2.9603 3.1401 3.2701 3.5129 3.7799
Li et al. [62] 2.5836 2.9200 3.0970 3.2324 3.4747 3.7533
Present 2.6408 2.9847 3.1653 3.3037 3.5511 3.8356

5 Zenkour [12] 1.3300 1.5220 1.7022 1.7903 2.0564 2.3674
Neves et al. [22] 1.3234 1.5093 1.6860 1.7707 2.0308 2.3303
Thai et al. [25] 1.3552 1.5754 1.7636 1.8511 2.1227 2.4192
Li et al. [62] 1.3291 1.5213 1.7018 1.7898 2.0560 2.3673
Present 1.3588 1.5557 1.7401 1.8302 2.1024 2.4205

10 Zenkour [12] 1.2448 1.3742 1.5672 1.5973 1.5729 2.1909
Neves et al. [22] 1.2411 1.3654 1.5347 1.5842 1.8358 2.1090
Thai et al. [25] 1.2553 1.4200 1.5995 1.6531 1.9133 2.1827
Li et al. [62] 1.2436 1.3732 1.5459 1.5974 1.8538 2.1400
Present 1.2710 1.4044 1.5809 1.6368 1.8958 2.1884

Table 3 Dimensionless type-B square sandwich plate critical buckling load N 0

a/h Scheme References p

0 0.5 1 5 10

5 1-1-1 Nguyen et al. [24] 2.0513 2.2342 2.3333 2.5978 2.6834
Li et al. [62] 2.8714 2.5362 2.3782 2.1198 2.0769
Present 2.9225 2.5806 2.4192 2.1540 2.5699

1-2-1 Nguyen et al. [24] 1.9456 2.2725 2.4387 2.8964 3.0545
Li et al. [62] 3.3388 2.7432 2.4697 2.0546 1.9894
Present 3.3968 2.7903 2.5115 2.0857 2.5499

2-2-1 Nguyen et al. [24] 2.1369 2.5023 2.7056 3.2351 3.4009
Li et al. [62] 2.5905 2.3186 2.1891 1.9531 1.9031
Present 2.6368 2.3579 2.2246 1.9798 2.5308

10 1-1-1 Nguyen et al. [24] 2.3508 2.5165 2.6123 2.8848 2.9773
Li et al. [62] 3.1396 2.7889 2.6288 2.3970 2.3696
Present 2.8903 2.6309 2.5193 2.3669 2.5312

1-2-1 Nguyen et al. [24] 2.3095 2.5768 2.7322 3.2063 3.3816
Li et al. [62] 3.6812 3.0330 2.7447 2.3697 2.3353
Present 3.7620 3.0995 2.8046 2.4200 2.5419

2-2-1 Nguyen et al. [24] 2.3928 2.7898 3.0116 3.6028 3.7937
Li et al. [62] 2.8278 2.5746 2.4660 2.3189 2.2967
Present 3.7620 3.0995 2.8046 2.4200 2.5396

100 1-1-1 Nguyen et al. [24] 2.4773 2.6308 2.7236 2.9969 3.0918
Li et al. [62] 3.2397 2.8840 2.7238 2.5054 2.4857
Present 3.9007 3.2174 2.9172 2.5557 2.5382

1-2-1 Nguyen et al. [24] 2.4730 2.7015 2.8495 3.3268 3.5087
Li et al. [62] 3.8104 3.1429 2.8497 2.4965 2.4781
Present 3.9007 3.2174 2.9172 2.5557 2.5382

2-2-1 Nguyen et al. [24] 2.4963 2.9038 3.1320 3.7467 3.9476
Li et al. [62] 2.9161 2.6723 2.5738 2.4723 2.4657
Present 3.9007 3.2174 2.9172 2.5557 2.5385
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Table 4 Type-A square sandwich plate’s critical buckling temperature rises Tcr under uniform temperature rise

Scheme p References a/h

5 10 15 25 50

1-0-1 0.5 Zenkour and Sobhy [63] 2.87276 0.80328 0.36504 0.13294 0.03340
Li et al. [62] 2.87074 0.80314 0.36501 0.13294 0.03340
Present 2.74152 0.77311 0.35196 0.12830 0.03224

2 Zenkour and Sobhy [63] 2.63459 0.71815 0.32462 0.11789 0.02958
Li et al. [62] 2.63018 0.71783 0.32456 0.11788 0.02958
Present 2.28841 0.62539 0.28283 0.10274 0.02578

2-1-2 0.5 Zenkour and Sobhy [63] 2.83194 0.79232 0.36010 0.13116 0.03295
Li et al. [62] 2.83030 0.79220 0.36008 0.13115 0.03295
Present 2.74152 0.77311 0.35196 0.12830 0.03224

2 Zenkour and Sobhy [63] 2.39953 0.65098 0.29396 0.10671 0.02677
Li et al. [62] 2.39637 0.65075 0.29392 0.10670 0.02677
Present 2.28841 0.62539 0.28283 0.10274 0.02578

1-1-1 0.5 Zenkour and Sobhy [63] 2.83331 0.79463 0.36134 0.13164 0.03308
Li et al. [62] 2.83224 0.79456 0.36133 0.13164 0.03308
Present 2.74152 0.77311 0.35196 0.12830 0.03224

2 Zenkour and Sobhy [63] 2.36195 0.64253 0.29031 0.10541 0.02645
Li et al. [62] 2.36000 0.64239 0.29029 0.10541 0.02645
Present 2.28841 0.62539 0.28283 0.10274 0.02578

1-2-1 0.5 Zenkour and Sobhy [63] 2.86992 0.80925 0.36841 0.13430 0.03376
Li et al. [62] 2.86972 0.80925 0.36841 0.13430 0.03376
Present 2.77703 0.78734 0.35885 0.13089 0.03290

2 Zenkour and Sobhy [63] 2.42899 0.66689 0.30189 0.10972 0.02754
Li et al. [62] 2.42873 0.66687 0.30189 0.10972 0.02754
Present 2.35398 0.64913 0.29412 0.10695 0.02685

2.5.2 Temperature increase that is graded

The top surface temperature Tt differs from the bottom surface temperature Tb, which varies depending on the
plate thickness [35]:

T (z) � T

(
z

h
+
1

2

)n

+ Tt (29)

In which n is the temperature index (0<n <∞) and T � Tt − Tb is the buckling temperature difference.

3 Analytical solution

The displacement fields are expressed as a function of the boundary conditions using the Navier technique
with simply supported boundaries [62].

⎧⎪⎨
⎪⎩

u0
v0
w0
θ

⎫⎪⎬
⎪⎭ �

∞∑
m�1

∞∑
n�1

⎧⎪⎨
⎪⎩

Umn cos(λ x) sin(μ y)
Vmn sin(λ x) cos(μ y)
W0mn sin(λ x) sin(μ y)
θmn sin(λ x) sin(μ y)

⎫⎪⎬
⎪⎭ (30)

where Umn , Vmn , Wbmn and θmn are arbitrary parameters to be determined.

λ � mπ/a and μ � nπ/b (31)

A system of in-plane compressive stresses that are uniform. N 0
x ,N

0
y and N 0

xy � 0 in a thermal environment
can be used to calculate FGM sandwich plates’ critical buckling loads and temperature increase.
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Table 5 Type-B square sandwich plate’s critical buckling temperature rises Tcr during nonlinear temperature rise

Scheme p n References a/h

5 10 15 25 50

1-0-1 0.5 2 Do and Lee [35] 5.35784 1.46297 0.63750 0.20009 0.01238
Li et al. [62] 5.36625 1.46432 0.63784 0.20010 0.01235
Present 5.49462 1.52115 0.66583 0.21084 0.01526

3 Do and Lee [35] 6.77704 1.85048 0.80636 0.25309 0.01565
Li et al. [62] 6.78766 1.85219 0.80679 0.25311 0.01562
Present 6.88462 1.90597 0.83427 0.26417 0.01912

4 Do and Lee [35] 8.25929 2.25522 0.98272 0.30845 0.01908
Li et al. [62] 8.27222 2.25729 0.98325 0.30846 0.01904
Present 8.31191 2.30111 1.00723 0.31894 0.02309

5 Do and Lee [35] 9.78867 2.67282 1.16470 0.36557 0.02261
Li et al. [62] 9.80398 2.67527 1.16531 0.36558 0.02257
Present 9.77017 2.70482 1.18394 0.37490 0.02714

2 2 Do and Lee [35] 5.35784 1.46297 0.63750 0.20009 0.01238
Li et al. [62] 5.36625 1.46432 0.63784 0.20010 0.01235
Present 5.81174 1.67185 0.74216 0.24175 0.02537

3 Do and Lee [35] 6.77704 1.85048 0.80636 0.25309 0.01565
Li et al. [62] 6.78766 1.85219 0.80679 0.25311 0.01562
Present 7.04855 2.02764 0.90010 0.29319 0.03078

4 Do and Lee [35] 8.25929 2.25522 0.98272 0.30845 0.01908
Li et al. [62] 8.27222 2.25729 0.98325 0.30846 0.01904
Present 8.29392 2.38589 1.05914 0.34500 0.03621

5 Do and Lee [35] 9.78867 2.67282 1.16470 0.36557 0.02261
Li et al. [62] 9.80398 2.67527 1.16531 0.36558 0.02257
Present 9.56046 2.75024 1.22088 0.39768 0.04175

2-1-2 0.5 2 Do and Lee [35] 5.45505 1.48364 0.64572 0.20226 0.01205
Li et al. [62] 5.46373 1.48503 0.64607 0.20227 0.01203
Present 5.49462 1.52115 0.66583 0.21084 0.01526

3 Do and Lee [35] 6.94175 1.88799 0.82171 0.25738 0.01534
Li et al. [62] 6.95278 1.88976 0.82216 0.25739 0.01531
Present 6.88462 1.90597 0.83427 0.26417 0.01912

4 Do and Lee [35] 8.48806 2.30855 1.00475 0.31471 0.01875
Li et al. [62] 8.50153 2.31070 1.00529 0.31473 0.01871
Present 8.31191 2.30111 1.00723 0.31894 0.02309

5 Do and Lee [35] 10.07658 2.74059 1.19278 0.37361 0.02226
Li et al. [62] 10.09256 2.74314 1.19343 0.37363 0.02222
Present 9.77017 2.70482 1.18394 0.37490 0.02714

2 2 Do and Lee [35] 5.43958 1.49762 0.65488 0.20728 0.01496
Li et al. [62] 5.44823 1.49904 0.65525 0.20729 0.01493
Present 5.81174 1.67185 0.74216 0.24175 0.02537

3 Do and Lee [35] 6.81619 1.87662 0.82061 0.25973 0.01875
Li et al. [62] 6.82701 1.87840 0.82107 0.25975 0.01871
Present 7.04855 2.02764 0.90010 0.29319 0.03078

4 Do and Lee [35] 8.24945 2.27122 0.99316 0.31435 0.02269
Li et al. [62] 8.26253 2.27338 0.99372 0.31437 0.02265
Present 8.29392 2.38589 1.05914 0.34500 0.03621

5 Do and Lee [35] 9.72967 2.67876 1.17137 0.37075 0.02676
Li et al. [62] 9.74508 2.68129 1.17203 0.37078 0.02671
Present 9.56046 2.75024 1.22088 0.39768 0.04175

1-1-1 0.5 2 Do and Lee [35] 5.61588 1.52788 0.66526 0.20871 0.01289
Li et al. [62] 5.62505 1.52936 0.66565 0.20873 0.01286
Present 5.49462 1.52115 0.66583 0.21084 0.01526

3 Do and Lee [35] 7.17052 1.95084 0.84943 0.26648 0.01645
Li et al. [62] 7.18222 1.95273 0.84992 0.26651 0.01643
Present 6.88462 1.90597 0.83427 0.26417 0.01912

4 Do and Lee [35] 8.77713 2.38794 1.03974 0.32619 0.02014
Li et al. [62] 8.79143 2.39025 1.04034 0.32622 0.02011
Present 8.31191 2.30111 1.00723 0.31894 0.02309

5 Do and Lee [35] 10.41987 2.83488 1.23434 0.37490 0.02391
Li et al. [62] 10.43684 2.83761 1.23506 0.38724 0.02387
Present 9.77017 2.70482 1.18394 0.38728 0.02714
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Table 5 continued

Scheme p n References a/h

5 10 15 25 50

2 2 Do and Lee [35] 5.5788 1.54041 0.67549 0.21523 0.01728
Li et al. [62] 5.56691 1.54193 0.67590 0.21525 0.01726
Present 5.81174 1.67185 0.74216 0.24175 0.02537

3 Do and Lee [35] 6.92118 1.91826 0.84118 0.26802 0.02152
Li et al. [62] 6.93240 1.92015 0.84168 0.26805 0.02149
Present 7.04855 2.02764 0.90010 0.29319 0.03078

4 Do and Lee [35] 8.33175 2.30921 1.01262 0.32265 0.02591
Li et al. [62] 8.34523 2.31148 1.01322 0.32268 0.02587
Present 8.29392 2.38589 1.05914 0.34500 0.03621

5 Do and Lee [35] 9.78507 2.71201 1.18925 0.37893 0.03043
Li et al. [62] 9.80089 2.71467 1.18996 0.37897 0.03039
Present 9.56046 2.75024 1.22088 0.39768 0.04175

Table 6 Type-A square imperfect 1 sandwich plate’s dimensionless mechanical load and temperature change

Scheme ξ N 0
�

NT / 2
T u
cr

�

T
u

N/2
T l
cr

�

T
l

N/2

1-0-1 0 1.5046 0.7523 0.6990 0.3495 1.3476 0.6488
0.05 1.3674 0.6837 0.7115 0.3558 1.3730 0.66149
0.1 1.2299 0.6149 0.7219 0.3609 1.3937 0.67195
0.15 1.0923 0.5462 0.7285 0.3643 1.4070 0.67845
0.2 0.9544 0.4772 0.7295 0.3648 1.4091 0.67952

2-1-2 0 1.6840 0.8420 0.6335 0.3168 1.2172 0.5836
0.05 1.5482 0.7741 0.6261 0.3131 1.2021 0.5761
0.1 1.4121 0.7061 0.6144 0.3072 1.1787 0.56434
0.15 1.2757 0.6379 0.5975 0.2988 1.1451 0.54752
0.2 1.1390 0.5695 0.5746 0.2873 1.0992 0.52461

1-1-1 0 1.8728 0.9364 0.6255 0.3127 1.2008 0.5754
0.05 1.7415 0.8708 0.6131 0.3066 1.1762 0.5631
0.1 1.6098 0.8049 0.5973 0.2987 1.1447 0.54733
0.15 1.4778 0.7389 0.5775 0.2888 1.1051 0.5276
0.2 1.3454 0.6727 0.5533 0.2766 1.0568 0.5034

1-2-1 0 2.2170 1.1085 0.6491 0.3245 1.2483 0.5992
0.05 2.0985 1.0493 0.6359 0.3179 1.2220 0.58596
0.1 1.9797 0.9899 0.6205 0.31025 1.1910 0.57049
0.15 1.8607 0.9304 0.6025 0.30125 1.1550 0.55247
0.2 1.7413 0.8707 0.5818 0.2909 1.1136 0.53178

Equation (30) can be substituted for Eq. (24), resulting in the following result: Assuming that N 0
x and N 0

y

have a specific ratio so that N 0
x � −N 0 and N 0

y � −γ N 0, one can obtain:⎛
⎜⎝
⎡
⎢⎣
S11 S12 S13 S14
S12 S22 S23 S24
S13 S23 S33 S34
S14 S24 S34 S44

⎤
⎥⎦
⎞
⎟⎠−

⎡
⎢⎣
0 0 0 0
0 0 0 0
0 0 P 0
0 0 0 0

⎤
⎥⎦−

⎡
⎢⎣
0 0 0 0
0 0 0 0
0 0 l 0
0 0 0 0

⎤
⎥⎦ �

⎧⎪⎨
⎪⎩
0
0
0
0

⎫⎪⎬
⎪⎭ (32)

where:

S11 �(α2A11 + β2A66)

S12 �αβ(A12 + A66)

S13 � − α3B11 − αβ2(B12 + 2B66)

S14 �α((k2B
′Bs

12 + (k1A′ + k2B′)Bs
66)β

2 + k1A
′Bs

11α
2)

S22 �(α2A66 + β2A22)

S23 � − α2β (B12 + 2B66) − β3B22
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Table 7 Type-B imperfect 1 square sandwich plate’s dimensionless mechanical load and temperature change

Scheme ξ N 0
�

NT / 2
T u
cr

�

T
u

N/2
T l
cr

�

T
l

N/2

2-1-2 0 2.0571 1.02855 0.75887 0.37944 1.1017 0.53210
0.05 2.0474 1.0237 0.7684 0.3842 1.1116 0.5371
0.1 2.0376 1.0188 0.7774 0.3887 1.1208 0.54179
0.15 2.0275 1.01375 0.7858 0.3929 1.1292 0.54602
0.2 2.0173 1.00865 0.7936 0.3968 1.1367 0.54686

1-1-1 0 2.0578 1.0289 0.78608 0.39304 1.1401 0.55130
0.05 2.0384 1.0192 0.7861 0.3931 1.1566 0.5597
0.1 2.0185 1.00925 0.8178 0.4089 1.1722 0.5656
0.15 1.9980 0.999 0.8325 0.41625 1.1863 0.5748
0.2 1.9768 0.9884 0.8462 0.4231 1.1990 0.58125

1-2-1 0 2.0653 1.03265 0.8255 0.41275 1.2015 0.58200
0.05 2.0276 1.0138 0.8499 0.42495 1.2259 0.59437
0.1 1.9889 0.99445 0.8734 0.4367 1.2489 0.60602
0.15 1.9488 0.9744 0.8961 0.44805 1.2697 0.61666
0.2 1.9073 0.9537 0.9173 0.4586 1.2881 0.6260

2-2-1 0 1.9980 0.9990 0.90574 0.45287 1.3061 0.63452
0.05 1.9829 0.9915 0.9383 0.46915 1.3501 0.6565
0.1 1.9673 0.9837 0.9709 0.48545 1.3941 0.6786
0.15 1.9511 0.9755 1.0035 0.50175 1.4377 0.7005
0.2 1.9344 0.9676 1.0356 0.5178 1.4805 0.7216

S24 �β((k1A
′Bs

12 + (k1A′ + k2B′)Bs
66)α

2 + k2B
′Bs

22β
2)

S33 �(α4D11 + β4D22 + 2α2β2(D12 + 2D66)) + Kw + Ks(α
2 + β2)

S34 � − (α4k1A
′Ds

11 + β4k2B
′Ds

22) − α2β2(k1A′ + k2B′)(Ds
12 + 2Ds

66)

S44 �α4(k1A′)2Hs
11 + β4(k2B

′)2Hs
22 + (2k1k2A

′B ′Hs
12 + (k1A′ + k2B′)2Hs

66)α
2β2

+ α2((k1A′)2Fs
55 + 2k1A

′Xs
55 + As

55) + β2((k2B′)2Fs
44 + As

44)

P �N0
(
λ2 + γμ2)

l �λ2NT
x + μ2NT

y (33)

4 Numerical results

This section provides a comparative analysis to support the existing formulation. To adequately understand
the thermomechanical buckling of FGM sandwich plates, many results are presented that take into account
the effects of volume fraction distribution, geometric factors, mechanical and thermal loads. Table 1 lists the
material characteristics for ceramics and metals utilized in the numerical illustrations. Assuming nothing else,
Tt � 25 K, γ � 1 and a/h � 10.

4.1 Validation study

The following categories are used to conduct the verification investigation: mechanical buckling, thermal
buckling and thermomechanical buckling of the two type of FG sandwich plates. The FG sandwich plates are
constructed of zirconia (ZrO2) and titanium (Ti-6Al-4V) for thermal buckling and thermomechanical buckling
and aluminum (Al) and alumina (Al2O3) for mechanical buckling.

The following relationships are used as comparisons and examples [62]:

N 0 � Ncr
0 a2

100h3E0
; Tcr � 10−3Tcr

where E0 � 1GPa.
Mechanical load and temperature rise are used as dimensionless parameters [62]:
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Fig. 2 Temperature increment under uniform temperature rise and the mechanical stress of an imperfect 1 type-A sandwich plate

�

N 0 � NT
0 a

2

100h3E0
,

�

T � 10−3T

T0

where T0 � 1K .
Tables 2, 3, 4 and 5 display the two type sandwich plates’ critical temperature rise and buckling load and

for various layer thickness ratios and power indices. As benchmark results, further calculations made using
different theories from the literature are also provided. As seen, a good agreement is established for every
facet of the buckling problem. It is clear for the type-A, the critical buckling load is biggest one in the case of
1-2-1 because the ceramic layer is thick and has a higher young modulus. We can see also in the same type (A)
that the critical buckling loads decrease with the increase of the face’s sheets power law because these layers
become rich on metal.

Also, the critical buckling temperature is in inverse relation with the side-to-thickness ratio because the
plate becomes thin and flexible and a small temperature leads to buckling of the structure. For the second
type (B), we can observe for 1-0-1 plate, the power-law index has no influence because the structure does not
contain a core, but in the others case (2-1-2 and 1-1-1) the critical buckling temperature rises Tcr are in inverse
relation with the inhomogeneity index because the core becomes riche on metal and therefore less rigid.
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Fig. 3 Temperature increment under linear temperature rise and the mechanical stress of an imperfect 1 type-A sandwich plate

4.2 Imperfect sandwich plate buckling analysis under mechanical and thermal loads

In this illustration, the impact of mechanical and thermal loads on a square, imperfect sandwich plate with
simple support is taken into account. It is presummated that the plate buckleswhen it is subjected to amechanical
load NT

0 and a temperature increase T during both temperature rise (uniform/linear).

First, we determine the dimensionless critical buckling load and temperature increment for imperfect 1
type-A square sandwich plates for ξ � 0, 0.05, 0.1, 0.15 and 0.2 with a variety of 2-1-2, 1-0-1, 1-2-1 and
1-1-1layer thickness ratios under uniform/linear temperature rise using half of the uniform temperature rise
critical buckling temperature increment, the mechanical load is then calculated. Additionally, the temperature
increase is calculated under a linear and uniform temperature rise by applying half of the critical buckling
stress. Table 6 lists these outcomes. The dimensionless critical temperature increase under uniform and linear
temperature rise, respectively, are T u

cr and T
l
cr . The dimensionless mechanical load under uniform temperature

rise is:
�

NT / 2 using half of the critical buckling temperature increment. Using half of the critical buckling load,
the dimensionless temperature increments T l

N/2 and T u
N/2 are defined as the linear and uniform temperature

rise. It has been found that NT / 2 � 1
2N0 and

�

T
u

N/2 � 1
2T

u
cr , but that

�

T
l

N/2 ≺ 1
2T

l
cr . It is remarkable that the

dimensionless critical mechanical load decrease with the increase of the porosity index because the structures
become less rigid. But for critical temperature change, this conclusion is inversed. The same type of work was
done for imperfect 1 type-B FGM (Ti-6Al-4V/ZrO2) sandwich plates under the effect of thermal loads and
mechanical loads as observed in Table 7.
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Fig. 4 Temperature increment under uniform temperature rise and the mechanical stress of an imperfect 1,2,3 and 4 type-A
sandwich plate

The relationship between temperature increment and mechanical load for the type-A sandwich plates (1-
0-1), (2-1-2), (1-1-1) and (1-2-1) is shown in Figs. 2, 3 for ξ � 0.05, 0.15 and 0.2. Figures 2, 3 show that the
connection is linear. The mechanical load diminishes as the temperature increment rises. Due to an increase
in temperature, compressive internal forces produced, this is to be expected. In Fig. 2, the mechanical load
value is zero when the temperature rise reaches its maximum, also the opposite. On the other hand, in Fig. 3,
the value of temperature is negative when the mechanical load value reaches its maximum. We can conclude
also that the mechanical buckling characteristics are biggest in the case of the 1-2-1 plate type-A, because the
thicker layer (core layer) is entirely made of ceramic and therefore the most rigid layer which increases the
rigidity of the entire structure.

Analysis of various porosity distributions’ effects on the buckling behavior of porous FG sandwich plates
has been done in Figs. 4, 5.

The impact of porosity distribution on buckling analysis is examined using models for even, uneven,
logarithmic uneven and linear uneven porosity. Porosity distributions’ effects on the buckling behavior of
porous FG sandwich plates are more prominent in the type-A sandwich plates.

5 Conclusion

The current study has produced an analytical solution for the thermomechanical buckling analysis of porous
FG sandwich plates. Using a four-variable integral plate theory, buckling analysis of FG sandwich plates under
thermomechanical loadwas performed. Sandwich plates with homogenous core and face sheets made of FGMs
were included for type-A. Sandwich plates had the reverse, while type-B plates. On the basis of the minimal
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Fig. 5 Temperature increment under uniform temperature rise and the mechanical stress of an imperfect 1, 2, 3 and 4 type-B
sandwich plate

total potential energy concept, the governing equations were derived. The Navier method was used to provide
the analytical answers for boundary conditions with simple support. To show the accuracy of the proposed
theory, the critical buckling load and temperature increase under four temperature rise were computed as
well as compared with the results reported in the researches. The thermomechanical buckling behavior of FG
sandwich plateswas studiedwhile taking the effects of volume fraction distribution, geometrical parameters and
porosity into consideration. To study the impact of porosity, four porosity distribution models even (Imperfect
1), uneven (Imperfect 2), logarithmic uneven (Imperfect 3) and linear uneven (Imperfect 4) have been taken
into consideration. The obtained results from the present investigation demonstrated the following concluding
remarks:

• The critical buckling loads are in inverse relation with face’s sheets heterogeneity index because these layers
become rich on metal.

• The higher values of the critical buckling load are obtained for 1-2-1 plate (type-A) because the thicker layer
(core) is entirely ceramic.

• The increase in the values of the geometry ration leads to decrease the values of the critical buckling
temperature.

• The presence of the porosity in the structures has an effect on the critical mechanical and thermal load.

The current finding could serve as a reference point for additional research on FG sandwich plates. The
proposed model can be used in the future to examine others type of structures and solve others structural
problems [64–85].
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