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Abstract The crux of the present investigation is to come up with a mathematical model for the analysis of
moving interfacial crack caused by SH-wave propagating in a composite strip featuring dissimilar orthotropic
material. Wiener–Hopf methodology along with complex variable transform technique has been applied to
determine the closed form analytical expression of SIF (stress intensity factor). Two different types of loading
constraints, viz. NHL (non-harmonic loading) and HL (harmonic loading), on the edges of the crack have
been studied. In addition to this, some special cases, viz. constant loading and stress free condition, following
aforementioned loading constraints have also been taken into account for the moving crack in the considered
composite strip. The limiting case for static condition leading to resonance-type phenomena has been pre-
sented for the subject under investigation. When computed numerically and depicted graphically, the profound
impacts of distinct material and geometrical parameters on SIF for distinct loading constraints have also been
manifested. The computational results bring out the fact that stress intensity factor falls off with rise in crack
velocity when the edges of the crack are under NHL, whereas SIF shows reverse nature for HL.

Keywords SH-wave · Crack · Resonance · Composite strip · Loading constraint

1 Introduction

Initiation and propagation of fractures and cracks in an elastic media have been challenging problems for
the civil and mechanical engineers involved in designing structures and analysing structural stability. In this
scientific era, fracture mechanics has become an important tool for enhancing the performance of mechanical
components and attaining the structural stability of the materials. Nowadays, the study of fractures and cracks
in elastic media is oriented towards the analysis of SIF, as SIF contributes in the study of strength of the
structures in elastic fracture mechanics. In multiple engineering fields, quite a good amount of research has
been performed corresponding to the study of SIF at the vicinity of the crack tip subjected to various loading
constraints.

Crack can be found inside any elastic materials such as wood, ceramic, bones, muscles, skin, ice and rock
due to cyclic loading, wedging, non-uniform temperature, mechanical impact, static overstress, residual stress
and so forth. There are also many other different reasons which may causes imitation of crack inside the elastic
materials. Any type of irregularity inside the material pave way for stress concentration, for instance, a sharp
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indentation, is more favourable for generation of crack growth. As far as present scientific advancement is
concerned, composite materials are mostly used in various engineering structures. Due to their lightweight and
stronger in nature, orthotropic composite materials are preferable as structural materials. Hence, it becomes
imperative to quest for SIF for the crack present in orthotropic composite materials.

Numerous research exist in the literature concerning stress analysis of various structures containing crack.
Mal [1] obtained SIF for a dynamic crack located inside an isotropic medium. He observed radiation phe-
nomenon of torsional elastic waves due to the presence of the crack. Theocaris and Papadopoulo [2] inves-
tigated the behaviour of running cracks under constant velocity. Srivastava et al. [3] studied behaviour of
coplanar cracks in elastic strip. Kuo [4] examined the transient analysis of SIF for the crack in anisotropic
half-spaces. With the help of Jacobi polynomials and singular integral equations, he obtained dynamic SIF
numerically. Kundu [5] also displayed the interaction phenomenon between two cracks in a three-layered
plate. The transient response for crack subjected to dynamic loading was delineated by Chien-Ching and
Ying-Chung [6]. Initiation of fracture due to asymmetric impact loading in an edge cracked plate was studied
by Lee and Freund [7]. The transient behaviour of the crack subjected to dynamic loading was examined by
Ma and Hou [8]. Zhang [9] studied transient phenomenon of anti-plane crack in anisotropic solid. Wei et al.
[10] examined stress intensity factor analysis of interfacial crack in viscoelastic medium. Later on, Wang
and Gross [11] studied the interfacial crack in multi-layered medium. Bi et al. [12] investigated finite length
crack in functionally graded material. Under the plane loading condition, the propagating crack in functionally
graded elastic media was studied by Ma et al. [13]. Lee [14] investigated crack propagation in functionally
graded materials. The three-dimensional dynamic interface crack was studied by Guz et al. [15]. Guz [16]
established the foundations of the mechanics of fracture of materials compressed along cracks. Bogdanov [17]
examined spatial problems of fracture of materials loaded along crack. Nazarenko and Kipnis [18] obtained
stress concentration for semi-infinite crack. Singh et al. [19] and Singh et al. [20] derived expression of SIF for
the crack present at the interface of homogeneous and non-homogeneous pre-stressed poroelastic structure.
A good account of work pertaining to elastic wave behaviour in distinct orthotropic structures was reported
in the literature [21–26]. Lately, the dynamic behaviour of fracture and obstacle present in different struc-
tures of interest were investigated by prolific researchers [27–32]. Following the foregoing works in context
to orthotropic elastic solid, it is worthy to mention that the investigation inclined towards the propagation of
semi-infinite crack in dissimilar orthotropic composite strip under the influence of harmonic and non-harmonic
loadings remains untraced. This motivated to look at the dynamic behaviour of crack owing to SH-wave in
such a realistic engineering structure. Till date, no attempt has been made to develop a mathematical model
for the moving crack caused by SH-wave propagating in orthotropic composite strip under distinct loading
environment, which is being attempted here.

In the present investigation, a model has been developed mathematically to study the dynamic behaviour
of rectilinear crack present at the interface of an orthotropic composite strip. The exact expression for SIF
has been obtained with reference to HL along with CAL (constant amplitude loading) and SF (stress free)
condition. For the case of NHL along with CL (constant loading) and SF condition, the expression for SIF
has also been derived. The static solution for SIF has also been obtained as the limiting case for HL and NHL
constraints on the edges of the crack.

2 Formulation and solution of the problem

A composite strip of thickness 2l containing a moving rectilinear semi-infinite crack with uniform velocity s
due to SH-wave propagating in the direction of x1-axis has been considered, as exhibited in Fig. 1. A Cartesian
coordinate system has been assumed, wherein z1-axis is pointing in vertically downward direction, and x1-axis
is pointing positively in the direction of SH-wave propagation in composite strip. Further, the strip is rigidly
clamped by its upper surface (z1 � −l1) and lower surface (z1 � l2). The middle point of the strip is assumed
at z1 � 0, that involves rectilinear semi-infinite crack x1 ≤ 0, moving with uniform velocity s in the direction
of x1-axis, which separates the strip into two different orthotropic materials. Owing to SH-wave propagating in
x1-direction, the displacement is caused only in y1-direction. The constitutive relation for orthotropic medium
with y1 as diagonal axis is given by
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Fig. 1 Geometrical model of the problem
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wherein τi j denotes the stress components, Bi j (i , j � 1, 2, 3) and L , M , N arematerial elastic constants,
and ei j � 1

2

(
ui , j + u j , i

)
represents the strain components. As displacement is caused in y1-direction only

because of SH-wave propagation, hence, we may consider

u1 � u3 � 0, u2 � u2(x1, z1, t), (2)

where ui � (u1, u2, u3) denotes the displacement components in x1, y1 and z1-directions, respectively.
Now, with the help of (2), (1) may be written as

τx1x1 � τy1y1 � τz1z1 � τx1z1 � 0, τy1z1 � M
∂u2
∂z1

, τy1x1 � N
∂u2
∂x1

. (3)

In view of (3), the only equation of motion appearing for propagating SH-wave in the composite strip
without body force can be given by

∂τy 1 x 1

∂x1
+

∂τy 1 z1

∂z1
� ρ

∂2u2
∂t2

, (4)

where ρ is density of the orthotropic material, t refers to time, together with

τy1x1 � N
∂u2
∂x1

and τy1z1 � M
∂u2
∂z1

. (5)

By means of Eqs. (3) and (4), we have

N

(
∂2u2
∂x21

)
+ M

(
∂2u2
∂z21

)
� ρ

∂2u2
∂t2

, (6)

Now again, Eq. (6) may be rewritten as

∂2u2
∂x21

+
1

α2
0

∂2u2
∂z21

� 1

S2T

∂2u2
∂t2

, (7)
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where α0 � √
N/M , and S2T � N/ρ is SH-wave velocity in the composite strip.

Now, defining the both sided Fourier integral transform as

f (α, z1) � 1√
2π

∞∫

−∞
f̃ (x1, z1)e

iαx1dx1,

f̃ (x1, z1) � 1√
2π

∞+ic′∫

−∞+ic′
f (α, z1)e

−iαx1dα.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where α is a complex variable and it denotes the transform parameter of the transformation. The transform
parameter is chosen such that f (α, z1) is analytic in the domain, which lies within the strip �1 < Im(α) <
�2; �1and�2 being real constants.

Now, the analytic function f (α, z1) may be decomposed as (Titchmarsh [33])

f (α, z1) � f −(α, z1) + f +(α, z1), (9)

wherein

f −(α, z1) � 1√
2π

0∫

−∞
f̃ (x1, z1)e

iαx1dx1,

f +(α, z1) � 1√
2π

∞∫

0

f̃ (x1, z1)e
iαx1dx1,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(10)

are analytic functions in half-planes Im(α) < �2 andIm(α) > �1, respectively.

2.1 Mathematical model of the crack under NHL conditions

The objective here is to formulate the mathematical model for the crack (x1 < 0, z1 � 0) moving along x1-
axis subjected to NHL conditions on edges of the crack in the composite strip. The aforementioned crack is
under a load represented by τy1z1 � ϕ(x1).

In light of the undertaken problem, a convective transformation (Galilean transformation) may be defined
for fixing the frame of reference as

x1 � x ′
1 + st , y1 � y′

1, z1 � α0z
′
1 (11)

where s denotes the moving velocity of the system.
With the help of Eqs. (7) and (11), we have

c2
∂2u2
∂x ′2

1

+
∂2u2
∂z′21

� 0, with c �
√
1 − s2

S2T
. (12)

With the help of Fourier transform (8), Eqs. (5) and (12) takes the form

d2ũ2(α, z′1)
dz′21

− α2c2ũ2
(
α, z′1

) � 0,

τ̃y′
1x

′
1
(α, z′1) � −i Nαũ2

(
α, z′1

)
,

τ̃y′
1z

′
1
(α, z′1) � M

dũ2
(
α, z′1

)

dz′1
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(13)

where ũ2(α, z′1), τ̃x ′
1y

′
1
(α, z′1), τ̃y′

1z
′
1
(α, z′1) are Fourier transform of u2(x ′

1, z′1), τx ′
1y

′
1
(x ′

1, z′1) and τy′
1z

′
1
(x ′

1,
z′1) respectively.
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The solutions of the set of Eq. (13) are given by

ũ2
(
α, z′1

) � A1(α) sinh ξcz′1 + A2(α) cosh αcz′

τ̃x ′
1y

′
1

(
α, z′1

) � −i Nα
[
A1(α) sinh αcz′1 + A2(α) cosh αcz′1

]

τ̃y′
1z

′
1

(
α, z′1

) � Mαc
[
A1(α) cosh αcz′1 + A2(α) sinh αcz′1

]

⎫⎪⎪⎬
⎪⎪⎭

(14)

where A1(α) and A2(α) are constants to be determined by means of proposed geometrical (boundary) condi-
tions of the problem.

With the help of Eq. (11), the geometrical conditions of the adopted problem are given by

u(1)
2

(
x ′
1, z

′
1

) �0, for
∣∣x ′

1

∣∣ < ∞, z′1 � −l1,

u(2)
2

(
x ′
1, z

′
1

) �0, for
∣∣x ′

1

∣∣ < ∞, z′1 � l2,

τ
(1)
y′
1z

′
1

(
x ′
1, z

′
1

) �τ
(2)
y′
1z

′
1

(
x ′
1, z

′
1

) � ϕ
(
x ′
1

)
, for x ′

1 < 0, z′1 � 0,

u(1)
2

(
x ′
1, z

′
1

) �u(2)
2

(
x ′
1, z

′
1

)
, for x ′

1 > 0, z′1 � 0,

τ
(1)
y′
1z

′
1

(
x ′
1, z

′
1

) �τ
(2)
y′
1z

′
1

(
x ′
1, z

′
1

)
, for x ′

1 > 0, z′1 � 0, (15)

where u(i)
2 denotes the displacement in the upper orthotropic medium (i � 1) and lower orthotropic medium

(i � 2) in the composite strip, and τ (i) represents the component of stress of the upper orthotropic medium
(i � 1) and lower orthotropic medium (i � 2) in the composite strip. Now using Fourier integral transform
(8) in Eq. (15), and making use of Eq. (14), the two Wiener–Hopf equations may be obtained as

ũ(1)
2 (α, 0) � − tanh αc1l1

M1c1α
τ̃

(1)
y′
1z

′
1
(α, 0)

ũ(2)
2 (α, 0) � − tanh αc2l2

M2c2α
τ̃

(2)
y′
1z

′
1
(α, 0)

⎫⎪⎪⎬
⎪⎪⎭

(16)

where c1, 2 �
√
1 − s2

S2T1, 2
;ST1 and ST2 signify SH-wave velocity in the upper orthotropic medium and lower

orthotropic medium respectively, M1 and M2 represent elastic material constants for the upper orthotropic
medium and lower orthotropic medium respectively in the composite strip.

From Eqs. (9) and (10), we have

ũ(1)−
2 (α, 0) − ũ(2)−

2 (α, 0) � ũ−
2 (α),

τ̃
(1)−
y′
1z

′
1
(α, 0) + τ̃

(1)+
y′
1z

′
1
(α, 0) � τ̃+y′

1z
′
1
(α) + ψ(α),

ψ(α) � 1√
2π

0∫

−∞
ϕ
(
x ′
1

)
eiαx

′
1dx ′

1,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(17)

By means of the last two relations of Eq. (15), and Eq. (17), a single Wiener–Hopf equation may be written
as

ũ−
2 (α) � −ζ (α)

[
τ̃+y′

1z
′
1
(α) + ψ(α)

]
, (18)

where ζ (α) � 1

α

(
tanh αc1l1

M1c1
+
tanh αc2l2

M2c2

)
, (19)

denotes the kernel of Eq. (18).
Equation (18) has a feasible domain as

−min

(
π

2c1l1
,

π

2c2l2

)
< −ε < Imα < 0. (20)

Now, following the method given by Koiter [34], the kernel of Eq. (18) can be factorized as

ζ (α) � ζ−(α)ζ1(α), (21)
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where ζ−(α) has been taken such that the function ζ−(α) → ∞when |α| → ∞, and the function ζ−(α) → 0
when |α| → 0, i.e. the behaviour of the functions ζ−(α) and ζ (α) is same in the considered domain. We have
also assumed that the function ζ1(α) is free from singularities within the domain (|Imα| < ε1), wherein

0 < ε ≤ ε1 < min

(
π

2c1l1
,

π

2c2l2

)
. (22)

According to the aforementioned consideration regarding ζ−(α), it may be assumed that

ζ−(α) � 1 + ϑ

M1c1
I−(α)I +(α), (23)

where

I±(α) � 1√
α ± iλ̄

, λ̄ � 1 + ϑ

c1l2(k + λ)
, k � l1

l2
, ϑ � λ

c1
c2
, λ � γ

M1

M2
, γ � γ2

γ1
, and γi � Mi

Ni
. (24)

With the assumption considered for ζ1(α), we have ζ1(α) → 1 in the strip |Imα| < ε1 for |α| → ∞. Now
using the method of factorization following Nobel [35], the function ζ1(α) can be written as

ζ1(α) � ζ +
1 (α)

ζ−
1 (α)

, (25)

where

log ζ +
1 (α) � 1

2π i

∞+�2∫

−∞+�2

log ζ (α)

� − α
d�,

log ζ−
1 (α) � 1

2π i

∞+i�1∫

−∞+i�1

log ζ (α)

� − α
d�,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

where −ε1 < �2 < �1 < ε1, and the value of ζ +
1 (α) and ζ−

1 (α) are defined in Eq. (25). It is also assumed
that they are free from singularities in the half planes Imα > �2 and Imα > �1, respectively.

In view of relations ζ1(0) � ζ1(∞) � 1, and ζ±
1 (0) � ζ±

1 (∞) � 1, and applying the method given by
Entov and Salganik [36], Eq. (17) together with Eqs. (21), (22), and (24), lead to

−M1c1ζ
−
1 (α)

(1 + ϑ)I−(α)
ũ−
2 (ξ) � I +(α)ζ +

1 (α)τ̃+y′
1z

′
1
(α) + R(α), (27)

where R(α) � I +(α)ζ +
1 (α)ψ(α). (28)

Now, we assume that the function R(α) is analytic at least within −min
(

π
2c1l1

, π
2c2l2

)
< −ε < Imα < 0.

Applying the method given by Nobel [35], R(α) may be represented as

R(α) � R+(α) − R−(α). (29)

wherein

R+(α) � 1

2π i

∞−iδ2∫

−∞−iδ2

R(ξ)

ξ − α
dξ ,

R−(α) � 1

2π i

∞−iδ1∫

−∞−iδ1

R(ξ)

ξ − α
dξ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)
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such that 0 < δ1 < δ2 < ε and the region of analyticity of R±(α) are the half-planes Imα > −ε and Imα < 0
respectively. Now, in view of Eqs. (27), (29) and using the generalized Liouville theorem, Eq. (18) take the
form

ũ−
2 (α) � (1 + ϑ)R−(α)I−(α)

M1c1ζ
−
1 (α)

,

τ̃+y′
1z

′
1
(α) � − R+(α)

I +(α)ζ +
1 (α)

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(31)

where the region of analyticity of the displacement and stress function ũ−
2 (α) and τ̃+y′

1z
′
1
(α) are Imα < 0 and

Imα > −ε respectively. By means of results in Eq. (30), we can determine SIF. Now, following Eqs. (24) and
(30), and making use of the characteristics of R±(α) and ζ±

1 (α), the behaviour of displacement and stress
functions ũ−

2 (α) and τ̃+y′
1z

′
1
(α, 0) in Eq. (31) can be defined at |α| → ∞ as

ũ−
2 (α) � −1 + ϑ

M1c1

P

α
√

α
and τ̃+y′

1z
′
1
(α) � P√

α
, P � 1

απ i

∞+iδ1∫

−∞−iδ1

R(ξ)dξ , 0 < δ1 < ε. (32)

By means of Abel theorem, the results for displacement and stress concerned with crack along x ′
1-axis at∣∣x ′

1

∣∣ → 0 are given by

u(1)
2 (x ′

1) − u(2)
2

(
x ′
1

) � 2K (1 + ϑ)

M1c1

√
−x ′

1 for x ′
1 → 0−,

τ
(1)
y′
1z

′
1
(x ′

1) − τ
(2)
y′
1z

′
1
(x ′

1) � K√
x ′
1

, f or x ′
1 → 0+,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(33)

with K � −√−2i P. (34)

Equation (34) gives the expression of SIF for the propagating crack under arbitrary NHL in non-
homogeneous composite strip.

2.1.1 Case 1 rectilinear semi-infinite crack edges under CL

Here, we shall find the expression of SIF when crack edges are under CL condition in non-homogeneous
composite strip. We assume that edges of crack in non-homogeneous composite strip are under a load τy′

1z
′
1(

x ′
1, 0

) � Fc, and therefore, with the help Eqs. (17), (24), (32) and (34), we have

K � −Fc

√−i

π

1

2π i

∞−iδ∫

−∞−iδ

ζ±
1 (ξ)

ξ
√

ξ + iλ̄
dξ. (35)

Now on simplifying Eq. (35), and using Eqs. (23) and (24) along with the fact that ζ +
1 (0) � 1, we have

K � −Fc

√
c1l2(k + λ)

π(1 + ϑ)
. (36)

Equation (36) gives the result of SIF for the propagating rectilinear semi-infinite non-centrally (i.e. l1 �� l2)
located crack in non-homogeneous composite strip when edges of crack are subjected to CL condition.

Now, as a special case for isotropic elastic medium, i.e. when N1 � M1 � μ1, N2 � M2 � μ2, then
Eq. (36) reduces to

K ′ � −Fc

√
c′
1l2(k + λ′)
π(1 + ϑ ′)

, ϑ ′ � λ′ c′
1

c′
2
, λ′ � μ1

μ2
, c′

1 �
√√√√1 − s2

S2T ′
1

, c′
2 �

√√√√1 − s2

S2T ′
2

, S2T ′
1

� μ1

ρ1
, S2T ′

2
� μ2

ρ2
,

which leads to SIF for the propagating crack in non-homogeneous isotropic elastic strip when edges of crack
are subjected to CL condition. This expression of SIF is in well agreement with the result established by
Matczyński [37].
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Subcase 1.1When N1 � N2, M1 � M2 and ρ1 � ρ2, then (36)) reduces to

K � −Fc

√
cl

π
, where c �

√
1 − s2

S2T
, 2l � l1 + l2. (37)

Equation (37) gives the result of SIF for non-centrally (i.e. l1 �� l2) located crack propagating in homoge-
neous composite strip when crack edges are under CL condition.

Subcase 1.2When N1 � N2, M1 � M2, ρ1 � ρ2 and l1 � l2 � l, Eq. (36) transforms to

K � −Fc

√
cl

π
, where c �

√
1 − s2

S2T
. (38)

Equation (38) gives the result for SIF for propagating rectilinear semi-infinite centrally (i.e. l1 � l2) located
crack in homogeneous composite strip when crack edges are under CL condition.

Subcase 1.3For the limiting case of static crack, i.e. when s → 0, Eq. (36) results in

Ks � −Fc

√
l2(k + λ)

π(1 + λ)
. (39)

Equation (39) gives the result for SIF for the propagation of rectilinear semi-infinite non-centrally
(i.e. l1 �� l2) located static crack in non-homogeneous composite strip when edges of crack are subjected
to CL condition.

Subcase 1.4When N1 � N2, M1 � M2, ρ1 � ρ2, l1 � l2 � l, and s → 0, Eq. (36) imparts

Ks � −Fc

√
l

π
. (40)

Equation (40) gives the result of SIF for centrally (i.e. l1 � l2) located static crack propagating in homo-
geneous composite strip when crack edges are under CL condition.

2.1.2 Case 2 rectilinear semi-infinite crack edges under SF

Here, we shall formulate the problem for moving crack caused by propagating SH-wave in non-homogeneous
composite strip when crack edges are subjected to SF condition. We suppose that the constant displacement
u2 � ±u0 is prescribed over the surfaces z1 � l1 and z1 � −l2, and edges of crack in non-homogeneous
composite strip are under SF conditions.

Now, using the superpositionmethod in the determined result of SIFgivenbyEq. (36),weobtain the solution
for SIF by adding solutions for composite strip considering u2 � ±u0 on surfaces z1 � l1 and z1 � −l2,
and composite strip containing a crack loaded by constant load τ y′

1z
′
1

(
x ′
1, 0

) � −τ y′
1z

′
1

(
x ′
1, 0

) � ϕ0. The

component of displacement function u2, and the components of stress τ x ′
1y

′
1

(
x ′
1, z′1

)
and τ y′

1z
′
1

(
x ′
1, z′1

)
may

be defined as

u2
(
x ′
1, z

′
1

) � u0

[
−1 +

2(l1 − z′1)
l2(k + λ)

]
for

∣∣z′1
∣∣ < ∞, 0 ≤ z′1 ≤ l1,

� u0

[
1 − 2λ(l2 + z′1)

l2(k + λ)

]
for

∣∣z′1
∣∣ < ∞, − l2 ≤ z′1 ≤ 0,

τ x ′
1y

′
1

(
x ′
1, z

′
1

) � 0, for
∣∣z′1

∣∣ < ∞, − l2 ≤ z′1 ≤ l1,

τ y′
1z

′
1

(
x ′
1, z

′
1

) � − 2M1u0
l2(k + λ)

, for
∣∣x ′

1

∣∣ < ∞, − l2 ≤ z′1 ≤ l1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(41)

such that

τ y′
1z

′
1

(
x ′
1, 0

) � −τ y′
1z

′
1

(
x ′
1, 0

) � ϕ0 � 2M1u0
l2(k + λ)

. (42)
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In view of Eq. (41), the result for SIF in Eq. (36) yields

K � −2M1u0

√
c1

πl2(k + λ)(1 + ϑ)
. (43)

Equation (43) gives the result for SIF for propagating rectilinear semi-infinite non-centrally (i.e. l1 �� l2)
located crack in non-homogeneous composite strip when crack edges in the strip are subjected to SF condition.

Subcase 2.1When N1 � N2, M1 � M2, ρ1 � ρ2, and l1 � l2 � l, then Eq. (43) transforms to

K � −M1u0

√
c

πl
. (44)

Equation (44) gives the result of SIF for centrally (i.e. l1 � l2) located crack propagating in homogeneous
composite strip when crack edges in the strip are subjected to SF condition.

Subcase 2.2When s → 0, Eq. (43) takes the form

Ks � − 2M1u0√
πl2(k + λ)(1 + λ)

. (45)

Equation (45) gives the result of SIF for non-centrally (i.e. l1 �� l2) located static crack in non-homogeneous
composite strip when edges of the static crack are under SF condition.

Subcase 2.3When N1 � N2, M1 � M2, ρ1 � ρ2, s → 0 and l1 � l2 � l, Eq. (43) yields

Ks � −M1u0√
πl

. (46)

Equation (46) gives the result of SIF for centrally (i.e. l1 � l2) located static crack in homogeneous
composite strip when crack edges are under SF condition.

Subcase 2.4When N1 � N2, M1 � M2, ρ1 � ρ2 and s → 0, Eq. (43) reduces to

Ks � −M1u0√
πl

. (47)

Equation (47) gives the result of SIF for non-centrally (i.e. l1 �� l2) located static crack in non-homogeneous
composite strip when edges of the crack are under SF condition.

2.2 Mathematical model of the crack under HL conditions

In order to model the quasi static HL on crack edges, it is assumed that displacement and stress are time
dependent harmonic function, and therefore, the following transformation has been considered, which is
represented as

�(x1, z1, t) � �∗(x1, z1) exp(iωt), (48)

wherein ω is the frequency.
With the help of (48), Eq. (7) leads to

∂2u∗
2

∂x21
+

1

α2
0

∂2u∗
2

∂z21
+ η2u∗

2 � 0, (49)

with η � ω

ST
.
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Performing Fourier transform (8) to Eqs. (5) and (49) leads to the following equations

d2ũ∗
2(α, z1)

dz21
− α2

0

(
α2 − η2

)
ũ∗
2(α, z1) � 0,

τ̃ ∗
x1y1 (α, z1) � −i N ũ∗

2(α, z1),

τ̃ ∗
y1z1 (α, z1) � M

dũ∗
2(α, z1)

dz21
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(50)

After solving Eq. (50), we obtain harmonic function displacement and stresses as

ũ∗
2(α, z1) � A3(α) sinh z1α0

√
α2 − η2 + A4(α) cosh z1α0

√
α2 − η2,

τ̃ ∗
x1y1 (α, z1) � − i Nα

[
A3(α) sinh z1α0

√
α2 − η2 + A4(α) cosh z1α0

√
α2 − η2

]
,

τ̃ ∗
y1z1 (α, z1) � Mα0

√
α2 − η2

[
A3(α) cosh z1α0

√
α2 − η2 + A4(α) sinh z1α0

√
α2 − η2

]
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(51)

where A3(α) and A4(α) are unknown functions to be determined.
Now, the following form of the load may be considered to be applicable on crack edges in the composite

strip

τy1z1 � ϕ0(x1) + ϕ(x1) exp(iωt). (52)

With the help of Eq. (48), the geometrical constraints are transformed as

u∗(1)

2 (x1, z1) � 0, for |x1| < ∞, z1 � −l1,

u∗(2)

2 (x1, z1) � 0, for |x1| < ∞, z1 � l2,

τ ∗(1)
y1z1 (x1, z1) � τ ∗(2)

y1z1 (x1, z1) � ϕ(x1) for x1 < 0, z1 � 0,

u∗(1)

2 (x1, z1) � u∗(2)

2 (x1, z1) for x1 > 0, z1 � 0,

τ ∗(1)
y1z1 (x1, z1) � τ ∗(2)

y1z1 (x1, z1) for x1 > 0, z1 � 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(53)

where superscripts (1) and (2) correspond to upper orthotropic medium and lower orthotropic medium, respec-
tively.

Using Fourier transform (8) and Eq. (51), Eq. (53) gives the following equations

ũ∗(1)
2 (α, 0) � −

tanh l1α
(1)
0

√(
α2 − η21

)

M1α
(1)
0

√(
α2 − η21

) τ̃ ∗(1)
y1z1 (α, 0),

ũ∗(2)
2 (α, 0) �

tanh l2α
(2)
o

√(
α2 − η22

)

M2α
(2)
0

√(
α2 − η22

) τ̃ ∗(2)
y1z1 (α, 0),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(54)

where ηi � ω

STi
, α

(i)
0 �

√
Ni

Mi
, i � 1, 2.

In view of last two relations of Eq. (53) and Eqs. (9) and (10), we may obtain the following relations as

ũ∗(1)
2 (α, 0) − ũ∗(2)

2 (α, 0) � ũ∗−
2 (α),

τ̃ ∗(1)
y1z1 (α, 0) � τ̃ ∗+

y1z1(α) + ψ(α),

}
(55)

where ψ(α) � 1√
2π

0∫

−∞
ϕ(x1)e

iαx1dx1. (56)
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Following Eq. (55), Eq. (54) can be written as

ũ∗−
2 (α) � −ζ (α)

[
τ̃ ∗+
y1z1 (α) + ψ(α)

]
, (57)

where

ζ (α) �
tanh l1α

(1)
0

√
(α2 − η21)

M1α
(1)
0

√
(α2 − η21)

+
tanh l2α

(2)
0

√
(α2 − η22)

M2α
(2)
0

√
(α2 − η22)

. (58)

The feasible domain for Eq. (57) is given by

- min

⎛
⎜⎜⎝

√√√√√
π2

4l21

(
α

(1)
0

)2 − η21,

√√√√√
π2

4l22

(
α

(2)
0

)2 − η22

⎞
⎟⎟⎠ < −ε < Imα< 0. (59)

Now, following the method of Koiter [34], we can factorize ζ (α) as

ζ (α) � ζ−(α)ζ1(α), (60)

where

ζ−(α) � 1 + λ

M1
I−(α)I +(α), I±(α) � 1√

α ± iT1
, T1 � η1(1 + λ)

tan l1η1 + r tan l2η2
, r � λ

η1

η2
, (61)

and we assume that the function ζ1(α) is analytic, and does not contain zeros and singularities in the considered
domain

|Imα| < ε1, 0 < ε ≤ ε1 < min

⎛
⎝
√√√√ π2

4l21
(
α1
0

)2 − η21,

√√√√ π2

4l22
(
α2
0

)2 − η22

⎞
⎠. (62)

Applying Abel theorem [35], the results for displacement and stress concerned with quasi-static crack
along x ′

1-axis at
∣∣x ′

1

∣∣ → 0 involving HL in a non-homogeneous composite strip are given by

u(1)
2 (x1) − u(2)

2 (x1) � 2(1 + λ)Kq

M1

√−x1 for x1 → 0−,

τ (1)
y1z1(x1) � τ (2)

y1z1(x1) � Kq√
x1

, for x1 → 0+.

⎫⎪⎪⎬
⎪⎪⎭

(63)

The expression of SIF for the propagating crack subjected to HL in a non-homogeneous composite strip
may be written as

Kq � K ∗(ϕ,ω) exp(iωt), (64)

wherein K ∗(ϕ,ω) � −
√−2i

2π i

∞−iδ∫

−∞−iδ

I +(α)ζ +
1 (α)ψ(α)dα, (65)

with ω < min
(
π ST1

/
2l1, π ST2

/
2l2

)
.

The SIF for static crack subjected to NHL in a non-homogeneous composite strip can be determined by
substituting ω � 0 in Eqs. (64) and (65). Applying principle of superposition on the deduced results thereafter,
the resulting expression of SIF can be obtained for the crack loaded by τy1z1 � ϕ0(x1) + ϕ(x1) exp(iωt) in a
non-homogeneous composite strip, and it may be considered in the form

Kq � K ∗(ϕ0, 0) + K ∗(ϕ,ω) exp(iωt). (66)
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2.2.1 Case 3 rectilinear semi-infinite crack edges under CAL

Here, we shall find SIF pertaining to crack edges under HL along with CAL in non-homogeneous composite
strip, i.e.

τy1z1 � ϕ0 + ϕ1 cosωt , (67)

where ϕ0 and ϕ1 are constants.
In view of Eqs. (56), (61) and (67), Eq. (65) yields

K ∗(ϕ,ω) � −ϕ1

√
i

π

1

2π i

∞−iδ∫

−∞−iδ

ζ1(α)

α
√

α + iT1
dα. (68)

On performing integration in Eq. (68) and using the fact that ζ +
1 (0) � 1, SIF may be obtained as

K ∗(ϕ,ω) � −ϕ1

√
l2
π

√
k
(
tan η∗

1 − ψ tan δη∗
1

)

η∗
1(1 + λ)

, (69)

where η∗
1 � η1l1, δ � λ

kr
.

The expression of SIF for limiting static case, when crack edges are under HL along with CAL in non-
homogeneous composite strip, may be obtained by assuming ω � 0 in Eq. (69). With the help of (39), (66)
and (69), the final expression of SIF may be given by

K � −ϕ0

√
l2

π(1 + λ)

⎡
⎣√

k + λ +
ϕ1

ϕ0

√
k
(
tan η∗

1 + r tan δη∗
1

)
η∗
1

cosωt

⎤
⎦. (70)

Now, as a special case for isotropic elastic medium, i.e. when N1 � M1 � μ1, N2 � M2 � μ2, then
Eq. (70) reduces to

K ′′ � − ϕ0

√
l2

π(1 + λ′)

⎡
⎣√

k + λ′ + ϕ1

ϕ0

√
k
(
tan η′′

1 + r ′ tan δ′η′′
1

)

η′′
1

cosωt

⎤
⎦, η′′

1 � η′
1l1, η′

1 � ω

ST ′
1

,

η′
2 � ω

ST ′
2

δ′� λ′

kr ′ , r ′ � λ′ η1
η2

,

which leads to SIF for the propagating crack in non-homogeneous isotropic elastic strip when edges of crack
are subjected to CAL condition. This expression of SIF concurs well with the result established byMatczyński
[37].

Following Eq. (70), it is seen that when ω → min
(

π ST1
2l1

,
π ST2
2l2

)
, a resonance-type phenomena occurs.

Owing to the occurrence of resonance-type phenomena, arbitrary small load component ϕ1 results in K → ∞.
Further, the maximum value of SIF for a constant ω can be written as

Km � −ϕ0

√
l2

π(1 + λ)

[√
k + λ +

ϕ1

ϕ0

√
k(tan η∗ + r tan δη∗)

η∗

]
. (71)

Equation (71) imparts the result of SIF for the propagating rectilinear semi-infinite non-centrally
(i.e. l1 �� l2) located crack in non-homogeneous composite strip when edges of crack are subjected to CAL
condition.

Subcase 3.1When k � λ � r � 1, Eq. (70) leads to

K � −ϕ0

√
l

π

[
1 +

ϕ1

ϕ0

√
tan η∗

η∗ cosωt

]
, (72)

where η∗ � lω

ST
.

Equation (72) gives the result of SIF when centrally located crack edges in homogeneous composite strip
are subjected to HL along with CAL.
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2.2.2 Case 4 rectilinear semi-infinite crack edges under SF

Here, we shall determine the result of SIF when crack edges are stress free. We may use the assumption on the

boundary surface that z1 � l1 and z1 � −l2 are under u2 � ±(
u0 + u∗

0 cosωt
)
, ω < min

(
π ST1
2l1

,
π ST2
2l2

)
; u0,

u∗
0 being constants. Now, the displacement (u2) and the stress components

(
τx1y1 and τy1z1

)
take the form

u2(x1, z1, t) �
{−u∗

0 cosωt[g1(η) sin η1z1 − g2(η) cos η1z1] for 0 ≤ z1 ≤ l1,

−u∗
0 cosωt[ rg1(η) sin η2z1 − g2(η) cos η2z1] for − l2 ≤ z1 ≤ 0,

(73)

τx1y1(x1, z1, t) � 0 for − l2 ≤ z1 ≤ l1, (74)

τy1z1(x1, z1, t) �
{−u∗

0M1η1 cosωt[g2(η) sin η1z1 + g1(η) cos η1z1] for 0 ≤ z1 ≤ l1,

−u∗
0M2η2 cosωt[g2(η) sin η2z1 + rg1(η) cos η2z1] for − l2 ≤ z1 ≤ 0,

(75)

where g1(η) � cos η∗
1 + cos δη∗

1

cos η∗
1 cos δη∗

1

(
tan η∗

1 + r tan δη∗
1

) , g2(η) � sin η∗
1 − r sin δη∗

1

cos η∗
1 cos δη∗

1

(
tan η∗

1 + r tan δη∗
1

) .

In view of Eqs. (41), (42), (73) and (75), we may have

ϕ0 � 2M1u0
l2(k + λ)

,

ϕ1 � M1u0
(
cos η∗

1 + cos δη∗
1

)

cos η∗
1 cos δη∗

1

(
tan η∗

1 + r tan δη∗
1

) .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(76)

By means of Eq. (76), Eq. (70) gives

K � − 2M1u0√
πl2(1 + λ)

[
1√
k + λ

+
u∗
0 p(η)

u0
cosωt

]
, (77)

where p(η) � cos η∗
1 + cos δη∗

1

2 cos η∗
1 cos δη∗

1

√
η∗
1

k
(
tan η∗

1 + r tan δη∗
1

) . (78)

Equation (77) establishes the result of SIF when non-centrally located crack edges are SF in non- homo-
geneous composite strip.

Subcase 4.1To obtain the expression of SIF for propagating crack in limiting static case, we can assume that
ω → 0 in the Eq. (77), and in limiting static case of the propagating crack in the composite strip, u2 � ±(
u0 + u∗

0

)
, and SIF is given as

Ks � − 2M1u0√
πl2(k + λ)(1 + λ)

. (79)

Equation (79) signifies the result of SIF in the limiting static casewhen non-centrally located crack edges are

SF in non-homogeneous composite strip. It may also be noted from Eq. (77) that whenω → min
(

π ST1
2l1

,
π ST2
2l2

)
,

yet again resonance-type phenomena is seen that leads to K → ∞.
Now, the maximum value of SIF for the constant ω is determined by using Eq. (77) as

Km � − 2M1u0√
πl2(1 + λ)

[
1√
k + λ

+
u∗
0 p(η)

u0

]
. (80)

Subcase 4.2When k � λ � r � 1, Eq. (77) leads to

K � −M1u0√
πl

[
1 +

u∗
0

u0

√
2η∗

sin 2η∗ cosωt

]
, where η∗ � ωl

ST
. (81)

Equation (81) imparts the result of SIFwhen centrally located crack edges areSF in homogeneous composite
strip.
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3 Numerical simulation and discussion

In order to performnumerical simulation and execute graphical demonstration of SIF, different kind ofmaterials
(Prosser and Green [38]) have been used with the following mechanical properties:

Si3N4 : N � 38.5 × 109
(
N/m2), M � 1.08 × 109

(
N/m2), ρ � 3200

(
kg/m3),

Zinc : N � 38.5 × 109
(
N/m2), M � 1.08 × 109

(
N/m2), ρ � 1740

(
kg/m3),

T300/5208 graphite/epoxy material:

N � 14.295 × 109
(
N/m2), M � 5.27 × 109

(
N/m2), ρ � 1422

(
kg/m3).

Unless otherwise specified

k � 0.5, 1.0, 2.0; k1 � ϕ1

ϕ0
� 0.5, 1.0, 2.0; d � u∗

0

u0
� 0.5, 1.0, 2.0; γ� 0.5, 1.0, 1.5.

Figures 2, 4 and 6 portray the efficacy of SIF against the velocity of crack
(
s/ST1

)
subjected to SH-wave

propagation in non-homogeneous composite strip when edges of crack are under NHL conditions. In the
aforesaid figures, the curves 1, 2 and 3 are directed towards the case of NHL under CL while the curves 4, 5
and 6 are associated with crack edges under NHL and SF conditions. After minute observation of the above
figures, it has been noticed that SIF for CL and SF reduces slowly with rise in velocity of crack in composite
strip. It is also reported that as the velocity of crack tends to 1, SIF for both the aforesaid loading constraints
falls down to zero.

Furthermore, the analysis of SIF against dimensionless crack velocity
(
η∗
1

)
under HL condition in non-

homogeneous composite strip is delineated in Figs. 3, 5, 7 and 9. In the aforementioned figures, curves 1, 2
and 3 indicate the case of HL on crack edges subjected to CAL condition, whereas curves 4, 5 and 6 signify the
case of SF condition. It can be traced out from these figures that the value of SIF in both the aforementioned
cases associated with HL upsurge incessantly with rise in velocity of crack in composite strip.

The influence of thickness ratio parameter on SIF for CL and SF under NHL condition on crack edges
has been outlined in Fig. 2. Moreover, the impact of thickness ratio parameter on SIF for both the cases
(CAL and SF) in harmonic loading (HL) condition is depicted in Fig. 3. In the aforesaid figures (Figs. 2
and 3), curves 2 and 5 represent the condition when the crack is centrally located in the non-homogenous
composite strip, whereas curves (1, 3, 4 and 6) describe the situation of crack which is non-centrally located
in non-homogenous composite strip. The computational results of Figs. 2 and 3 manifest that thickness ratio
parameter have favourable impact on SIF in the case of NHL along with CL condition and in HL with CAL
condition. On the other hand, thickness ratio parameter disfavours SIF for the scenario when crack edges are
subjected to SF condition for both types of HL and NHL conditions.

The impact of inhomogeneity parameter on stress intensity factor for non-harmonic loading and harmonic
loading constraints is depicted in Figs. 4 and 5. It can be observed from Figs. 4 and 5 that the increment in
inhomogeneity parameter of the layers in the composite strip leads to increment in the value of SIF when crack
edges are under NHL with CL conditions. However, in the case of SF condition on edges of crack subjected
to NHL condition, it leads to adverse impact on SIF. Moreover, SIF for HL with CAL and SF conditions
dismounts as inhomogeneity parameter surmounts.

For the purpose of comparative analysis of SIF pertaining to non-centrally located crack in differentmaterial
combinations of configured composite strip [viz. when upper layer is made up of Zn material and lower layer
is made up of graphite/epoxy material (non-homogeneous strip); when upper and lower layer are made up
of Zn material (homogeneous strip); and when upper layer is of Zn material, and lower layer is of Si3N4
material (non-homogeneous composite strip)], Figs. 6 and 7 have been traced out for the cases of NHL and HL
conditions, respectively. It has been found that when non-homogenous composite strip becomes homogeneous,
SIF is minimum for CL case, whereas it is moderate for SF case under NHL condition. It is further noticed
that SIF is moderate for both the cases of CAL and SF under HL condition, when non-homogenous composite
strip becomes homogeneous.

For static crack, the impact of inhomogeneity parameter on SIF for NHL and HL conditions has been
demonstrated in Fig. 8. It is reported from the Fig. 8 that when the crack is non-centrally located under NHL
or HL condition, and the thickness ratio of the composite strip k < 1, then the SIF increases with rise in
inhomogeneity parameter, whereas when the thickness ratio of composite strip k > 1, then the trend gets
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Fig. 2 Variation of SIF for the case of NHL along with CL and SF conditions against dimensionless crack velocity
(
s/ST1

)
for

various values of thickness ratio parameter (k) of non-homogenous composite strip

Fig. 3 Variation of SIF for the case of HL along with CAL and SF conditions against dimensionless crack velocity
(
η∗
1

)
for

various values of parameter (k) of non-homogenous composite strip

altered after an inversion point (k � 1). Moreover, it is also traced out that aforementioned scenario for SIF
occurs when the thickness ratio of the composite strip k � 1 (i.e. when crack is centrally located). Furthermore
the value of SIF is same irrespective of the nature of loading (i.e. non harmonic or harmonic) when crack is
centrally located. It can be pointed out that when non-homogenous composite strip becomes homogeneous,
the value of SIF is moderate for both the cases of NHL and HL conditions.

Figure 9 exhibits the impact of stress amplitude ratio (when crack edges are under HL along with CAL
condition) and effect of displacement ratio (when crack edges are subjected to HL along with SF constraint) on
the SIF in the considered composite strip. It is examined from Fig. 9 that both the stress amplitude ratio as well
as displacement ratio has substantial favourable impact on SIF subjected to harmonic loading in considered
composite strip.
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Fig. 4 Variation of SIF for the case of NHL along with CL and SF conditions against dimensionless crack velocity
(
s/ST1

)
for

various values of inhomogeneity parameter (γ ) of layered medium of non-homogenous composite strip

Fig. 5 Variation of SIF against crack velocity
(
η∗
1

)
in non-homogeneous composite strip [upper (Zn) layer and lower (Si3N4)

layer] for various values of parameter (γ ) of layered medium for the case of HL along with CAL and SF conditions

4 Conclusions

An analytical model for the moving crack caused by propagating SH-wave in dissimilar orthotropic composite
strip has been developed. Wiener–Hopf method along with complex variable transform has been applied for
obtaining the analytical solution that leads to the determination of stress intensity factor. Non-harmonic and
harmonic loadings on edges of crack in the considered orthotropic composite strip have been taking into
account along with special cases (constant loading, constant amplitude loading and stress-free condition).
Three different types of orthotropic material (Zn, Si3N4 and graphite/epoxy material) have been considered
for the composite strip in view of numerical simulation. The static case has also been investigated for the crack
present in the composite strip. In nutshell, the salient features of the investigated work are as follows:

• When crack edges are under non-harmonic loading, stress intensity factor disfavours crack velocity, while,
stress intensity factor favours crack velocity, when crack edges are under harmonic loading.
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Fig. 6 Comparison of SIF against crack velocity
(
s/ST1

)
for various material layers in composite strip for the case of NHL along

with CL and SF conditions

Fig. 7 Comparison of SIF against crack velocity
(
η∗
1

)
for various material layers in composite strip for the case of HL along with

CAL and SF conditions

• The thickness ratio parameter has favourable impact on stress intensity factor for non-harmonic loading along
with constant loading condition and also for harmonic loading with constant amplitude loading condition,
whereas, it disfavours stress intensity factor for crack edges under stress free condition for both harmonic
and non-harmonic loadings.

• With increase in inhomogeneity parameter, stress intensity factor increases when crack edges are under
non-harmonic loading with constant loading condition, while, stress intensity factor decreases for stress free
condition on crack edges subjected to non-harmonic loading. Moreover, stress intensity factor falls down
with rise in inhomogeneity parameter for harmonic loading with constant amplitude loading and stress-free
conditions.

• When non-homogenous composite strip becomes homogeneous, the comparative analysis of stress intensity
factor pertaining to non-centrally located crack reflects on the fact that it is minimum for constant loading
case while it is moderate for stress free case under non-harmonic loading, whereas, it is moderate for both
constant amplitude loading and stress free conditions under harmonic loading.
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Fig. 8 Variation of SIF against parameter (k) of non-homogeneous composite strip [upper (Zn) and lower (Si3N4) layer] for
various values of parameter (γ ) for static crack in NHL as well as HL conditions

Fig. 9 Variation of SIF against crack velocity
(
η∗
1

)
subjected to SH-wave propagation in non-homogeneous composite strip [upper

(Zn) layer and lower (Si3N4) layer] for various values of stress amplitude ratio (k1) and displacement ratio (d) in the case of HL
along with CAL and SF conditions

• When static crack is centrally located, the value of stress intensity factor is same irrespective of the nature
of loading.

• When non-homogenous composite strip becomes homogeneous, the value of stress intensity factor for static
crack is found to be moderate for both harmonic and non-harmonic loadings.

• With increase in stress amplitude ratio as well as displacement ratio, stress intensity factor increases under
the application of harmonic loading in the composite strip.

The consequences of present study may play significant role in the realm of strength and safety analysis
of building and other engineering structures. The outcomes of this investigation may also be helpful in the
earthquake resistant designing of the building structures.
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