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Abstract This study investigates vibrations of the laminated composite beam (LCB) subjected to axial load
and settled on Winkler–Pasternak elastic foundation. The beam model is of Euler–Bernoulli type with cubic
order nonlinear elastic load. Two different boundary conditions are considered: (i) Simply Supported (S–S)
and (ii) Clamped–Clamped (C–C) ones. Mathematical model of the asymmetric LCB is a partial differential
equation. Applying Galerkin procedure, the model is converted into a strong nonlinear ordinary equation. In
the paper, the new analytical method, dubbed as the Max–Min Approach (MMA), is adopted to provide more
accurate nonlinear analysis of beams. The analytical solution is inferred to investigate the effects of axial
force and essential elasticity parameters of foundation on the nonlinear response of the beams. Analytical
results are compared with numerical solutions and show good agreement. In addition, the results are compared
with previously published ones. It is concluded that MMA used in LCB gives more accurate results than
the previously used analytic methods and is practical applicable. The method can be easily extended to high
nonlinear vibration problems in LCB under different boundary conditions.

Keywords Nonlinear vibration ·Analytic solvingmethod · Laminated composite beam ·Winkler–Pasternak
foundation

1 Introduction

In recent years, high demand has been observed for using composite materials in different sciences and
engineering systems to have more resistance to fatigue, high strength-to-weight ratio, and low damping factor
in structural components. Laminated Composite Beams (LCB) are exciting because of their high strength
under severe loading and wide application in engineering. The dynamic behavior of the LCB becomes more
significant to capture their real response and obtain their structural properties. The natural frequency response
of LCB, because of their nonlinear behavior is obtained is very important. The governing dynamic equation
of beams and palates are nonlinear partial differential equations in space and time with different boundary
conditions. There are a lot of challenges to finding an analytical solution for nonlinear partial differential
equations. Usually, numerical methods have been applied to nonlinear problems because of the hard work to
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prepare analytical solutions. In recent years, scientists have worked on analytical and semi-analytical solutions
for nonlinear engineering problems. Recently, many different approaches have been proposed and developed to
achieve the approximate solutions of nonlinear partial differential equations such as: harmonic balance method
[1], the energy balance method [2], the Hamiltonian approach [3], the max–min approach [4, 5], Homotopy
perturbation method [6], the variational iteration method [7] and other related approaches [8–13]. Beam theory
is classified into the following categories: 1) Euler–Bernoulli beam theory 2) first shear-order deformation beam
theory 3) higher-order shear deformation beam theory. The assumption in the Euler–Bernoulli beams makes
it acceptable for thin beams, not tick beams.

A comprehensive and methodical explanation of asymptotic techniques in the theory of plates and shells
is provided by Awrejcewicz [14]. The fundamental ideas of asymptotics and their applications, as well as
more contemporary and conventional methods like the composite equations approach and regular and singular
perturbations, are the key components.

Gao and Krysko et al. [15] worked on the asymptotic methods among the theoretical techniques used
to solve several practical mathematics, physics, and technology problems. These techniques frequently yield
results that improve the efficiency of numerical evaluation algorithms.

The nonlinear dynamics of non-homogeneous beamswith amaterial optimally distributed along the beam’s
length and height were studied by Krysko et al. [16]. The maximum stiffness of a beam microstructure was
obtained by topological optimization for the specified boundary and loading circumstances, which served as the
study’s starting point. Consequently, a beam with an optimal microstructure that displayed non-homogeneity
along the thickness and length of the beam was obtained.

Bhimaraddi and Chandrashekhara [17] studied the modeling of laminated beams by considering the
parabolic shear deformation theory. They had prepared numerical results of the natural frequency of the beams.
Zhen and Wanji [13] used displacement-based theories to analyze the free vibration of laminated beams. They
tried to apply the Hamiltonian principles to achieve the dynamic governing equation. Aydogdu [18] studied
a new higher-order shear deformable laminated composite plate. Girhammar [19] worked on the simplified
static procedure for analyzing and designing composite beams with interlayer slips. Emam and Nayfeh [20]
studied the exact solution of post-buckling analysis of laminated composite beams with different boundary
conditions.Malekzadeh andVosoghi [21] considered the nonlinear vibration of symmetric angle-ply laminated
thin beams on a nonlinear elastic foundation with elastically restrained against rotation edges.

In this study, it has tried to develop the nonlinear governing equation of LCB by using Galerkin Method
to find the effects of nonlinear parameters and of the axial force on the frequency of the beam. The nonlinear
ordinary–differential equation is in the time domain only. The main objective of this paper is to propose a
new so called Max–Min Approach (MMA) that can be used and apply for serious nonlinear problems in LCB
to assess the nonlinear frequency of the problems. The accuracy of the solution has been verified with the
numerical solution. The effects of essential parameters are also considered as shown graphically.

The paper has 5 sections. After the Introduction in the Sect. 2, the mathematical model and the governing
equation of free vibration of a LCB on elastic foundation is introduced. Analyzing the simplified second-order
strong nonlinear equation the conditions for the nonlinear beam buckling and post-buckling are determined.
In Sect. 3, the new MMA for frequency calculation is considered. The general method is adopted for LCB. In
Sect. 4, the results for the simple supported and clamped–clamped beams are obtained. The dependence of the
frequency on axial force and parameters of elastic foundation are discussed. The results are compared with
numerical and previously published analytic results. The paper ends with Conclusions.

2 Governing equation

The plot of a laminated composite beam (LCB) on a nonlinear layer is shown in Fig. 1. The linear and shear
layers are present in the straight laminated beam. The beam has three dimensions: length (L), width (b), and
thickness (h). Coordinate along the axis of the beam is x̃ and in the direction of the thickness of the beam is
Ẑ . On the beam, a compressive axial force P̂ acts. It causes transversal-axial coupled vibrations.

According to [22] and theEuler–Bernoulli’s beam theory, the transverse responseof geometrically nonlinear
composite fixed–fixed beam accounting for its mid-plane stretching is
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Fig. 1 The LCB with simply supported end conditions

with
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where A11, B11 and D11 are axial, coupling and bending stiffness
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Q11k and ˜Zk is the reduced-transformed stiffness and height of the kth lamina, ρA is mass per unit length,
˜t is time, w̃ is transversal displacement of the beam along the Ẑ coordinate and ˜Fw is the distributed transverse
force. Let us consider the LCB settled on the Winkler–Pasternak elastic foundation with load–displacement
relationship

˜Fw �˜kS ∂2w̃

∂ x̃2
−

n
∑

i�1

˜ki w̃
2i−1 (4)

where˜k i are linear and nonlinear coefficients of Winkler elastic foundation and˜k S is the Pasternak coefficient
of the shearing layer. Substituting (4) into (1), a nonlinear dimensionless partial differential equation is obtained
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By introducing the non-dimensional variables

x � x̃

l
,w � w̃

l
, t �˜t

√

b˜D

ρAl4
(6)

into (5), the dimensionless partial differential equation of free vibration of an asymmetrically LCB, as is
suggested in [23], yields
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where r �
√

b˜D
2l˜B

is the gyration ration of the cross section, and the dimensionless parameters
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For i � 3 Eq. (7) transforms into the cubic one presented in [24].
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REMARK: Equation (7) is similar to the governing equation of a beam composed of an isotropic material
with equivalent stiffness EA=˜B/2l and bending stiffness EI � b ˜D. For the asymmetric laminate not only ˜D
but also the coupling stiffness ˜B and therefore ˜� differ from zero and therefore ˜� also exist.

Assuming w(x,t) � φ(x)W (t) where φ(x) is the first eigenmode of the beam and using the Ritz method, the
governing equation of motion follows as

d2W (t)

dt2
+ [a1 + (P − ks)a2 + k1]W (t) + a5W (t)2 + (k2a6 + a7)W (t)3 +

n
∑

i�3

kiai+5W (t)2i−1 � 0 (9)

where αi are presented in Appendix 1. The initial conditions are as follows

W (0) � A,
dW (0)

dt
� 0 (10)

where A denotes the non-dimensional initial amplitude of oscillation. The coefficient a5 exists for the unsym-
metrical laminated beam and is zero for isotropic and symmetrically laminated ones. The existence of the
quadratic term causes the difference in analysis of nonlinear vibrations for symmetrically and unsymmetri-
cally laminated beams.

From Eq. (9), the post-buckling load–deflection relation of the LCB can be derived as follows

PNL � −a1 + k1 − ksa2 + a5W + (k2a6 + a7)W 2 +
∑n

i�3 kiai+5W
2i−2

a2
(11)

where W � W(t). By neglecting the contribution ofW in Eq. (11), the linear buckling load can be obtained as

PL � Pcr � −a1 + k1 − ksa2
a2

(12)

Comparing the buckling load in the nonlinear system with the linear case gives

PNL
PL

� 1 +
a6 + a5W + a7W 2

a1 + a3 + a4
,

PNL
PL

� 1 +
a5W + (k2a6 + a7)W 2 +

∑n
i�3 kiai+5W

2i−2

a1 + k1 − ksa2
(13)

Due to nonlinearity, the buckling load increases: the higher the nonlinearity of foundation, the higher the
value of the buckling force in comparison to the linear case.

3 The max–min approach (MMA) in nonlinear LCB

Equation (4) is a second-order differential equation with strong polynomial nonlinearity. To obtain the exact
frequency of vibration of (9) is not an easy task. Because of that the method for approximate value calculation
is developed. The method is based on the Max–Min Approach (MMA) [5].

3.1 Generalization of the MMA in solving second-order nonlinear differential equation

Let us rewrite Eq. (9) in the general form of a nonlinear oscillator

v̈ + v f (v) � 0, v(0) � A, v̇(0) � 0 (14)

where f (v) is a non-negative function of variable v. The trial solution of (9) is assumed in the form of a
periodical function:

v(t) � Acos(ωt), (15)

where ω is an unknown frequency (needs to be determined).
According to MMA [5] two assumptions are introduced:
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1. The square of frequency, ω2, is never less than the square of frequency fmin of the solution

v1(t) � Acos
(

√

fmin

)

(16)

for the following linear oscillator

v̈ + v fmin � 0, v(0) � A, v̇(0) � 0 (17)

where fmin is the minimum value of the function f (v).
2. In addition, ω2 never exceeds the square of the frequency fmax of the solution

v1(t) � Acos(
√

fmax t) (18)

By substituting it to the general nonlinear equation, it becomes

v̈ + v fmax � 0, v(0) � A, v̇(0) � 0 (19)

where fmax is the maximum value of the function f (v).
Hence, it yields,

fmin

1
< ω

2

<
fmax

1
(20)

According to He Chentian interpolation [5], we obtain

ω2 � m fmin + n fmax

m + n
, (21)

or

ω2 �
√

fmax + k f max

1 + k
(22)

where m and n are weighting factors, and k � n/m. So the solution of Eq. (19) can be expressed as

v(t) � Acos

√

fmin + k f max

1 + k
t (23)

The value of k can be approximately determined by various approximate methods (for example, see [8,
9]). Among others, hereby we use the residual method. Substituting (23) into (9) gives the following residual

R(t ; k) � −ω2Acos(ωt) + (Acos(ωt)) · f (Acos(ωt)) (24)

where ω is given with (22). If, by chance, Eq. (23) is the exact solution, then R(t ; k) is vanishing completely.
Since our approach is only an approximation to the exact solution, we set

∫ T

0
R(t ; k)cos

(
√

fmin + k f max

1 + k
t

)

dt � 0 (25)

where T � 2π
/

ω. Solving the above equation the coefficient k is computed

k � fmax − fmax

1 −
√

A
π

∫ π

0

(

cos2x . f (Acosx)
)

dx
(26)

Substituting (26) into (22) the frequency, as the function of the initial amplitude A is determined.
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3.2 Application of the MMA for frequency determination in LCB with polynomial nonlinearity

For approximate solving of Eq. (9) the aforementioned MMA procedure is adopted. For simplification the
governing Eq. (9) is rewritten in the form

d2W (t)

dt2
+ β1W (t) + β2W (t)2 + β3W (t)3 +

n
∑

i�3

β2i−1W (t)2i−1 � 0 (27)

where

β1 � a1 + (P − ks)a2 + k1, β2 � a5, β3 � k2a6 + a7

β2i−1 � kiai+5for i � 3, 4, . . . n (28)

The trial solution of (27) is assumed in the form

W (t) � Acos(ωt) (29)

where ω is the unknown frequency. According to (20) the frequency of vibration in (29) is varying in the
interval

β1 < ω2 < β1 + β2A + β3A
2 +

n
∑

i�3

β2i−1A
2i−2 (30)

where

ωmin � β1, ωmax � β1 + β2A + β3A
2 +

n
∑

i�3

β2i−1A
2i−2

According to the Chengtian’s inequality (21) and (22), we have

ω2 � mβ1 + n
(

β1 + β2A + β3A2 +
∑n

i�3 β2i−1A2i−2
)

m + n
(31)

where m and n are weighting factors. Introducing k � n/m + n the frequency is approximated as

ω �
√

√

√

√β1 + k

(

β2A + β3A2 +
n
∑

i�3

β2i−1A2i−2

)

(32)

Using (31), the approximate solution reads

W (t) � Acos

⎛

⎝t

√

√

√

√β1 + k

(

β2A + β3A2 +
n
∑

i�3
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)

⎞

⎠ (33)

In view of the approximate solution (33), Eq. (27) is rewritten in the form

d2W

dt2
+ (β1 + k

(

β2A + β3A
2)W � k

(

β2A + β3A
2 +

n
∑

i�3

β2i−1A
2i−2

)

W − β2W
2

−β3W
3 −

n
∑

i�3

β2i−1W (t)2i−1 (34)

REMARK: If the expression (28) is the exact solution of (27), the right side of (35) completely vanishes.
Considering our approach which is just an approximation one, we set
∫ T/4

0
(k

(

β2A + β3A
2 +

n
∑

i�3

β2i−1A
2i−2

)

W − β2W
2 − β3W

3 −
n
∑

i�3

β2i−1W
(

t)2i−1
)

cos(ωt)dt � 0 (35)
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where T � 2π
/

ω. Solving the above equation, we obtain

k � 9 a β3 π + 32 β2

12 a β3 π + 12 β2 π
k � 1

β2 + β3A +
∑n

i�3 β2i−1A2i−3

(

8β2

3π
+
3β3A

4
+

n
∑

i�3

β2i−1A
2i−3C2i

)

k � 9Aβ3π + 32β2

12Aβ3π + 12β2

(36)

where

C2i � 4
T
4∫
0
cos2i (ωt)dt

Substituting (32) into (26), the MMA frequency follows

ω �
√

√

√

√β1 +
8

3

β2A

π
+
3

4
β3A2 +

n
∑

i�3

β2i−1A2i−2C2i (37)

Hence, the approximate solution is readily

W (t) � Acos

⎛

⎝t

√

√

√

√β1 +
8

3

β2A

π
+
3

4
β3A2 +

n
∑

i�3

β2i−1A2i−2C2i

⎞

⎠ (38)

Comparing the frequency (38) of the nonlinear equation with the frequency of the linear system (ω � √
β1)

the co called ‘nonlinear to linear frequency ratio’ follows

ωNL

ωL
�
√

√

√

√1 +
8

3

β2A

β1π
+
3β3A2

4β1
+

n
∑

i�3

β2i−1

β1
A2i−2C2i (39)

For the case when the order of nonlinearity of the foundation is up to cubic order, the frequency ratio
modifies into

ωNL

ωL
�
√

1 +
8

3

β2A

β1π
+
3β3A2

4β1
(40)

i.e. by substituting (28)

ωNL

ωL
�
√

1 +
8

3

a5A

(a1 + (P − ks)a2 + k1)π
+

3(k2a6 + a7)A2

4(a1 + (P − ks)a2 + k1)
(41)

The frequency ratio is the function of the initial amplitude but also of the intensity of the axial force P and
parameters of the elastic foundation k1, k2 and ks.

4 Results and discussion

In this paper, Max–Min approach (MMA) is implemented to achieve a high accurate analytical solution for
nonlinear vibration of Simply-Supported (S–S) and Clamped–Clamped (C–C) Euler–Bernoulli beams fixed at
one end subjected to the axial loads. Lewandowski [25] gave for simply supported beam that A � δ/

√
12 and

A � w∗( 1
2

)

δ/
√
12 for the clamped—clamped beam where δ is the maximum amplitude parameter and w∗( 1

2

)

is the middle deflection of the first mode of beam. In Tables 1 and 2, the nonlinear to linear frequencies ratio
(41) for the system of the S–S and C–C beams is tabulated. The results are compared for different values of
initial amplitude A. The effects of δ on the ratio of nonlinear to the linear frequency of the simply-supported
beams and clamped–clamped beams are shown. It is notable to mention that Azrar [26] and Lewandowski [25]
do not consider the mid-plane effect in their study; therefore, in the large amplitudes, the ratio of nonlinear
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Table 1 Nonlinear frequency to linear frequency (ωNL
/

ωL ) of simply-supported beams

δ A Present Study (MMA) Hamiltonian Approach (HA) [21] Azrar et al. [26] Lewandowski [25]

1 0.2886 1.0897 1.0897 1.0891 1.0897
2 0.5773 1.3228 1.3228 1.3177 1.3229
3 0.8660 1.6393 1.6393 1.6256 1.6394
4 1.1547 2 2 – 1.9999

Table 2 Nonlner frequency to linear frequency (ωNL
/

ωL ) of Clamped–Clamped Beams

δ w∗
1(1
/

2) A Present Study (MMA) Hamiltonian Approach
(HA) [21]

Azrar et al. [26] Lewandowski [25]

1 1.58815 0.18177 1.0222 1.0222 1.0222 1.0222
1.5 1.58815 0.27265 1.0494 1.0494 1.0492 1.0492
2 1.58815 0.36354 1.0862 1.0862 1.0857 1.0858
2.5 1.58815 0.45442 1.1318 1.1318 1.1307 1.1308
3 1.58815 0.54531 1.1852 1.1852 1.1831 1.1832
3.5 1.58815 0.63619 1.2453 1.2453 1.2420 1.2422
4 1.58815 0.72707 1.3112 1.3112 1.3064 1.3063
4.5 1.58815 0.81796 1.3822 1.3822 1.3756 1.3751

Fig. 2 Comparison of MMA analytical (full line) and RKM numerical (dotted line) W (t) versus time solutions for: simply
supported (S–S) beam (red line) and Clamped–Clamped (C–C) beam (blue line)

to linear frequency increases. Numerical results were carried out by using Runge–Kutta method (RKM) and
compared with MMA solution.

Figure 2 shows the displacement versus time variation obtained analytically, by using equation W (t) �
Acos

(

t
√

β1 + 8
3

β2A
π

+ 3
4β3A2

)

and numerically, applying the RKM for solving the equation d2W (t)
dt2

+ β1W

(t)+β2W (t)2 +β3W (t)3 with initial conditions (5) and parameters (23), where k1 � k2 � ks � 1. It is observed
that themotion is periodical and dependent on initial conditions. In addition, good agreement between analytical
and numerical solutions for both type of beams, the simple supported and the clamped–clamped ones, are found.

Using the relation (36), the influence of k1 on the nonlinear to linear frequency ratio (ωNL/ωL) versus
amplitude of vibration A for simply supported beam is shown in Fig. 3. It is obtained that frequency ratio has
the tendency of increase with increasing of the initial amplitude A. The increase is faster for smaller values of
k1 than for higher ones.

In Fig. 4, the influence of the coefficient of nonlinear elastic term k2 on the frequency (41) is shown. The
frequency ratio is increasing with amplitude A: the higher is the value of k2, the frequency increase is higher.

The shear coefficient kS has also an influence on the frequency ratio – amplitude relation (36). The effect
of kS is the following: for higher the kS the faster is the frequency – versus amplitude increase (Fig. 5).
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Fig. 3 Influence of k1 on nonlinear to linear frequency rate versus amplitude variation

Fig. 4 The effect of k2 on nonlinear to linear frequency ratio for different amplitudes

Fig. 5 The effect of kS on nonlinear to linear frequency ratio for different amplitudes

Figure 6 shows the effects of different axial loads on the nonlinear to linear frequency ratio versus amplitude
of the clamped–clamped beam. It is obtained that the frequency ratio increases with increasing of the amplitude
A. The higher is the value of the axial force, the frequency ratio increase is slower.
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Fig. 6 The effect of the axial force P on nonlinear to linear frequency ration for different amplitudes

5 Conclusions

In this paper, vibrations of the asymmetric laminated composite beam (LCB) subjected to axial load and set-
tled on Winkler–Pasternak elastic foundation are investigated. The Max–Min Approach (MMA) is adopted
for providing of analytical solutions for axially loaded Euler Bernoulli beams under two different bound-
ary conditions: (i) Simply-Supported (S–S), and (ii) Clamped–Clamped (C–C). The beam is settled on the
Winkler–Pasternak foundation, where the nonlinearity is of polynomial type. The following is concluded:

1. In the beam with weak nonlinearity the value of linear elastic term has the dominant influence on the
frequency of vibration. Thus, the higher is the parameter k1 of the linear term, the nonlinear to linear
frequency ratio is almost 1. The difference is negligible.

2. However, if the nonlinearity in the beam is strong, the nonlinear frequency differs from the linear one
significantly. The higher are the values of coefficients of nonlinearity k2, k3,…kn, the increase in the
nonlinear frequency versus the linear one is faster. The same conclusion is valid for the shear coefficient
kS.

3. In contrary, for increasing of the axial force P the ratio of the nonlinear to linear frequency is reducing and
for sufficiently high value it tends to 1.

4. The MMA procedure is suitable for solving the differential equation with strong nonlinear polynomial
displacement. The approximate solution is in good agreement with the exact numerically obtained one.

Finally, it is found that the suggested MMA method is suitable for application, in general, for solving
strong nonlinear partial differential equations. It would be a good procedure for vibration analysis of beams
with any other type of boundary conditions, too.
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Appendix 1

In Eq. (1), the physical parameters are given by [19]:

α1 �
∫ 1
∫

0 φ
′′ ′′

∫ 1
0φ

2dx
(A.1)

α2 �
∫ 1
0φ

′′
φdx

∫ 1
0φ

2dx
(A.2)

α3 � k1 (A.3)

α4 � −ks

∫ 1
0φ

′′
φdx

∫ 1
0φ

2dx
, a4 � −ksa2 (A.4)

α5 � −�(φ′(1) − φ′(0))
∫ 1
0φ

′′
φdx

∫ 1
0φ

2dx
(A.5)

α6 � −k2

∫ 1
0φ

4φdx
∫ 1
0φ

2dx
� a6 �

∫ 1
0φ

4dx
∫ 1
0φ

2dx
(A.6)

α7 � −B

∫ 1
0φ

′′
φdx

∫ 1
0φ

′2dx
∫ 1
0φ

2dx
(A.7)

a5+i �
∫ 1
0φ

2idx
∫ 1
0φ

2dx
, i � 3,4, . . . , n (A.8)

in which where φ(x) is the first eigenmode of the beam.
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9. Šalinić, S., Obradović, A., Tomović, A.: Free vibration analysis of axially functionally graded tapered, stepped, and contin-

uously segmented rods and beams. Compos. B Eng. 150, 135–143 (2018)
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