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Abstract The open-source parameter identification tool ADAPT (A diversely applicable parameter identi-
fication Tool) is integrated with a machine learning-based approach for start value prediction in order to
calibrate a Gurson–Tvergaard–Needleman (GTN) and a Lemaitre damage model. As representative example
case-hardened steel 16MnCrS5 is elaborated. An artificial neural network (ANN) is initially trained by using
load–displacement curves derived from simulations of a boundary value problem—instead of using data gen-
erated for homogeneous states of deformation at material point or one-element level—with varying material
parameter combinations. The ANN is then employed so as to predict sets of material parameters that already
provide close solutions to the experiment. These predicted parameter sets serve as starting values for a subse-
quent multi-objective parameter identification by using ADAPT. ADAPT allows for the consideration of input
data from multiple scales, including integral data such as load–displacement curves, full-field data such as
displacement and strain fields, and high-resolution experimental void data at the micro-scale. The influence
of each data set on prediction quality is analyzed. Using various types of input data introduces additional
information, enhancing prediction accuracy. The validation is carried out with respect to experimental void
measurements of forward rod extruded parts. The results demonstrate, by incorporating void measurements
in the optimization process, that it is possible to improve the quantitative prediction of ductile damage in the
sense of void area fractions by factor 28 in forward rod extrusion.

Keywords Parameter identification · Machine learning · Ductile damage · Bulk metal forming · finite
element method

1 Introduction

Forming significantly impacts the product properties in manufacturing processes. Thus, finite element (FE)
simulations with predictive capabilities are crucial in order to exploit the full lightweight potential and to
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optimize the forming process. Beyond properties such as hardening and residual stresses, ductile damage
influences the product performance, i.e., damage decreases stiffness, lifetime, and crash safety [1]. Therefore,
it is important to quantitatively predict ductile damage to improve the design of forming processes. This
requires suitable damage models and their precise calibration.

To this end, we extend the open-source parameter identification tool ADAPT (A Diversely Applicable
Parameter identification Tool) [2] with an extended version of a machine learning-based start value prediction
developed in [3]. For demonstration purposes, the enhanced computational framework is applied to an explicit
simulation model of a boundary value problem (BVP) of a round tensile test specimen in bulk metal forming,
taking into account integral force data, full field data such as displacement fields and micro-scale void data
to calibrate two different damage models. Future applications could extend to implicit models and include
additional shear- or compression-dominated calibration tests.

In bulk metal forming, the material undergoes large deformations. At the same time, ductile damage occurs
which is defined as the nucleation, growth, and coalescence of voids. Damage models that depict these mech-
anisms can be subdivided into phenomenological and micromechanical damage models. Phenomenological
models describe the evolution of damage in terms of macroscopic parameters. Inspired by Kachanov’s work
[4], Lemaitre introduced a model based on the strain energy concept [5]. Damage evolves with equivalent
plastic strain and is linked to mechanical properties, as in the concept of effective stresses.

On the other hand, micromechanical models involve explicit representations of voids and inclusions in
the material. They describe the void-related mechanisms on the microscale. For instance, a criterion for void
nucleation based on the distribution of inclusions and the stress state has been proposed by McClintock [6].
Rice and Tracey developed a model for the growth of spherical voids in an infinite matrix [7]. Gurson later
presented a so-called porous plasticity model, which describes the yield surface as a function of hydrostatic
stress and void volume fraction [8]. This framework was extended by Tvergaard and Needleman by adding
terms to account for void shape effects and void coalescence [9]. An extensive overview of ductile damage
and fracture modeling can be found in [10].

A well-known limitation of damage models is their sensitivity to mesh size, particularly when strain and
damage localize. To address this issue, regularization methods have been proposed for damage models [11].
For instance, Wcislo et al. [12], and more recently, Brepols et al. [13] and Sprave andMenzel [14] have defined
non-local damage variables, incorporating their gradients into the model formulation. Non-local models have
also been efficiently implemented in commercial software [15] [16], enabling the simulation of complex
forming processes. Due to the complexity of the model, suitable experimental data are still indispensable for
model calibration to provide meaningful predictions.

However, we apply two locally formulated damage models in this contribution: a Gurson–Tvergaard–
Needleman (GTN) model and a Lemaitre model. To circumvent their mesh dependency, standard practice
maintains a consistent element length across the simulation models [17].

In parameter identification, specific model parameters, such as Young’s modulus or yield stress, can be
identified directly during homogeneous deformation. However, the identification of parameters associated
with plasticity, damage, or other strain rate- and temperature-dependent mechanisms is not straightforward. A
direct identification is impossible since these parameters may not have an evident physical meaning. There-
fore, parameter identification approaches are taken which are based on the solution of inverse problems. An
extensive description of the fundamentals of such optimization-based parameter identification schemes for
constitutive models can be found in [18], [19] and [20]. In these approaches, the model parameters are updated
iteratively until the simulation results fit the experimental data within a defined tolerance range. Besides
load–displacement curves, full-field data, such as displacement fields [21,22] and temperature fields [23],
have already been employed to depict the local material behavior under inhomogeneous deformation. Classic
optimization methods have also been applied to viscoelastic material models coupled to gradient-enhanced
damage [24].

The calibration of damage models requires experimental data containing information about the damage
evolution. Sprave and Menzel [14] and Shamshiri et al. [25] exploited the decrease in stiffness observed in
tensile tests with elastic unloading and (re)-loading as a measure of damage. Seyyedi et al. [26] considered
the onset of necking in tensile tests as a damage initiation of a modified Mohr–Coulomb criterion, while Roux
and Bouchard [27] and Springmann and Kuna [28] incorporated strain fields to address the strain localization
caused by damage-induced softening. These methods rely on macroscopic data rather than void measurements
on the microscale. Consequently, the damage variable does not solely represent the void fraction. Instead, it
represents a combination of several mechanisms contributing to the change in stiffness. However, recent works
on sheet bending [29] and cold forging [30] demonstrated that the void fraction could directly be linked to
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product performance. Therefore, predicting the void fraction directly rather than the damage-induced softening
on themacroscale is more critical. Thework of Suárez et al. [31] provides an exception, as a Gurson-typemodel
was calibrated using computer tomography (CT) measurements. This approach leads to a qualitatively good
prediction of the void volume evolution in pearlitic steel. However, the quantitative error remains significant.

This indicates that even a micromechanical damage model will only provide accurate damage predictions
of void fractions if the calibration is based on experimental data depicting the microscale void mechanism.

Upon reviewing different optimization-based parameter identification schemes considering different quan-
tities, all approaches have one aspect in common: the determination of suitable start values for the optimization
scheme is challenging. This applies to many parameter identification problems and not only to damage mod-
eling. The selection of start values requires a profound understanding of the interaction between the model
parameters, the evolution equations, and, ultimately, the final response of the constitutive model. This is espe-
cially relevant in the case of high model complexity, and a large number of model parameters increasing the
nonlinearity of the objective function. Hence, optimization algorithms run into local minima that do not always
provide a sufficient result. To overcome this challenge, the machine learning approach of Schulte et al. [3]
is taken in order to pre-determine suitable start values for a subsequent classic optimization-based parameter
identification. This strategy provides the further advantage, that a neural network only has to be trained once
with a material model and can be subsequently used for the parameter prediction in various material applica-
tions. Unlike Schulte et al. [3], we directly consider the underlying BVP instead of relying on approximated
homogeneous loading states aiming to enhance the prediction of the initial start values.

Over the years, various approaches have been employed for start value prediction. Heuristic methods,
for instance, rely on empirical rules or simplified analytical solutions to provide initial estimates based on
fundamental physical principles [32].On the other hand, sensitivity analysis examines howparameter variations
affect themodel output, thereby providing guesses on appropriate start values [33]. One of the first contributions
based on machine learning-assisted parameter identification was made by Huber and Tsakmakis. [34]. Using a
neural network, they established an explicit relation between the loading state and the material parameters. The
neural network could identify meaningful sets of material parameters, even when complex loading histories
were considered. Later, Aguir et al. [35] developed a hybrid method of multi-objective optimization to identify
the anisotropy parameters of the orthotropic criterion of Hill’s 1948 model, thereby substituting finite element
simulations with a neural network, thereby reducing the computational time. Obrzud et al. [36] employed
a neural network to estimate model parameters for the correction step of a Gauss–Newton algorithm. More
recently, Guo et al. [37] introduced a model that combines a convolutional neural network for denoising and
strain feature extraction with a long short-termmemory neural network to identify path-dependent constitutive
model parameters. Wei et al. [38] employed physics-informed neural networks (PINNs) to enhance parameter
identification based on full-field measurements.

The current paper addresses the aforementioned shortcomings, i.e., the necessity formanually defining start
values and the lack of considering suitable experimental data, by proposing a combined optimization approach
(Fig. 1). This approach integrates machine learning-assisted start value prediction with multi-objective param-
eter identification. Machine learning-based start value prediction based on BVP training data is demonstrated
for the first time. The subsequent classic parameter identification uses experimental data sets of different scales,
i.e., integral data, such as load–displacement curves, field data, in particular displacement fields, and micro-
scopic measurements of void fractions, aiming to predict ductile damage in the sense of void area fraction in
bulk metal forming.

The paper is structured as follows: Section 2 briefly describes the methods used, particularly the machine
learning framework devised for accurate start value prediction and the multi-objective parameter identification
tool ADAPT. Section 3 applies the combined methods to a boundary value problem specific to a round-notched
tensile test of the case hardening steel 16MnCrS5. In Section 4, the calibrated damage models are applied to
forward rod extrusion and validated based on void measurements. A conclusion and an outlook are given in
Section 5.

2 Methods

2.1 Machine learning-based prediction of parameter sets

In classic parameter identification procedures, generating appropriate starting values is challenging. A proper
starting value generation requires knowledge of the underlyingmaterial model and the influence of the constitu-
tive material parameters on the simulated material response to estimate appropriate ranges for the parameters.
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Fig. 1 Overview of the proposed optimization framework incorporating a machine learning approach for start value prediction
with subsequent multi-objective parameter identification. Within the multi-objective optimization, input data of different scales
is used, i.e., integral data such as forces, field data such as displacement fields, and void measurements at the micro-scale. Here,
the material parameters to be identified of the Lemaitre model are marked blue. (Color figure online)

The difficulty of the challenge increases with the complexity of the model—i.e., covering material effects
such as damage, plasticity, or temperature—and the amount of model related parameters. Machine learning
techniques were incorporated into parameter identification to improve the overall procedure and efficiency. In
this work, the machine learning-based framework developed in [3] is applied in order to efficiently obtain a
high-quality starting value for a subsequent classic optimization-based parameter identification. This approach
identifies the ranges of the different parameters in the first step. Subsequently, a sufficiently large set of varying
parameter combinations is generated, and the corresponding simulations are performed to obtain a training
data set for an artificial neural network (ANN), which contains the simulated material response or loading
path sequence, respectively, of each combination as input and the corresponding parameter set as output. A
feedforward neural network is chosen due to its straightforward implementation and the flexibility to adapt
the neural network by increasing the number of neurons and hidden layers to capture more complex relations
within the underlying dataset. This architecture has already been successfully validated for homogeneous states
of deformation in Schulte et al. [3] and will be applied to inhomogeneous states of deformation in the present
paper. The computational time can be reduced by either employing simple loading paths or, by restricting the
considered boundary value problem to homogeneous states of deformation, or by even reducing it to material
point level. After the successful training, the experimentally measured material response can be handed to the
trained ANN, and the corresponding material parameters can be predicted immediately.

Considering the sampling process of all specified parameter ranges, an even distribution can be obtained
by employing the Latin Hypercube Sampling (LHS) method, which is directly available in many programming
languages and which subdivides the whole parameter intervals into subintervals based on the defined amount
of sample points. A random number is generated in each subinterval and spread over the generated array of
each parameter to achieve an even distribution. Thus, a valid representation of the actual variability is ensured.

In this contribution, force–displacement curves are used for training. Since the displacements are prescribed
at Dirichlet boundary in the simulation and therefore already known, it is sufficient to only consider the forces
as input data for the ANN. In addition, 20% of the total data set is separated from the training set and used
to test the network. In the testing process, the performance of the trained ANN can be investigated since the
test data set was not considered in the training process. Thus, the deviations between predicted parameters, as
based on the loading path sequences of the test data set, and original parameters can be employed for validation
purposes. Furthermore, the original curve of the loading path can be compared to the simulated curve based
on the predicted parameter set. Hence, even if the parameters deviate significantly, the prediction quality of
the network can be sufficient if the deviation of the curves is only marginal.

If the network performance is insufficient, the performance can be improved by optimizing the hyperparam-
eters of the network, particularly the number of layers and neurons per layer. This can be done automatically,
and the best-performing network may ultimately be selected.

In addition, if the parameter predictions of the network deviate from the original parameters but the
simulated material responses nearly match the original curves, the parameter deviations depict a kind of
“sensitivity”-like information since either the parameters exhibit dependencies or the underlying loading path
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sequences are not sufficient to uniquely identify all material parameters. Consequently, the machine learning-
based framework provides several practical advantages.

2.2 Optimization-based parameter identification

The free and open-source tool ADAPT [2] is employed for the subsequent optimization-based parameter
identification of the constitutive models. Various types of input data, specifically integral data such as forces
and full-field data, i.e., displacement and strain fields, can be considered in the multi-objective optimization.
Within a classic optimization-based parameter identification, the optimization problem

min( f (κ)), ∀κ ∈ K, with K = {κ |h(κ) = 0, g(κ) ≤ 0} (1)

is solved for the parameter set κ , where f (κ) represents the scalar objective function quantifying the error
between simulation and experiment. The equality and inequality constraints are denoted by h(κ) = 0 and
g(κ) ≤ 0, respectively. To measure the error between simulation data •isim and experimental data •iexp for each
data point i , the objective function is defined by using the root sum of squares

f (κ) =
√
√
√
√

1

ndp

ndp
∑

i=1

wi
∣
∣ •simi (κ) − •expi

∣
∣. (2)

Here, ndp defines the number of data points in space and time, and wi represents weighting coefficients. The
symbol • can refer to any quantity of interests.

In the current contribution, multiple objectives are considered instead of focusing on a single objective,
notably forces, displacements, and void area fractions. Detailed information about the experimental data is
prescribed in Section 3.1. The optimization ofmultiple objectives requires the formulation ofmultiple objective
functions that need to be optimized simultaneously. Alternatively, the set of objective functions

f(κ) = [ f1(κ), f2(κ), . . . , fn(κ)]T (3)

can be reduced to a single objective function

f (κ) =
n

∑

i=1

fi (κ)

f̂i
, (4)

where the single objective functions fi (κ) are normalized by using a scalar value f̂i and where n is the number
of individual objectives. It is worth noting that solutions to multi-objective optimization problems are typically
not unique since if the objective functions are optimized individually, they are often in conflict with one
another. In other words, improving one objective can make another worse. To find the best compromise, a
Pareto optimum [39] can be used instead by introducing a modified global objective function of the form

f (κ) =
√
√
√
√

n
∑

i=1

[
f ∗
i − fi (κ)

f ∗
i

]2

. (5)

Here, f ∗
i defines the minimum error for each single objective function. The global objective function is then

considered Pareto-optimal if it is impossible to improve one of the single objective functionswithout increasing
the error of the others.

In ADAPT, evolutionary, gradient-based, and gradient-free algorithms are available for optimization. In
this study, the gradient-free Nelder-Mead Simplex algorithm is employed [40]. This method does not require
differentiability of the objective function and exhibits robust convergence behavior in complex optimization
problems. However, its convergence rate is slower than gradient-based algorithms, emphasizing the need to
choose suitable start values.
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Fig. 2 Experimental setup: aGeometry of the considered round tensile specimen of thematerial 16MnCrS5.bLoad–displacement
curve during tensile loading

3 Parameter identification of 16MnCrS5

3.1 Experiment

Rotationally symmetric tensile specimenswith a notch are used for optimization (Fig. 2a). The global strain rate
was chosen as 0.000251/s (related to linear, non-logarithmic strains) to represent quasi-static conditions.Global
displacement was measured by using a tactile extensometer with an initial length of 20mm. The extensometer
was positioned outside of the notch where the strains are nearly homogeneous. The load–displacement curve
(Fig. 2b) has a pronounced force drop before fracture due to the ductile material behavior.

Since the specimen is rotationally symmetric, the field data obtained by digital image correlation (DIC)
contains a lot of redundant information and can be reduced to data along a vertical line on the surface by
exploiting the symmetry (Fig. 3a). The radial strain of the specimen corresponds to the strain in orthogonal
direction ex for a path along the longitudinal axis centered on the specimen. This depth strain is calculated by
assuming volume constancy based on the principal strains on the surface. Whereas this approach is reasonable
for small strains in the thickness direction, as is the case for flat tensile specimens, the error would be too
large for notched round tensile specimens. Displacement fields must therefore be used. By eliminating rigid
body motions through the use of a moving coordinate system centered at the notch as the reference system, the
radial displacement ur (z) can be referred to as the displacement in depth-direction ux(z, ϕ = 0◦) (displacement
orthogonal to the measured surface). The specimen thickness in terms of radius changes during loading, and
at the same time, the specimen expands in the longitudinal direction (Fig. 3b). This behavior is mapped by the
contour within the notch region. Such contour measurements are used for parameter identification.

The tensile tests are performed at the Institute of Forming Technology and Lightweight Components (IUL)
at TUDortmund University. The Central Facility for ElectronMicroscopy (GFE) at RWTHAachen University
provided the experimental void measurements. The void measurements were made using scanning electron
microscopy (SEM). Specimens loaded to failure were separated, embedded, and ground with grits of 320, 400,
600, 800, 1000, 1200, and 2400. The specimens were then polished to 6μm, 3μm, 1μm and 0.25μm. This
was followed by an OPS polish (oxide polish suspension based on SiO2) and a polish with water. The void
fractions are detected along the central axis in loading direction. The area measured by SEM is 9mm×1mm
(length×width, Fig. 4a) and is located as close as possible to the fracture surface. The smallest detectable void
has an area of 0.037μm2. Based on the provided void measurements, the void area fraction is calculated by
summing the measured void areas and dividing them by the corresponding total area, the so-called window.
The choice of the window size greatly influences the results (Fig. 4b). Significant outliers are observed if the
window is too small and if the data is not statistically representative. On the other hand, a window that is too
large leads to insufficient resolution of the data, as differences along the length are not mapped with sufficient
accuracy. In the following, the data with a corresponding window of 0.3mm×0.3mm will be used since data
with this window size represent the local trends well. In addition, the window size is similar to the element
size of the FE mesh in the deformed configuration.
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Fig. 3 a Displacement field in thickness direction ux immediately before fracture. The displacement in the thickness direction
is equal to the radial displacement of the outer contour along the vertical line (ur (z) = ux (z, ϕ = 0◦)). b Contour evolution in
radial direction w.r.t. extensometer displacement within the notch of the round tensile specimen

Fig. 4 a SEM panoramic image of the void area distribution along the axial plane (ey - ez plane, cf. Fig. 3a) of the round tensile
specimen starting at the fracture surface (top) as well as the representation of the void area of single voids along the distance to
the fracture surface (bottom). GFE has provided the void measurements. bVoid area fraction along the ez-direction to the fracture
surface. The void area fraction is calculated by summing the measured void areas and dividing them by a corresponding total
area. Area sizes of 0.01–0.15mm2 with different lengths and widths are analyzed to identify a suitable corresponding area

3.2 Finite element model

The notched round tensile specimen of 16MnCrS5 was modeled as a rotationally symmetric body exploiting
symmetry in the longitudinal direction (Fig. 5). Thefinite element analysis toolABAQUSused two-dimensional
axisymmetric elements with reduced integration and extended hourglass control (CAX4R). The simulations
were performed in Abaqus with explicit time integration since the used material models are available in the
form of VUMAT subroutines. According to a convergence study (see Appendix A), the element length was
set to le = 0.25mm and a mass scaling of 104 was chosen. The selected element length and mass scaling
were verified by comparing explicit elasto-plastic simulation with static implicit elasto-plastic simulation. The
experimentally measured displacements are applied to the top edge of the finite element model in ez-direction.
This is done where the extensometer was placed in the experiment to represent the real load condition as
accurately as possible. The radial displacements at the top edge are not constrained, taking into account that
the experimental clamping is sufficiently far from the extensometer position. The process is assumed to be
isothermal.
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Fig. 5 Finite element model of the round tensile test with corresponding boundary conditions

3.3 Material models

The current study employs twomodels accounting for the elasto-plastic behavior and ductile damage in metals.
Themodels are formulated for finite deformations and rely on amultiplicative decomposition of the deformation
gradient F = Fe ·Fp into an elastic part Fe and a plastic part Fp as proposed by Lee [41]. The presentation of the
model framework follows a previous comparison of the models by focusing on their predictive performance for
the forming of thick sheets [42]. The kinematic framework approximates the logarithmic elastic strain ln(Ue)
within the context of the polar decomposition Fe = Re · Ue. Here, Re represents the elastic rotation tensor.
The approximation

˙ln (Ue) = RT
e · D · Re − Dp (6)

of the rate of change for the logarithmic elastic strain holds for small elastic strain | ln(Ue)| � 1 and is
derived in more detail in, e.g., [43]. The evolution relation depends on the total rate of deformation D =
sym(L) = sym(Ḟ · F−1). The rate of plastic deformation and rotation are defined as Dp = sym(Ḟp · F−1

p ) and

Wp = skw(Ḟp · F−1
p ), respectively. It is assumed that the material axes rotate with the continuum spin, which

implies that Wp ≈ 0. Consequently, Re = R results for the elastic rotation with R = F · U−1 . The class of
investigated metals is considered to be elastically and plastically isotropic. The back-rotated Cauchy stress

M = RT
e · σ · Re (7)

is chosen as the stress measure in the model formulation. The evolution relation

Dp = γ̇
∂�

∂M
(8)

for the rate of plastic deformation, where γ̇ denotes the plastic multiplier, is formally identical in the two
models considered as this work proceeds. The total potential

�(M, σf, ω, Y ) = �p(M, σf, ω) + �d(Y, ω) (9)

is split into a plastic part �p and a ductile damage part �d, where the internal variable ω accounts for the
evolution of voids. The specific choice of �p determines the rate of plastic deformation in eq. (8). Similarly,
the influence of damage on the plastic and elastic behavior depends on the specific choices for �p and �d. In
particular, the driving force Y for damage governs the influence of damage on elasticity.

Isotropic hardening according to Swift

σf = K (ε0 + ε
p
eq)

n, (10)

in terms of the equivalent plastic strain ε
p
eq =∫ √

2/3 |Dp| dt and the material parameters K , ε0 as well as n is
considered. The elastic stress update in the constitutive model is

Ṁ = λ tr
(

RT
e · D · Re − Dp

)

I + 2μ
(

RT
e · D · Re − Dp

)

, (11)
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where I denotes the second order identity tensor. Parameters λ = Eν/ [(1 + ν) (1 − 2ν)] and μ =
E/ [2 (1 + ν)] are the Lamé constant and the shear modulus in terms of the Young’s modulus E and the
Poisson’s ratio ν, respectively.

3.3.1 Porous plasticity

The motivation of porous plasticity models is the coupling of the decrease in yield stress σy to the void
evolution. Voids in the as-received material increase their volume due to the hydrostatic stress state. The
choices of ω = DGTN and �p,GTN, with �d,GTN = 0 lead to the plastic potential

�p,GTN =
(

σeq

σf

)2

+ 2 q1DGTN cosh

[
3

2
η q2

]

− (1 + q3DGTN), (12)

which is a function of the void volume fraction DGTN and which depends on the initial yield stress σf and the
equivalent stress σeq = √

3/2 |dev(M)| for isotropic plasticity, where dev(M) defines the deviatoric part of
the stress tensor. In addition, the triaxiality

η = σm

σeq
with σm = 1

3
tr(σ ) (13)

represents the hydrostatic stress state. The parameters q1, q2, and q3 control the influence of the void volume
fraction on softening.

The current model considers void evolution by growth and nucleation following the fundamental work of
Gurson [8]. In particular, the void nucleation term is adopted according to the extension by Chu andNeedleman
[44]. The evolution of the void volume fraction

ḊGTN = Ḋgr, hyd
GTN + Ḋgr, shr

GTN + Ḋnuc
GTN (14)

consists of the parts for void nucleation Ḋnuc
GTN (eq. (18)) and parts due to hydrostatic void growth Ḋgr, hyd

GTN as

well as void growth related to shear stresses Ḋgr, shr
GTN . The hydrostatic void growth

Ḋgr
GTN = (1 − DGTN) tr(Dp), (15)

depends on the current void volume fraction DGTN and the trace of the rate of plastic deformation Dp. The
void growth due to shear according to the extension by Nahshon and Hutchinson [45]

Ḋgr, shr
GTN = kw DGTN

f (dev(M))

σeq
dev(M) : Dp (16)

depends on a material parameter kw and a stress-dependent function

f (dev(M)) = 1 −
(

27 J3
2 σ 3

eq

)3

, (17)

where J3 = det(dev(M)) defines the third invariant of the deviatoric stress tensor. The rate of void nucleation
is defined as

Ḋnuc
GTN = fn

Sn
√
2π

exp

(

−1

2

[
εeq − εn

Sn

]2
)

ε̇
p
eq, (18)

where fn, Sn and εn denote additional material parameters. Themodel is numerically implemented into Abaqus
explicit via the VUMAT interface by Soyarslan et al. [46].
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3.3.2 Lemaitre model

The used version of the Lemaitre model extends the influence of voids to the elastic behavior via the specific
potential

�(M, σf, DLem, Y ) = �p,Lem(M, σf, DLem) + �d,Lem(Y, DLem) . (19)

The specific choices are then ω = DLem, cf. eq. (9) and

�p,Lem = σ̃eq − σf (20)

for the plastic potential with σ̃eq = √
3/2 |dev(M̃)|, cf. Eq. (24). The damage potential is defined as

�d, Lem = S

1 + δ
γ̇

〈
Y − Y0

S

〉1+δ 1

(1 − DLem)β
(21)

and depends on the driving force Y , and an associated threshold Y0, whereas S, δ and β define material
parameters related to damage. The driving force

Y = 1 + ν

2 E

3
∑

i

〈M̃i 〉2 − ν

2 E
〈M̃h〉2, (22)

is a function of effective principal stresses M̃i and the hydrostatic effective stress M̃h.With the damage potential,
the damage evolution

ḊLem = γ̇

〈
Y − Y0

S

〉δ 1

(1 − DLem)β
(23)

is derived and the coupling of damage to the mechanical properties is realized through effective stresses. The
effective stress

M̃ = M
1 − DLem

(24)

describes the stresses acting on the void-free cross section A = A0 − Av based on the inital cross section A0
and the void area Av. Thus, in contrast to the GTN model, the damage variable

DLem = Av

A0
. (25)

represents the void area fraction rather than the void volume fraction in the GTNmodel. The current study uses
the numerical implementation of the described Lemaitre model into Abaqus explicit via the VUMAT interface
by Soyarslan and Tekkaya [47].

3.3.3 Material parameters

The material parameters for the GTN and the Lemaitre model are provided in Tables1 and 2, respectively.
Parameters that are pre-defined and not subject to calibration are highlighted in blue. The Young’s modulus
E and the Poisson’s ratio ν are directly obtained from experimental observations, while it is assumed that the
other pre-defined parameters do not significantly influence the material behavior within the considered BVP.
For the parameters to be identified, specific parameter ranges based on the material 16MnCrS5 have been
defined. These ranges have been used in order to generate training data to predict start values.
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Table 1 Overview of the defined material parameters of the GTN model

Symbol Description Parameter range Unit

E Young’s modulus 210 GPa
ν Poisson’s ratio 0.3 –
K Strength parameter 700–1500 GPa
ε0 Initial yield parameter 2.0 × 10−4 − 3.0 × 10−4 –
n Hardening exponent 0.2–0.3 –
q1 Related to damage-induced softening 1.0 –
q2 Related to damage-induced softening 1.5 –
q3 Related to damage-induced softening 2.25 –
kw Factor related to shear stress 1.0 –
fn Volume fraction of nucleated voids 0.03–0.065 –
Sn Mean value of nucleation strain 0.1–0.55 –
εn Standard deviation of nucleation strain 1.0 × 10−4 − 2.0 × 10−1 –

Prescribed values are marked in bold

Table 2 Overview of the defined material parameters of the Lemaitre model

Symbol Description Parameter range Unit

E Young’s modulus 210 GPa
ν Poisson’s ratio 0.3 −
K Hardening parameter 700–1500 GPa
ε0 Initial yield parameter 2.0 · 10−4 − 3.0 · 10−4 −
n Hardening exponent 0.2–0.3 −
Y0 Threshold of driving force 0 −
β Driving force rate factor 1.0 −
S Damage-related parameter 2–20 MPa
δ Damage-related parameter 0.1–2.0 −
Prescribed values are marked in bold

3.4 Prediction of initial parameter set

We employ the machine learning-based framework outlined in Section 2.1 to efficiently obtain high-quality
start values for the subsequent optimization-based parameter identification. To this end, a training data set has
to be generated for each constitutive model from which 20% are separated for the test data set. By using the
LHS method, 10,000 parameter combinations were generated by using the FE model of the BVP within the
pre-defined parameter ranges (cf. Table2) for the Lemaitre model, and 9315 of the corresponding simulations
were completed successfully. Following the work in [3], a feedforward neural network is generated by using
a multilayer perceptron regressor (MLPregressor). The hyperbolic tangent tanh(x) is chosen as the activation
function for this application case since it was very successful. The stochastic gradient-based optimizer from
[48] is selected as the solver. While the shuffling of the samples in each iteration is deactivated, the initial
learning rate is set to 0.0001. In addition, considering weights and bias initialization, the random number
generation is fixed to 1. The training of the neural network was stopped once the mean squared error on a vali-
dation data set (data not included in the training process) no longer decreased. While the previously described
settings influence the ANN’s performance, it also strongly depends on the corresponding hyperparameters.
Therefore, a hyperparameter optimization via a random walk algorithm is performed following [3] to obtain
the trained ANN with the best performance. Thus, the following hidden layer structure was achieved for the
trainedANNin the case of theLemaitre damagemodel [171, 171, 171, 171, 171, 171, 194, 194, 194, 194, 194,
194, 221, 252, 287, 287, 287, 287, 287, 287, 326, 326, 326, 326, 326, 326]. Each entry in this vector repre-
sents a hidden layer, where each number indicates the number of neurons per layer. Considering that, in this
application case only two different material models shall be calibrated for one specific material—the case-
hardened steel 16MnCrS5—the boundary value problem (BVP), which is used in the optimization process
to simulate the experimental loading behavior (see Fig. 5), is directly employed for the generation of the
training data set. Thus, the underlying BVP considers inhomogeneous states of deformations; however, the
ANN’s input data only considers the load–displacement curve’s overall reaction force. Since the displacement
is prescribed for the BVP, it is unnecessary to consider the displacements in the training process. Different
measures in the testing process can quantify the performance of the trained ANN. At first, the average deviation
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Table 3 Average deviation between original and predicted parameters of the complete test data set for the optimal hyperparameter
set in the case of the Lemaitre damage model

K in MPa ε0 n S δ

Avg. deviation 1.14% 4.39% 1.06% 19.83% 12.79%

Fig. 6 Array of the load–displacement curves of the complete test data set for the GTN model (left) and the Lemaitre model
(right). While all the curves are plotted in transparent light gray scales, the median curve is highlighted in red

of the predicted parameter to the original material parameter, cf. Table 3 for the Lemaitre parameters can be
employed to investigate whether the ANN provides an accurate prediction.

However, if the average deviation for a parameter is very high, the performance of theANN is not necessarily
bad. Suppose the simulated curve based on the predicted material parameter set is close to the original input
curve. Different local minima exist in that case, and some parameters are not uniquely identifiable for the
underlying material model based on the considered loading path. The curve deviation of each test data set j
was calculated in [3] via the absolute error

δ
j
AE =

ns∑

i=1

∫ ∣
∣
∣
∣
•inpi − •predi

∣
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∣
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∣
∣
∣

j

, (26)

where ns denotes the number of loading path sequences, in this case ns = 1. The maximum value of the total
data set normalizes the deviation. Hence, both measures can be used to investigate whether the loading path is
sufficient for a proper calibration or whether the parameters are independent. In Fig. 6, all test data set load–
displacement curves are shown, and the corresponding median curve is highlighted in red. The pronounced
decrease in several load–displacement curves before the onset of fracture can be attributed to localization
due to damage. The local damage distribution results in material softening, consequently causing a sharp
decrease in force. The heatmap in Fig. 7 demonstrates the overall network performance in the testing process.
The deviation of the loading curves of each test data set to the median curve is plotted in the horizontal
direction. This deviation can demonstrate whether the network’s performance is similar over the total range
or, for example, whether the ANN provides a lesser accuracy in the outer region. The predicted deviation to
the original curve δAE is shown in the vertical direction. The colorbar gives the frequency. The clustering of
the data sets at the bottom of the figure demonstrates that the overall performance of the trained ANN for the
Lemaitre model is very accurate over the whole data range.

Next, the experimentally measured load–displacement curve from Section 3.1 is fed into the trained and
tested ANN in order to obtain a prediction of the material parameters for the Lemaitre model for the case-
hardened steel 16MnCrS5. The predicted parameters are shown in Table 4, and the corresponding comparison
of the load–displacement curves of the experiment and the simulation with the predicted parameter set are
shown in Fig. 8 in the right plot. The results demonstrate that the predicted load–displacement curve is already
close to the experimentally measured curve. However, after conducting the subsequent parameter identification
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Fig. 7 Heatmaps of the network performance for the optimal hyperparameters for the GTN model (left) and the Lemaitre model
(right). The frequency of the 1801 (GTN model) and 1863 (Lemaitre model) test data sets—20% of the total data set—regarding
their curve deviation from the median curve and the curve deviation of the predicted and original curves are shown. The clustering
at the bottom of the figure demonstrates a good overall network performance

Table 4 Predictedmaterial parameters of the 16MnCrS5 for the Lemaitre damagemodel using the optimal set of hyperparameters

Symbol NN-prediction Optimization (F-strategy) Unit

f 18,279.29 183.38 –
K 833.203 906.50 GPa
ε0 1.57 × 10−3 2.85 × 10−4 –
n 0.19 0.21 –
S 19.801 12.33 MPa
δ 0.868916 0.98 –

The predicted parameters are compared to the optimized parameter set obtained from the subsequent multi-objective parameter
identification scheme

by using only the load–displacement curve referred to as F-strategy, the optimal solution and the experimental
curve show an excellent match. Furthermore, the predicted parameters of the ANN are already very close to
the final optimum obtained from the subsequent parameter identification scheme.

In addition to the Lemaitre damage model, the previously mentioned GTN model shall be calibrated for
the case-hardened steel. Thus, the general structure of the machine learning-based framework, the experi-
mental data, and the BVP are equal. However, an ANN has to be trained with a data set based on 10,000
parameter combinations within the defined parameter ranges (cf. Table 1) for the GTN model. In this case,
9005 simulations were completed successfully, and the optimal structure of the hidden layers was obtained
as [120, 120, 120, 120, 120, 120, 120, 120, 120, 140, 140, 140, 140, 140, 140, 140, 140, 140, 180, 180, 180,
180, 180, 180, 180, 240, 240, 240, 240, 240, 240, 240, 320, 320, 320, 320, 320, 320, 320, 320, 320, 420,
420, 420, 420, 420, 420, 420, 420, 420].

The corresponding average parameter deviation of the test data set is shown in Table 5. It can be seen
that the last two parameters reveal a relatively large deviation between the predicted and original parameters.
Hence, it is crucial to evaluate the deviation of the predicted and original curve δAE as well as to analyze
whether the trained ANN provides a bad performance regarding these parameters or whether these parameters
cannot be uniquely identified based on the considered loading path. As shown in Fig. 7, the ANN’s overall
network performance is quite accurate; thus, the loading path sequence cannot uniquely identify all parameters.
However, since only a suitable start set shall be generated, the network performance is more than sufficient.

In Table 6, the predicted parameters for the GTN model are compared to the finally obtained parame-
ters based on the subsequent multi-objective parameter identification. The predicted parameters deviate only
slightly from the finally obtained parameters. The corresponding load–displacement curves are shown on the
left in Fig. 8. It is shown that the simulated load–displacement curve based on the predicted parameter set
nearly perfectly matches the experimentally measured material behavior. Hence, even the prediction quality
of the ANNwith experimental data sets is very accurate. Nevertheless, the subsequent optimization using only
the load–displacement curve (F-strategy) can slightly improve the overall fit. Thus, the machine learning-
based framework is well suited for identifying proper starting values for optimization schemes of different
constitutive models.
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Fig. 8 Prediction of the load–displacement curve for the GTN model (left) and the Lemaitre model (right). The dashed blue
line represents the prediction based on the ANN-determined parameter set, while the solid line represents the prediction of the
subsequent parameter identification based on the load–displacement curve only, the so-called F-strategy

Table 5 Average deviation of the original and predicted parameters of the complete test data set for the optimal hyperparameter
set in the case of the GTN damage model

K in MPa ε0 n fn Sn εn

Avg. deviation 1.49% 8.25% 2.37% 9.97% 14.42% 23.64%

Table 6 Predicted material parameters of the 16MnCrS5 for the GTN damage model based on the optimal set of hyperparameters

Symbol NN-prediction Optimization (F-strategy) Unit

f 1029.69 183.35 –
K 902.993 894.85 MPa
ε0 2.60 × 10−4 2.78 × 10−4 –
n 0.22 0.21 –
fn 3.32 × 10−2 3.79 × 10−2 MPa
Sn 0.48 0.49 –
εn 7.56 × 10−2 0.14 –

The predicted parameters are compared to the optimized parameter set obtained from the subsequent multi-objective parameter
identification scheme

In terms of enhancing the efficiency of parameter identification, it is crucial to not only consider the
predictive quality of the ANN but also how the machine learning-based start value prediction compares to the
manual determination of initial start values. Generating training data by using FE simulations and ultimately
training the ANN requires significant computational effort. With a computation time of approximately 1
minute per simulation on the Linux HPC cluster of TU Dortmund (LiDO3) using 2 cores, the data generation
for the GTN model (9005 simulations) and the Lemaitre model (9315 simulations) each took almost one
week provided that multiple simulations are not carried out in parallel. The training process itself takes about
20min and depends on the respective hyperparameters. The prediction of the initial values takes only 1–2s.
However, the ANN only needs to be trained once for a material model and can then be used for all material
classes that can be described by the material model. To assess whether the time invested in model creation
is worthwhile in terms of efficiency enhancement, parameter identification using AI-predicted start values is
compared to parameter identification using start values generated through full-factor and random sampling
(Table13). The efficiency is evaluated based on the number of iterations required for reaching convergence of
classic optimization and the magnitude of the remaining error.

The convergence behavior highly depends on the choice of initial start values (Fig. 9a). The machine
learning-based predicted start value leads to the fastest convergence with the smallest remaining error of
fF =183.38. In contrast, 68% of the generated start values either immediately or during optimization cause
the termination of the FE simulation, whereas the remaining start values shows slower convergence behavior
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Fig. 9 Comparison of the convergence behavior during optimization of the Lemaitre model using a machine learning-based
start value set and randomly selected start value sets. 46 initial parameter sets were selected based on full-factor and random
sampling, see Table13. Convergence was reached in 15 of 46 parameter sets, corresponding to a convergence rate of ≈33%. (a)
Convergence behavior of some selected start value sets. The start value sets are based on full-factor and random sampling. (b)
Probability density δ∗ of the final objective function value. The density of the i th bin is calculated using δ∗

i = f ∗
i /(w∗ · n∗) with

the frequency f ∗
i as well as the width wi of each bin and the total number of converged start sets n∗ = 15. The bin corresponding

to the AI start value set is marked green. The solid line represents the normal distribution based on the mean value of 598.44 and
the standard deviation of 192.70. (c) Efficiency assessment of each converged start value set using the final number of iterations
and the corresponding objective function value. The bin corresponding to the AI start value set is marked green. (Color figure
online)

with generally larger remaining errors (Fig. 9b). Although similar accuracy was achieved with a few parameter
sets, more iterations were required. The machine learning-based start value prediction not only identifies the
smallest minimum depending on pre-defined parameter ranges, but also directly provides start values that,
depending on the quality of training, are already close to the minimum, thereby reducing the number of
iterations compared to the use of "manually" determined start values. Furthermore, the ANN can directly
predict appropriate start values for new materials, provided that the material behavior is represented by the
material model considered in the training.

Given the 46 optimizations conducted with different start value sets, it is evident that it is extremely
challenging to find a set of initial values that converges and performs similarly well as the AI-determined
start value set. The assessment of performance depends on the user-specific weighting of the two parameters
"number of iterations" and "remaining error" (Fig. 9c). While in general, small overall bars, meaning a low
converged loss value reached with a low number of iterations, are desired, specifics can be case-dependent. If
a high quality of the found solution, i.e., a small upper bar, is desired, this might cost more time investment, in
the case that better minimum is more challenging to be found. By contrast, if a fast convergence, i.e., a small
lower bar, it might come at the cost of a mediocre local minimum, which is quickly reached.

3.5 Analysis of different parameter identification strategies

Theprevious section obtained accurate starting values for a subsequent single-objective parameter identification
based on load–displacement curves referred to as F-strategy. In the following, multi-objective parameter
identification strategies are performed with the pre-determined parameter values at hand, and the influence of
different experimental data sets is analyzed. For this purpose, besides the forces, the contour data are used. The
calibration based on the individual data sets is compared with the Pareto strategy, i.e., a strategy with several
objective functions. The strategy that considers only the contour measurements in the objective function is
called the r -strategy. The contour data are compared to the simulation at each time step. The evaluations of the
different strategies are based on the dimensionless mean square error since this quantity represents the error
measure in the parameter identification scheme.

The identified parameters and the corresponding errors are shown in Tables7 and 8 for the GTN model
and in Tables9 and 10 for the Lemaitre model. The corresponding load–displacement curves for both material
models are given in Fig. 10. At first, the predictions made by using the GTN model are analyzed. The r -
strategy exhibits a significant error in predicting force ( fF = 285 × 104), whereas the F-strategy shows
a worse performance in contour prediction compared to the other two strategies ( fr = 2.85 × 10−5). For
both experimental data sets, the Pareto strategy demonstrated the lowest overall errors ( fPareto = 0.72). The
maximum equivalent plastic strain ε

p
eq = 1.19 is largest for the F-strategy (Fig. 11). The other maxima deviate
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Table 7 Predicted material parameters of the 16MnCrS5 for the GTN model based on the different parameter identification (PI)
strategies

PI-strategy K in MPa ε0 n fn Sn εn

F-strategy 894.85 2.78 × 10−4 0.21 3.79 × 10−2 0.49 0.14
r -strategy 1785.95 4.64 × 10−5 0.27 0.12 0.18 0.67
Pareto strategy 913.54 2.31 × 10−4 0.22 3.94 × 10−2 0.36 0.19
D-strategy 859.35 9.23 × 10−5 0.20 0.38 0.14 0.72

Table 8 Dimensionless error of different parameter identification strategies for the predictedmaterial parameters of the 16MnCrS5
for the GTN model

PI-strategy fF fr fPareto fD

F-strategy 183.35 2.85 × 10−5 1.52 2.65 × 10−3

r -strategy 258 × 104 1.13 × 10−5 13877.69 1.10 × 10−2

Pareto strategy 226.56 2.32 × 10−5 0.72 3.84 × 10−3

D-strategy 968.40 3.50 × 10−5 6.38 7.38 × 10−9

Table 9 Predicted material parameters of the 16MnCrS5 for the Lemaitre model based on the different parameter identification
(PI) strategies

PI-strategy K in MPa ε0 n S in MPa δ β

F-strategy 906.50 2.85 × 10−4 0.21 12.33 0.98 –
r -strategy 1904.76 1.49 × 10−4 0.28 32.74 0.57 –
Pareto strategy 926.31 3.23 × 10−4 0.23 11.32 0.89 –
D-strategy 859.35 9.23 × 10−5 0.20 20.72 2.66 8.58

Table 10 Dimensionless error of different parameter identification strategies for the predicted material parameters of the
16MnCrS5 for the Lemaitre model

PI-strategy fF fr fPareto fD

F-strategy 183.38 2.78 × 10−5 0.88 1.77 × 10−7

r -strategy 456 × 104 1.48 × 10−5 24867.74 8.41 × 10−6

Pareto strategy 194.10 2.49 × 10−5 0.69 2.32 × 10−7

D-strategy 1021.21 3.53 × 10−5 5.95 1.58 × 10−8

by approximately 15%. The predictions of the F- and Pareto strategies show a significantly more pronounced
localization behavior than that of the r-strategy, where the area of maximum deformation extends across the
entire width of the sample. This behavior is also reflected in the damage distribution (Fig. 11). The level of
damage is highest in the prediction using the r -strategy and localization is greatest with the other two strategies.

Similar results can be observed for the Lemaitre model. The force prediction shows no significant differ-
ences to the experiments for the F- and Pareto strategy ( fF = 183.38 and fF = 194.10). In contrast, the
results of the r -strategy differ significantly ( fF = 456 × 104). While the r -strategy predicts the contour best
( fr = 1.48× 10−5), the F-strategy shows the largest error ( fr = 2.78× 10−5). The Pareto strategy shows the
lowest error overall and thus the lowest distance to the ideal solution ( fPareto = 0.69). All simulations show
similar localization behavior regarding the distribution of the equivalent plastic strain (Fig. 12). This region
spans almost the entire width of the specimen in all simulations. The levels of equivalent plastic strain show
differences of approximately 10%. Despite the relatively homogeneous strain distribution, damage localization
is very pronounced (Fig. 12) and shows significant differences of up to 71% for the maximum damage.

The aim is to predict the void evolution, as the damage affects the product performance. With a known
distribution of damage, the safety reserves can be reduced and the component can be designed lighter. Therefore,
the different parameter identification strategies are additionally analyzed concerning their prediction accuracy
of the experimental void measurements during the tensile tests.

The monotonic damage decreases with increasing distance from the fracture surface and is correctly
captured (Fig. 13). The relative error between simulation and experiment is in the range of 300.0% and
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Fig. 10 Prediction of the load–displacement curve based on different parameter identification strategies for the GTN model (left)
and the Lemaitre model (right)

Fig. 11 Prediction of field quantities for different parameter identification strategies using the GTN model

Fig. 12 Prediction of field quantities for different parameter identification strategies using the Lemaitre model

2714.1% and is not qualitatively satisfactorily mapped (Table11). This is because the damage models directly
link the void fraction to the softening of the mechanical properties. The predicted softening in the macroscopic
load ranges from 9.0% to 12.6% for the F-strategy. In contrast, the measured void area fractions in the
corresponding experiments are much lower (< 0.7%).

3.6 Parameter identification based on void measurements

So far, it has been demonstrated that the models perform most accurately if they predict quantities used in the
calibration process. This has been shown for integral data, such as forces and derived field quantities (contour
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Fig. 13 Prediction of the void area fraction based on different parameter identification strategies for the GTN model (left) and
Lemaitre model (right)

Table 11 Relative errors in predicting void area fraction during forward rod extrusion

Material model r -strategy (%) F-strategy (%) Pareto strategy (%) D-strategy (%)

GTN model 7361.8 31368.9 6661.2 15.95
Lemaitre model 300.0 2714.1 507.1 37.38

measurements). Since the aim is to predict void fractions, a parameter identification using experimentally
determined void area fractions, referred to as D-strategy, is performed in the following. To consider the void
measurements of the tensile specimens within the model calibration, the void area fractions are evaluated
along a path on the symmetry axis in the longitudinal direction. Simulation and experiment can be compared
by using interpolation to the same grid points. The parameters of the nucleation term of the damage evolution
of the GTN model can be linked to microstructural properties and directly determined from the experimental
void measurements without the need for classic optimization-based parameter identification. Since the GTN
model considers the void volume fraction as the damage quantity, it is assumed that the magnitude of the
experimentally determined void area fraction is identical to that of the void volume fraction. After the damage-
related parameters fn, Sn and εn have been directly determined from the nucleated voids, the parameters
associated with plasticity, K , ε0 and n, can be identified by using the Pareto strategy.

In contrast to the GTN model, the Lemaitre model links the void fraction directly to the softening by the
concept of effective stresses. Therefore, these two quantities have similar value ranges. However, since the
measured void fractions (Fig. 4b) aremuch smaller than the void fractions predicted in the previous simulations
(cf. Fig. 13), a simultaneous identification of the damage parameters based on load–displacement curves and
void measurements would not be useful. Instead, a two-step calibration approach is chosen. In the first step,
damage was not activated, and the plasticity parameters (K , ε0, and n) were calibrated based on homogeneous
states of deformation (up to the onset of force drop). In the second step, these parameters were fixed, and the
damage-related parameters (S, δ, and β) were calibrated based on inhomogeneous states of deformation. This
method allowed for the successful identification of all parameters. For better comparison, themodel parameters
identified by using the D-strategy as well as the other strategies can be found in Tables7 and 9 for the GTN
and Lemaitre model, respectively.

The D-strategy predicts the experimental void measurements of the case-hardened steel well for both
constitutive models (Fig. 14). The relative errors for the GTN and Lemaitre models are 15.95%, and 37.38%,
respectively (Table11). It should be noted that the measured void area fractions are subject to fluctuations due
to heterogeneities on the microscale. In an ideal data set, the deviations would be even smaller. The Pareto
strategy reproduces the load–displacement curve better than the D-strategy with the Lemaitre model (Fig. 15).
However, the difference is not significant. Similar results can be observed for the GTN model. Due to the low
void area fraction of the D-strategy, the damage-induced softening is negligible. Accordingly, the possibilities
are limited with respect to the representation of macroscopic data.
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Fig. 14 Prediction of the void area fraction based on the parameter identification scheme using void area fraction within the
optimization process (D-strategy) for the GTN model (left) and the Lemaitre model (right)

Fig. 15 Prediction of the load–displacement curve based on the parameter identification scheme using void area fraction within
the optimization process (D-strategy) for the GTN model (left) and the Lemaitre model (right)

4 Prediction of void area fraction in forward rod extrusion

This section validates the proposed parameter identification strategies that use void measurements of forward
extruded components. First, the experimental setup, execution, and numerical modeling are briefly described.
Afterward, the prediction of the void area fractions is presented.

4.1 Experimental setup

In forward rod extrusion, the workpiece made of case-hardened 16MnCrS5 steel is pressed through a die
(Fig. 16a). The initial diameter of the workpiece and its length are d0 = 30mm and l0 = 71mm, respectively.
The process was stopped at a shaft length of 80mm and the part has been ejected from the die. An extrusion
strain of ε = 2 ln(d1/d0) = -0.5 was selected for the tests, resulting in a final diameter of d1 = 23.4mm. The
shoulder opening angle is 2α = 90 ◦, and the transition radii in the shoulder are set to rm = 3mm. A punch
speed of 10mm/s was used. The cylindrical workpieces were lubricated with Beruforge 191 (coating lubricant
containing MoS2) and pressed at room temperature. Experimental void measurements were carried out in the
steady-state area of the extruded shaft along the radius. For this purpose, five measurement points were evenly
distributed along the radius. The area of the measured voids was summed and divided by the nominal area of
1.28 mm2 to calculate the void area fraction (Fig. 16b).

The methods described in Section 3 were used for all measurements. The largest void evolution can be
observed on the central axis. The corresponding void area fraction is approximately 0.0275%. As the radius
increases, the void area fraction decreases and falls below the initial value of D0 = 0.0066%, implying void
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Fig. 16 (a) Sketch of forward rod extrusion. (b) Void area fraction along the radius of the extruded shaft after forward rod extrusion

closure. At the outer edge of the component, the void area fraction then slightly increases again to 0.0083%.
This observation aligns with the pattern of local stress triaxiality, which reaches its maximum at the center and
decreases toward the edge.

4.2 Finite element model

The forward rod extrusion process is simulated with an axisymmetric 2D model with four-node quadrilateral
elements, reduced integration, and extended hourglass control (CAX4R). The workpiece is homogeneously
discretized with 20000 elements of an element edge length of 0.2mm in the initial state. The die is modeled
as an elastic body with the same Young’s modulus as the workpiece of E = 210GPa. By comparing the punch
forces in the experiment and simulation, the coefficient of friction was determined to be m = 0.04 [30]. The
process is assumed to be isothermal. A void-free material in the initial state was assumed for the following
numerical investigations.

4.3 Void evolution in forward rod extrusion

The damage prediction using the GTN model is for all strategies below the initial void area fraction (Fig.
17). In the GTN model, void growth is defined through the trace of the plastic deformation (cf. eq. (15))
and thus dependent on hydrostatic stresses. Contrary to the experimental observations, this term leads to void
closure instead of void growth across the extruded cross section caused by the high hydrostatic pressures
during extrusion. The relative errors compared to the experiment are in the range of 99.5 to 110.4% (Table12).
However, these predictions are not meaningful as the simulations are based on incorrect mechanisms and
predict only void closure, not growth.

The Lemaitre model cannot capture the effect of void closure. Therefore, experimentally determined values
that are found to be below the initial void area fraction of the as-received material are set to the value of the
initial void area fraction. The macroscopic strategies for the Lemaitre model qualitatively predict the void
evolution (Fig. 18). The void fraction is largest on the central axis of the extruded billet and decreases in radial
direction to the outer surface. Finally, the void fraction is zero in a certain range and increases again toward the
outer surface. Despite the well-predicted level of damage, there are strong differences in magnitude, leading to
errors ranging from 5420.5–12854.6% (Table12). The prediction of the Lemaitre model with the D-strategy
provides a good qualitative agreement with the experiment (Fig. 19). A significant void growth on the central
axis and a flattening with increasing distance can be observed. In contrast, void growth toward the outer surface
is moderately overestimated. In terms of magnitude, void growth near the central axis is underestimated. The
error is 84.0%, which is significantly lower (2413.0% to 15817.4%) than for the macroscopic strategies. The
error of the D-strategy can be attributed to errors in the underlying void measurements, i.e., deviations in
sample preparation and measurement position, and to differences between the stress states in the notched
tensile test and in forward rod extrusion. On the center line of the tensile specimen, the averaged triaxiality is
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Table 12 Relative errors in predicting void area fraction during forward rod extrusion

Material model r -strategy (%) F-strategy (%) Pareto strategy (%) D-strategy (%)

GTN model 99.5 110.4 99.6 99.8
Lemaitre model 12854.6 5420.5 7103.5 84.0

Fig. 17 Prediction of the void area fraction along the radius of the forward extruded shaft based ondifferent parameter identification
strategies for the GTN model

Fig. 18 Prediction of the void area fraction along the radius of the forward extruded shaft based ondifferent parameter identification
strategies for the Lemaitre model

Fig. 19 Prediction of the void area fraction along the radius of the forward extruded shaft based on the D-strategy for the Lemaitre
model

approximately in the range of η = 0.2 to η = 1.0. In forward rod extrusion, this range is between η = 0.0 and η
= 1.5. A possible improvement could be to introduce calibration tests with shear- and compression-dominated
loading states.
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5 Conclusion and outlook

In this study,wedeveloped anoptimization framework incorporating amachine learning approach for start value
prediction with subsequent multi-objective parameter identification to calibrate damage models efficiently for
accurate damage predictions.

As model complexity increases, the number of model parameters to be identified also rises, making the
determination of appropriate start values for optimization-based parameter identification a challenging task.
An ANN has therefore been employed to ascertain suitable start values. While in the previous contribution of
Schulte et al. [3] the ANN training was limited to data of homogeneous loading states, our approach directly
exploits the boundary value problem of a notched round tensile test of the case hardening steel 16MnCrS5 in
order to generate training data. Even though it requires a higher computational effort, it is acceptable since
the ANN only has to be trained once per constitutive model to provide start values for different materials.
Consequently, the ANN predicted accurate start values, which already yield a close approximation to the
experimental load–displacement curve of the BVP. The key benefit of this approach is that the user does not
need a profound understanding of themodel formulation to determine suitable start values.With the subsequent
parameter identification, the prediction of the load–displacement curve was further improved. However, the
sole use of integral data in the optimization is insufficient for the prediction of damage [2]. Nevertheless, in
literature, most optimization approaches are still limited to integral data such as forces and field data such as
displacement and strain fields. Furthermore, field data are only considered when flat specimens are involved.
Hence, the deformation of bulk specimens and micro-mechanical mechanisms cannot be depicted sufficiently;
thus, damage in the sense of void fraction cannot be predicted. We incorporated contour data derived from
field quantities and high-resolution void measurements to overcome these shortcomings in multi-objective
parameter identification.

Different types of input data—including load–displacement curves, contour data, and voidmeasurements—
were evaluated. Itwas shown that the values used for calibrationwere, on average, themost accurately predicted.
Relying solely on load–displacement curves resulted in inaccuracies in predicting contour data derived from
displacement fields. On the other hand, the exclusive use of contour data provides unrealistic high forces. The
Pareto strategy introduced amethod that permits the simultaneous use of different data sets without introducing
subjective weighting by the user. With this strategy, it is possible to predict the different macroscopic data
sets on average better than with the other approaches. However, calibration based purely on macroscopic data
sets leads to a substantial overestimation or underestimation of damage in terms of void area fraction. A novel
method was developed to address this, facilitating the incorporation of experimental void measurements into
the model calibration. The locally determined void area fractions were used for the parameter identification.
This necessitated an initial calibration of the plasticity parameters to subsequently adjust the damage evolution
parameters. This step-by-step approach is crucial, as the plasticity parameters influence the flow curve and
inherently control the void evolution via the yield stress. The strategy based on voidmeasurements (D-strategy)
reproduced the experimental data much better.

The calibrated models were validated on void measurements of forward rod extruded parts. The GTN
model was not able to qualitatively or quantitatively predict the void evolution during forward rod extrusion.
The high hydrostatic pressures during the process caused universal void closure in the simulation. However,
the experimental data primarily showed void growth. In contrast to the GTN model, the Lemaitre model
reasonably reproduced the trends in void evolution during forward rod extrusion. Even though the parameter
identification strategies based on macroscopic data considerably overestimate the void area fractions, the D-
strategy provides more reasonable results with a relative error of 84.0% compared to the experiment. Despite
the substantial improvement in damage prediction using the D-strategy, assumptions - like the relationship
between the void area fraction and the mechanical softening, such as the concept of effective stresses, lead
to unavoidable deviations between simulation and experiment. Moreover, the load conditions of forward rod
extrusion are not perfectly captured by the calibration process of a notched round tensile test. This suggests
that employing a more process-related calibration test enhances the ductile damage prediction.
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Appendix A Discretization analysis

A discretization analysis was performed on the finite element model of the notched round tensile specimen by using the Lemaitre
model. The influence of the element density on the force at fracture and the maximum principal strain is depicted in Fig. 20.
The quantities are normalized relative to the values obtained from the simulation with the highest number of elements (11160).
The force at fracture and the maximum equivalent strain converged at 1320 elements. As the solutions of the simulation with
476 elements are only slightly lower, but the simulation time significantly reduces from 313 minutes to 4 minutes between the
two settings, the finite element model with 476 elements, i.e., an element length of le = 0.25mm was selected for all simulations
within data generation and optimization.

Fig. 20 Influence of the number of elements on the force at fracture and the maximum principal strain and the corresponding
calculation time

http://creativecommons.org/licenses/by/4.0/
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Appendix B Sampling of start value sets for parameter identification

Table 13 Considered start value sets based on full-factor (ff) and random (rdm) sampling as well as a machine learning-based
start value set (AI) for subsequent parameter identification

No. K ε0 n S δ Sampling fF

1 700.00 2.00 0.20 2.00 0.10 ff –
2 700.00 2.00 0.20 2.00 2.00 ff –
3 700.00 2.00 0.20 20.00 0.10 ff –
4 700.00 2.00 0.20 20.00 2.00 ff 675.53
5 700.00 2.00 0.30 2.00 0.10 ff –
6 700.00 2.00 0.30 2.00 2.00 ff –
7 700.00 2.00 0.30 20.00 0.10 ff –
8 700.00 2.00 0.30 20.00 2.00 ff 707.72
9 700.00 3.00 0.20 2.00 0.10 ff –
10 700.00 3.00 0.20 2.00 2.00 ff –
11 700.00 3.00 0.20 20.00 0.10 ff –
12 700.00 3.00 0.20 20.00 2.00 ff 666.05
13 700.00 3.00 0.30 2.00 0.10 ff –
14 700.00 3.00 0.30 2.00 2.00 ff –
15 700.00 3.00 0.30 20.00 0.10 ff –
16 700.00 3.00 0.30 20.00 2.00 ff 711.79
17 1500.00 2.00 0.20 2.00 0.10 ff –
18 1500.00 2.00 0.20 2.00 2.00 ff –
19 1500.00 2.00 0.20 20.00 0.10 ff –
20 1500.00 2.00 0.20 20.00 2.00 ff 778.77
21 1500.00 2.00 0.30 2.00 0.10 ff –
22 1500.00 2.00 0.30 2.00 2.00 ff –
23 1500.00 2.00 0.30 20.00 0.10 ff –
24 1500.00 2.00 0.30 20.00 2.00 ff 723.04
25 1500.00 3.00 0.20 2.00 0.10 ff –
26 1500.00 3.00 0.20 2.00 2.00 ff –
27 1500.00 3.00 0.20 20.00 0.10 ff –
28 1500.00 3.00 0.20 20.00 2.00 ff 788.51
29 1500.00 3.00 0.30 2.00 0.10 ff –
30 1500.00 3.00 0.30 2.00 2.00 ff –
31 1500.00 3.00 0.30 20.00 0.10 ff –
32 1500.00 3.00 0.30 20.00 2.00 ff 750.10
33 840.00 1.00 0.20 3.00 2.00 rdm –
34 1212.00 2.14 0.28 12.00 1.14 rdm 319.45
35 1400.00 2.90 0.23 2.00 0.60 rdm –
36 964.56 2.67 0.28 3.03 0.90 rdm –
37 1156.35 2.08 0.22 4.92 1.64 rdm –
38 780.62 2.99 0.22 15.65 1.30 rdm 432.74
39 898.31 2.11 0.29 12.09 0.30 rdm 1547.55
40 738.67 2.71 0.24 13.23 1.84 rdm 655.36
41 1332.03 2.36 0.26 6.76 1.50 rdm –
42 1499.36 2.42 0.24 7.55 0.25 rdm –
43 1081.31 2.54 0.21 17.36 1.24 rdm 447.64
44 1243.70 2.28 0.25 19.28 0.65 rdm 229.39
45 1358.41 2.82 0.27 9.62 0.81 rdm –
46 902.29 1.42 0.21 19.30 0.87 AI 183.38

The objective function value fF refers to the final loss after parameter identification based on a load–displacement curve.
fF =– indicates that convergency has not been achieved
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