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Abstract The increasing popularity of composites reinforcedwith fiber has spurred the development of sophis-
ticated additive manufacturing technologies, allowing for precise tailoring of fiber orientation for optimization
purposes. Despite significant advancements in fiber orientation optimization, the key challenge posed by stress
yield criteria still needs to be solved. This work presents a novel optimization approach, aiming to minimize
structural volume while incorporating local stress constraints based on the Tsai–Wu criterion. The proposed
NDFO-adapt method optimizes material distribution, fiber angles, and the penalization field. This optimization
process involves multiple design variables, and new schemes are introduced to determine these variables using
an optimization algorithm and adaptive continuations based on the structural grayscale. Numerical examples
show the effectiveness of the proposed method, providing valuable insights for optimizing fiber-reinforced
materials considering stress constraints with potential applications in the design of lightweight, high-strength
structures.

Keywords Topology optimization · Stress constraint · Adaptive penalization · Fiber-reinforced materials

1 Introduction

Fiber-reinforced materials have been on the rise due to their advantageous characteristics, such as a high
strength-to-mass ratio. Consequently, there has been a surge in the development of new additive manufacturing
technologies specifically designed for such materials [1–3]. This aspect has captured the attention of the
scientific community, prompting efforts to identify optimal orientations for fibers. Consequently, numerous
studies have surfaced, presenting innovative approaches for optimizing the orientation of fibers in the literature.

In optimizing fiber orientation, some works leverage heuristic algorithms independent of gradient calcula-
tions and claim that the solutions are "global minima." Examples include applications in minimizing the mass
of laminate composites and optimizing fiber orientation and thickness, as demonstrated by Kim et al. [4] and
António [5]. Nevertheless, Sigmund [6] raises concerns about the efficiency of non-gradient methodologies,
particularly in situations involving numerous design variables.

Soares et al. [7] and Luo and Hae [8] used a gradient-based approach for optimizing fiber orientations,
but direct consideration of angles as design variables led to challenges. Stegmann and Lund [9] proposed
a material interpolation model, Bruyneel [10] introduced an interpolation model using finite element shape
functions, and Gao et al. [11] generalized it. Kiyono et al. [12] used normal distribution functions to address the
issue of increasing design variables. Salas et al. [13] avoided candidate angles, approximating sine and cosine
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functions with Taylor series. In a hybrid approach, Salas et al. [14] combined Taylor series approximation with
the candidate angles method.

Some works address the optimization of continuous fiber orientation for additive manufacturing. Kato and
Ramm [15] present an optimization strategy aiming to improve structural ductility through the simultaneous
determination of fiber layouts and global geometry, employing a combination of multiphase material optimiza-
tion andmaterial shape optimizationmethods. Boddeti et al. [16] introduce aworkflow for designing laminated
continuous fiber-reinforced composites with variable stiffness, leveraging multiscale topology optimization
and voxel-based multimaterial jetting. Fedulov et al. [17] present a topology optimization framework for con-
tinuous composite fiber 3D printing, minimizing compliance with density and orientation design parameters.
Zhang et al. [18] present a topology optimization framework for continuous fiber-reinforced composites in 3D
printing, incorporating strength constraints and utilizing topology, fiber volume fraction, and fiber orientation
as design variables.

However, to the best of the authors’ knowledge, only three recent works address the critical issue of stress
constraints in structural topology optimization applied to materials reinforced with fibers. One of these studies
is the previously mentioned work by Zhang et al. [18], in which the authors utilize the p-norm, a global
approach, to restrict the maximum strength. In a previous study [19], fibers were optimized in each element of
the mesh considering the Tsai–Hill yield criteria. Another work by Kundu and Zhang [20] explores topology
results where each member has a specific fiber angle, and the Tsai–Wu yield criteria are considered. The
Tsai–Wu yield criteria are considered more comprehensive than the Tsai–Hill as they account for different
behaviors in tension and compression. These characteristics demand approaches different from those used to
solve similar problems using the same interpolation material models. In this work, we formulate the stress
constraints based on the Tsai–Wu yield criteria. For optimizing the fiber angles, we employ the NDFO-adapt
method [19], and for distributing the matrix, we use the well-known SIMP material interpolation model [21].
The optimization process does not solely focus on the material and fibers; it also involves optimizing the β
variable of the threshold projection and the penalization parameters for both interpolation material models
(NDFO-adapt and SIMP). Although this approach was used in a previous work [19], it is not possible to solve
the problem for Tsai–Wu using the same functions that control the continuations in the constraints. So, we
are proposing new functions to control these continuations essential to solving the problem for Tsai–Wu yield
criteria using the proposed method.

The structure of this paper is as follows. Section2 presents and discusses the equations of solid mechanics
considering linear elasticity, the material models for fiber orientation and material distribution, the topology
optimization problem, the augmented Lagrangian version of the optimization problem, and the calculation
of sensitivities. Section3 introduces the finite element mesh refinement, spatial filter, and the optimization
procedure. Section4 showcases the results obtained through the proposed method. Some conclusions are
presented in Sect. 5.

2 Theoretical formulation

The optimized distribution for the design variables is performed in a domain �, which is often fixed. The
schematic representation in Fig. 1 illustrates the � domain and its boundaries denoted as ∂�. The boundary
conditions ofDirichlet andNeumann are applied in the subdomains�u ⊂ ∂� and�t ⊂ ∂�, respectively.Vectors
t andb symbolize surface and body forces, respectively. The illustration’s purple lines depict randomly oriented
fibers within �.

This study’s theoretical framework operates within the confines of linear elastic behavior. The solution
involves determining the field equations of solid mechanics to address the Topology Optimization (TO) prob-
lem on domain �. These equations also termed the forward or state equations in the context of Topology
Optimization (TO) are represented in their variational form as outlined by [22,23]:

a(u, v) − L(v) = 0 (1)

where u and v are the displacements and the virtual displacements, respectively. The functional a(u, v) rep-
resents the Energy bilinear form, and the functional L(v) represents the Load linear form as defined in [22].
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Fig. 1 Generic design domain

a(u, v) =
∫

�

σi j (u) εi j (v) d� (2a)

L(v) =
∫

�

bi vi d� +
∫

�t

ti vi dS (2b)

where bi is the i th vector which represents the body forces, ti is the i th component of the vector of surface
forces, and vi is the i th component of the virtual displacement vector. The Cauchy stress tensor, denoted by
σ , is computed using the strain tensor ε, as described in [23].

σi j = Ci jkl εkl(u) (3)

εi j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
(4)

In Eq. (3), the term Ci jkl represents the components of C(φ), which represents the constitutive tensor that
plays a crucial role in optimization due to its dependency on the fiber angles φ. The constitutive relationship
is formulated based on Eq. (3) to express the components of C(φ). The constitutive relationship, under the
assumptions of orthotropic material, for the plane stress formulation, is presented in Voigt notation [24]:

⎡
⎣ ε1

ε2
2 ε6

⎤
⎦ =

⎡
⎣S11 S12 0
S12 S22 0
0 0 S66

⎤
⎦
⎡
⎣σ1

σ2
σ6

⎤
⎦ (5)

In Eq. (5), S is called compliance tensor. Despite representing the plane stress, the formulation retains
the three-dimensional index, hence the appearance of an index 6. The tensor C for plane stress is derived by
inverting Eq. (5), resulting in:

⎡
⎣σ1

σ2
σ6

⎤
⎦ =

⎡
⎣Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤
⎦
⎡
⎣ ε1

ε2
2 ε6

⎤
⎦ (6)

where Qi j denotes the components of the constitutive tensor Q. It is crucial to emphasize that the components
of the constitutive tensor C are not the same in 3D and in plane stress. Consequently, a distinct symbol Q is
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Fig. 2 Local and global axes of a fiber

employed for the plane stress situation. Qi j are computed as follows:

Q11 = S22
S11 S22 − S212

(7a)

Q12 = − S12
S11 S22 − S212

(7b)

Q22 = S11
S11 S22 − S212

(7c)

Q66 = 1

S66
(7d)

The components of the S are:

S11 = 1

E1
(8a)

S12 = −ν12

E1
(8b)

S22 = 1

E2
(8c)

S66 = 1

B12
(8d)

where E1 and E2 represent Young’s modulus in the fiber direction and perpendicular to the fiber direction,
respectively, ν12 represents the Poisson ratio considering an extension in direction 1 and a contraction in
direction 2, and B12 is the shear modulus in plane 1–2.

The local constitutive tensor Q is defined in Eq. (6). However, global coordinates are necessary for fiber
angle optimization. Figure 2 depicts a fiber within a generic domain. Here, global coordinates (x , y) are

distinguished from local(1,2), axis 1 aligns with the fiber, and the ˜̃
φ represents the physical fiber angle. The

physical fiber angle is determined as a function of the filtered angle φ̃, which in turn is dependent on the design

variable for the fiber angle, φ, that is, ˜̃
φ = ˜̃

φ(φ̃(φ)).
Equations (6) and (7) represent the stress–strain relationship in local coordinates. To optimize the fiber

angles, it is essential to express this relationship in global coordinates (x , y), as illustrated in Fig. 2.
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Under plane stress conditions, the mapping from local stresses to global stresses is established through the
transformation tensor T:

⎡
⎣ σx

σy
σxy

⎤
⎦ = T−1

⎡
⎣σ1

σ2
σ6

⎤
⎦ (9)

where T is defined as [24]:

T−1 =
⎡
⎢⎣

cos2( ˜̃
φ) sin2( ˜̃

φ) −2 sin(
˜̃
φ) cos( ˜̃

φ)

sin2( ˜̃
φ) cos2( ˜̃

φ) 2 sin(
˜̃
φ) cos( ˜̃

φ)

sin(
˜̃
φ) cos( ˜̃

φ) −sin(
˜̃
φ) cos( ˜̃

φ) cos2( ˜̃
φ) − sin2( ˜̃

φ)

⎤
⎥⎦ (10a)

T =
⎡
⎢⎣

cos2( ˜̃
φ) sin2( ˜̃

φ) 2 sin(
˜̃
φ) cos( ˜̃

φ)

sin2( ˜̃
φ) cos2( ˜̃

φ) −2 sin(
˜̃
φ) cos( ˜̃

φ)

−sin(
˜̃
φ) cos( ˜̃

φ) sin(
˜̃
φ) cos( ˜̃

φ) cos2( ˜̃
φ) − sin2( ˜̃

φ)

⎤
⎥⎦ (10b)

The stress–strain relationship (Eq. (3)) with stresses in global coordinates can be expressed as follows:
⎡
⎣ σx

σy
σxy

⎤
⎦ = T−1 Q

⎡
⎣ ε1

ε2
2 ε6

⎤
⎦ (11)

The mapping between the local strains and global strains can similarly be carried out by T, as indicated
by:

⎡
⎣ε1

ε2
ε6

⎤
⎦ = R T R−1

⎡
⎣ εx

εy
εxy

⎤
⎦ (12)

where the Reuter matrix R is calculated as follows:

R =
⎡
⎣1 0 0
0 1 0
0 0 2

⎤
⎦ (13)

In conclusion, the global constitutive equation can be defined by incorporating the fiber angle, as presented
in [24]:

⎡
⎣ σx

σy
σxy

⎤
⎦ = T−1 Q R T R−1

⎡
⎣ εx

εy
εxy

⎤
⎦ (14)

C(φ) for orthotropic materials under plane stress can be determined through Eq. (14).

C(
˜̃
φ) =

(
T(

˜̃
φ)
)−1

Q R T(
˜̃
φ) R−1 (15)

2.1 Material models

In this paper, thematerial model Solid IsotropicMaterial with Penalization (SIMP) [21] is used to determine the
material distribution, while the Normal Distribution Fiber Optimization adaptive (NDFO-adapt) deals with the
fiber angle optimization. The penalization factors are treated as design variables in both models, dynamically
determined through the optimization steps.
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2.1.1 SIMP

The SIMP interpolation material model employs a pseudo-density ρ to modulate the tensor C resulting in the
modified constitutive equation:

σi j =
(
ρmin + (1 − ρmin) ˜̃ρ p̃

)
Ci jkl εkl(u) (16)

With a minimum pseudo-density value of ρmin, the physical pseudo-densities are denoted by ˜̃ρ(x) and p̃
represented the field of filtered penalization for the SIMP, as introduced in [19]. The objective of p̃ is to drive
all ˜̃ρ values to either 0 or 1, with 1 representing material-filled regions and 0 representing voids. When p̃
equals 1, the mapping between ˜̃ρ and the SIMP is linear. Notwithstanding, for higher values of p̃, the mapping
approaches a 0-1 relationship.

2.1.2 NDFO-adapt material model

Normal Distribution Fiber Optimization adaptive (NDFO-adapt) (Normal Distribution Fiber Optimization
adaptive) interpolation material model, introduced in [19], is responsible for optimizing fiber angles. This
method employs a weighted sum of candidate angles to determine fiber orientations. The candidate angle strat-
egy, proposed by Stegmann and Lund [9] in their Discrete Material Optimization (DMO) method, effectively
addresses the prevalent challenge of multiple local minima associated with Continuous Fiber Angle Opti-
mization (CFAO). Both Discrete Material Optimization (DMO) and Normal Distribution Fiber Optimization
adaptive (NDFO-adapt) leverage candidate angles to navigate through these minima, enhancing optimization
robustness.

The primary advantage of Normal Distribution Fiber Optimization (NDFO)-based approaches lies in the
requirement of only one design variable in each point of interest (e), regardless of the number of candidate
angles.

A weighted summation is used to determine the ˜̃
φ that represents the physical fiber angles [14]

˜̃
φ =

Nc∑
i=1

wi φ
c
i (17)

With Nc fiber candidate angles, φc representing the candidate angles, and w denoting the following weight
function:

wi = ŵi∑Nc
j=1 ŵ j

(18)

ŵ represents a normal distribution function that is calculated as Eq. (18):

ŵi = exp

(
− (φ̃(x) − φc

i )
2

2 ( p̃n(x))2

)
(19)

The fields of filtered penalizations and filtered fiber angles for the Normal Distribution Fiber Optimization
adaptive (NDFO-adapt) are denoted by p̃n(x) and φ̃(x), respectively, as introduced in Eq. (19).

The idea of using the function ŵ is to apply a continuation in the design variable pn , which represents
the penalization, because the smaller the pn value, the closer to angles candidates φc will be the variable φ̃.
This behavior is expected since the p̃n field is responsible for penalizing the interpolation material model, and
as its value decreases, the penalization effect becomes more significant. On the other hand, when continuous
variable φ̃ aligns with a candidate angle φc, the corresponding ŵ is equal to 1. Conversely, as the variable
moves away from the candidate angle, the values of normal distribution function ŵ progressively approach 0.
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2.1.3 Threshold projection

It is expected that the results obtained from theTopologyOptimization (TO)have a ˜̃ρ field consisting exclusively
of 0 and 1. However, in certain cases, the result may exhibit values between 0 and 1 that lack clear physical
interpretation. To address this, we employ a tanh-based threshold projection as defined in [25–28]:

˜̃ρ(x) =
tanh

(
β̃(x

)
η) + tanh

(
β̃ (x)(ρ̃(x) − η)

)

tanh
(
β̃(x

)
η) + tanh

(
β̃(x)(1 − η)

) (20)

The variable η in Eq. (20) controls where the point of inflection will occur, and β̃ is the filtered variable
that controls the range of the threshold.

Examining Eq. (20), it becomes evident that when β̃ is set to 1, the behavior is almost linear, indicating a
mapping that closely aligns ˜̃ρ with ρ̃. Nevertheless, when β̃ is large enough, every ρ̃ value converges to 0 or
1. Specifically, with a substantial β̃, any ρ̃ less than η undergoes projection to ˜̃ρ = 0, while any ρ̃ greater than
η is projected to ˜̃ρ = 1.

2.2 Optimization problem

In this study, the optimization problem aims to minimize the structure volume while considering stress and
compliance constraints, as outlined in:

min
ρ,φ,p,pn ,β

J =

∫
�

˜̃ρ d�

V

such that F = a(u, v, ˜̃ρ,
˜̃
φ) − L(v) = 0

G(e)
1 = f (e)

σ σ
(e)
tw

((
f (e)
σ σ

(e)
tw

)2 + 1

)
≤ 0

G2 =
(

c(u, ˜̃ρ,
˜̃
φ)

αc c f ull(u, φprinc)
− 1

)⎛
⎝
(

c(u, ˜̃ρ,
˜̃
φ)

αc c f ull(u, φprinc)
− 1

)2

+ 1

⎞
⎠ ≤ 0

ρmin ≤ ρlb(g, ggl) ≤ ρ(x) ≤ ρub(g, ggl) ≤ 1

φmin ≤ φ(x) ≤ φmax

pmin(x, g) ≤ p(x) ≤ pmax

pnmin(realmin, φc) ≤ pnlb(k) ≤ pn(x) ≤ pnmax(k)

βmin(x, g) ≤ β(x) ≤ βmax

(21)

where J represents the objective function, F denotes the forward problem,G1
(e) represents the stress constraint

at a designated point (e), G2 stands for the compliance constraint, and the remaining constraints are box
constraints. V represents the volume of the domain. The energy bilinear form, unlike Eq. (2a), becomes a

function of ˜̃ρ, and ˜̃
φ.

In the scope of this study, the Tsai–Wu yield criterion is used for stress constraint calculations formulated
as per [24]:

H1 σ1 + H2 σ2 + H6 σ6 + H11 σ 2
1 + H22 σ 2

2 + H66 σ 2
6 + 2 H12 σ1 σ2 − 1 < 0 (22)
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where H[·] are auxiliary variables to calculate the Tsai–Wu yield criterion, defined as [24]:

Hα = 1

(σ T
α )ult

− 1

(σC
α )ult

(23a)

Hαα = 1

(σ T
α )ult (σC

α )ult
α = 1, 2 (23b)

H6 = 0 (23c)

H66 = 1

(σ6)
2
ult

(23d)

H12 = −1

2

√
1

(σ T
1 )ult (σ

C
1 )ult (σ

T
2 )ult (σ

C
2 )ult

(23e)

In Eq. (23), (σ T
1 )ult represents the ultimate longitudinal tensile strength, (σC

1 )ult is the ultimate longitudinal
compressive strength, (σ T

2 )ult is the ultimate transverse tensile strength,
(
σC
2

)
ult is the ultimate transverse

compressive strength, and (σ6)ult denotes the ultimate in-plane shear strength.
The left-hand side of the Tsai–Wu criterion is used to define G1 in each point of interesting represented

by (e)

σtw = H1 σ1 + H2 σ2 + H6 σ6 + H11 σ 2
1 + H22 σ 2

2 + H66 σ 2
6 + 2 H12 σ1 σ2 − 1 (24)

The function fσ is introduced to deal with the singularity phenomenon [29]:

f (e)
σ =

˜̃ρ(e)

ε
(
1 − ˜̃ρ(e)

)
+ ˜̃ρ(e)

(25)

where ε = ε ( ˜̃ρ) represents the relaxation parameter. Pereira et al. [30] suggest that smaller ε values lead
to better-defined results. Nevertheless, as noted by Silva et al. [31], excessively small ε values may result in
overestimated stresses at jagged edges, causing strong stress oscillations that impede achieving robust solutions
[31]. Silva et al. in their extensive examination [31] investigated the impact of the ε in Topology Optimization
(TO) problems. They discovered that when employing the SIMP with penalization p set to 3, a favorable
balance between the stress accuracy and the minimum stress oscillation is achieved by setting ε to 0.2. In our
current study, we adopt the polynomial function introduced by [19]:

ε( ˜̃ρ) = 18

25
˜̃ρ2 − 18

25
˜̃ρ + 0.2 (26)

The compliance constraint, inspired by Bruggi and Duysinx [32], is extended to incorporate fiber contri-

butions. Equation (27) is used to calculate the compliance as a function of ˜̃ρ and ˜̃
φ in the current iteration of

the optimization process. Meanwhile, c f ull represents the compliance assuming that ˜̃ρ is equal to 1 in whole
domain, and aligning the fiber angles with the principal stress directionφprinc (refer to Eq. (28)). The parameter
αc in the compliance constraint acts as a scalar weight for c f ull .

c(u, ˜̃ρ,
˜̃
φ) =

∫
�

σi j (u, ˜̃ρ,
˜̃
φ) εi j (u) ∂� (27)

c f ull(u, φprinc) =
∫

�

σi j (u, φprinc) εi j (u) ∂� (28)

In Eq. (21), the parameters ρmin, φmin, pmin, pnmin , and βmin represent the inferior limit for each design
variable, while φmax, pmax, pnmax , and βmax denote the superior bounds.

The same scheme proposed in [19] is used to determine the lower and upper bounds for the variable ρ

ρ
(e)k+1

lb = max
(
ρ(e)k − �(e)k+1

ρ , ρmin

)
(29a)

ρ
(e)k+1

ub = min
(
ρ(e)k + �(e)k+1

ρ , 1
)

(29b)
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where �ρ is an increment calculated as:

�(e)k+1

ρ = max

(
g(e)k

(
gkgl

)2
mρ, mρ,min

)
(30)

where mρ and mρ,min are referred to as the move limit and minimum move limit for ρ, respectively. The
amount of gray g is calculated according to:

g(e) = 4 ˜̃ρ(e)
(
1 − ˜̃ρ(e)

)
(31)

The variable ggl represents the global amount of gray for the structure, calculated according to the method
proposed by Sigmund [28]:

ggl = 4

∑Ne
(e)=1

˜̃ρ(e)
(
1 − ˜̃ρ(e)

)

Ne

(32)

where the parameter Ne denotes the number of points of interest in �. It is noteworthy that for ˜̃ρ equal to
0 or 1, the gray measure is equal to zero. In contrast, the maximum contribution occurs when ˜̃ρ equals 0.5,
representing the grayest region. pnlb represent the lower bound for the penalization term pn at the current
iteration. Additionally, pnlb(k) and pnmax(k) are dynamically adjusted based on the current iteration (k),
illustrating the application of a continuation strategy. In practical terms, as the optimization unfolds, the values
of pnlb(k) decrease progressively through the optimization process, following a predefined function until a
certain threshold is reached. This systematic reduction is crucial to guarantee that p̃n becomes sufficiently
small, facilitating the mapping of all φ̃ to a candidate angles φc. The continuation process for pnlb involves
iteratively decreasing its value until it reaches a predefined minimum, guided by the following expression:

pk+1
nlb = max(pknlb pnred , pnmin) (33)

where pnred is a reduction factor calculated by using a new proposed function represented by Eq. (34). Differ-
ently from previous literature works, the new scheme to determine the reduction factor pnred defines directly
in what iteration pnlb will reach its minimal value, ensuring that the angles of the fibers will not be stuck in
the candidate angles much before the iteration nitmin .

pnred =
(
pnmax

pnmin

)− 1
nitmin (34)

and pnmin is calculated according to Eq. (35)

pnmin(realmin, �φcmin) =
√

(�φcmin)
2

8 ln
( 1
realmin

) (35)

In Eq. (34), the term nitmin represents the number of iterations necessary until the value pnmax reaches pnmin .
In Eq. (35), realmin denotes the smallest positive normalized float-point number, a value contingent upon the
specifics of the machine architecture [33] (realmin = 2.2251 · 10−308 for a 64-bit machine). Simultaneously,
�φcmin represents the minimum angular separation between two candidate angles.

The continuation for pnmax follows a similar approach as applied in Eq. (33). However, in updating pnmax ,
care is taken to ensure that its value remains greater than the value of pnlb :

pk+1
nmax

= max(pknmax
pnred , 1.4 pk+1

nlb ) (36)

The value 1.4 multiplying pnlb in Eq. (36) is a safety factor heuristically chosen to ensure that pnmax is
always greater than pnlb .

The parameters βmin and pmin are updated according to the value of g in each point of interest. The concept
is that the grayer the region, the higher the increment in βmin and pmin. Conversely, these values will remain
the same for regions where ˜̃ρ is equal to 0 or 1

(
[·](e)min

)k+1 = min

((
[·](e)min

)k + [·]w
(
g(e)

)k
, [·]max − 0.1

)
; [·] = β, p (37)
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where βw and pw represent weights for g. [·]max − 0.1 is introduced to ensure that [·]max is always bigger
than [·]min

In optimizing using the Tsai–Wu criterion, a different behavior emerges compared to the Tsai–Hill criterion
in our proposed method, resulting in some instances displaying grayscale in the final optimization outcomes.
Addressing this involves increasing the value of βw, which can lead to local minima in the tested examples. We
suggest implementing a continuation in βw to mitigate this, ensuring that, at the outset of the optimization, its
values are sufficiently small to avoid undesirable outcomes yet are increased gradually to prevent grayscale in
the final results. Besides, unlike the case with the Tsai–Hill yield criterion, a continuation in βmax is necessary
for feasibility in Tsai–Wu optimization. In specific scenarios, the optimization directs β values to become
exceptionally high in specific domain regions. This results in ˜̃ρ being confined to values between 0 and 1 at
the beginning of the optimization, impacting sensitivity calculations and potentially leading to undesirable
local minima. To address this issue, we propose a new function to enforce a continuation in both βmax and βw,
offering control over β values to prevent excessive magnitudes at the start of the optimization and allowing
for a smooth continuation as needed:

βk+1
[·] = min(γβ[·] βk[·], β[·]lim ); [·] = max, w (38)

where β[·]lim represents the limit value for β[·]. The calculation of γ[·] is determined according to

γβ[·] =
(

β[·]lim
β[·]0

) 1
nitmin (39)

where β[·]0 denotes the initial value for β[·]. The scalar γβ[·] , calculated using Eq. (39), ensures that β[·] reaches
its maximum value by iteration nitmin .

2.3 Augmented Lagrangian

Various methodologies have been proposed to tackle the resolution of Topology Optimization (TO) issues
incorporating stress constraints. This work concentrates on the localized measurement of stress. To contend
with a substantial number of constraints, we employ the Augmented Lagrangian approach [34], following a
methodology akin to that proposed byFancello and Pereira [35]. In light of this, we reformulate the optimization
problem presented in Eq. (21) as follows:

min
ρ,φ,p,pn ,β

La = J + r1
2

Ne∑
e=1

〈
λ

(e)
1

r1
+ G(e)

1

〉2
+ r2

2

〈
λ2

r2
+ G2

〉2

such that F = a(u, v, ˜̃ρ) − L(v) = 0

ρmin ≤ ρlb(g, ggl) ≤ ρ(x) ≤ ρub(g, ggl) ≤ 1

φmin ≤ φ(x) ≤ φmax

pmin(x, g) ≤ p(x) ≤ pmax

pnmin(realmin, φc) ≤ pnlb(k) ≤ pn(x) ≤ pnmax(k)

βmin(x, g) ≤ β(x) ≤ βmax

(40)

where 〈[·]〉 are the Macaulay brackets:

〈[·]〉 =
{
0, [·] < 0
[·], [·] ≥ 0

(41)

The constraints G1 and G2 are functions of u, the displacement field that is the solution of F . The variable
ri represents penalization parameters for the Augmented Lagrangian, while λi i = 1, 2 are the Lagrange
multipliers. Following each subproblem solution, the values of ri undergo updates. A subproblem is considered
resolved whenever the optimization problem, as defined in Eq. (40), converges or reaches a predetermined
maximum iteration count. The update mechanism for ri is articulated as [36]:

rk+1
i = min

(
γr,i r

k
i ,

ri,max

Ne

)
(42)
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Fig. 3 Elements used to solve the optimization problem

where γri works for ri in the same way that γβ[·] works for β[·] in Eq. (38), that is, for a initial value of ri ,
denoted by ri,0, the scalar γri ensures that ri will reach the maximum value denoted by ri,max in iteration nitmin

γri =
(
ri,max

ri,0

) 1
nitmin (43)

where ri,0 is the initial value for the penalization parameter ri .
The update of λi is performed according to:

λk+1
i =

〈
ri Gi + λki

〉
(44)

2.4 Sensitivities

This work employs an algorithm based on gradients to solve Eq. (40). Consequently, it is required to calculate
the sensitivities of theAugmentedLagrangian function La . So, it is necessary to compute theGâteaux derivative
of the Augmented Lagrangian function concerning all design variables, as follows:

DLa(mi )[δmi ] = DJ (mi )[δmi ] + r1

Ne∑
e=1

〈
λ

(e)
1

r1
+ G(e)

1

〉
DG(e)

1 (mi )[δmi ] + r2

〈
λ2

r2
+ G2

〉
DG2(mi )[δmi ](45)

where all design variables are contained in the vector m = [ρ(x) φ(x) p(x) pn(x) β(x)]T . The term δmi
signifies an incremental function [37] corresponding to the i-th design variable. The definition of a Gateaux
derivative of a functional F is given by [37]:

DF(mi )[δmi ] = lim
α→0

F(mi + α δmi ) − F(mi )

α
(46)

where α is a scalar value. Here, the derivatives presented in Eq. (45) are computed utilizing the Automatic
Differentiation feature of the open-source Dolfin Adjoint project [38].

3 Numerical implementation

In this paper, the forward equation, represented as F in Eq. (40), is addressed using the open-source FEniCS
computation platform [39]. This platform employs the FEM to solve the given problem.

The optimization problem involves two types of elements, as illustrated in Fig. 3. Differently than the
previous work [19], we opt for a quadratic Lagrange element [39] for the state variable field (displacement
u) in the place of the linear element. This approach helps to deal with numerically induced artificial stiffness,
which can account for the formation of checkerboard patterns in optimization problems [40]. Simultaneously,
a Discontinuous Lagrange element [39] is chosen for all design variables.
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3.1 Refinement strategy

A significant portion of the computational costs associated with solving TopologyOptimization (TO) problems
using Augmented Lagrangian methods arises from the solution of the forward problem F . These costs are
directly tied to the scale of the FEM mesh, specifically the number of nodes. A greater number of elements
contribute to increased computational overhead in resolving state equations [41]. However, finer meshes offer
superior resolution and provide richer gradient information, particularly in regions with stress concentration.
This additional data are crucial for facilitating stress relief within the structure. Therefore, an effective opti-
mization strategy for FEM utilization involves meticulous mesh refinement in areas crucial to achieving an
enhanced optimization outcome.

Within the FEniCS project, direct implementation of coarse elements within a FEMmesh is not supported.
Consequently, the employed strategy focuses exclusively on element refinement. The refinementmeshproposed
in a previous work [19] is based on three parameters: a stress error measurement (σer ), the stress constraintG1,
and the variations in ˜̃ρ within an element relative to the values of its neighbors, denoted as varρ . The stress
error (σer ) is determined as a function of the Tsai–Wu criterion, derived through a residual displacement, and
multiplied by the current ˜̃ρ, as detailed below:

σer (ures) = ˜̃ρ fσ σth(ures) (47)

The residual ures in Eq. (47) is determined by evaluating the difference between the current displacement
u, computed within the present finite element mesh, and the displacement ure f obtained from a converged
regular mesh, as outlined in the following equation:

ures = u − ure f (48)

To identify the converged mesh, the same approach used in the previous work is used [19], that is, the
Finite Element Method (FEM) simulation is executed on an initial coarse mesh. The maximum displacement
umax is measured within this coarse mesh. Subsequently, each direction receives one additional element, and
the iterative process continues until the difference between u j

max and u
j−1
max is smaller than a suitable tolerance,

whichmeans that themesh converged. Defining the refinedmesh is performed just once before the optimization
process starts. The variable varρ denotes the absolute difference between the ˜̃ρ values of neighboring elements.

To establish a refinement limit, a minimum value for h is defined for each measure

h[·],min = max

⎛
⎜⎜⎝ h0

nire f,[·] 2

⌊
k

sre f

⌋
+1

,
h0

2n
f
re f,[·]

⎞
⎟⎟⎠ [·] = G1, σer , varρ (49)

where h0 represents the longest edge of the elements in the initial mesh, nire f,[·] is the initial number of

refinements, n f
re f,[·] is the final number of refinements, and sre f signifies the step that determines when the

number of refinements will increase during iterations.
The variable re f is used to determine if a refinement is performed according to

re f (e) =
(
G(e)

1 > lG1 and h(e) > hG1,min

)
or(

σ (e)
er > lσer and h(e) > hσer ,min

)
or(

var (e)
ρ > lvarρ and h(e) > hvarρ,min

) (50)

where l[·], [·] = G1, σer , varρ represent the limit for each measure and h(e) denotes the height of element
e. The element (e) will be refined if any condition specified in Eq. (52) is true.

The refinement procedure uses the FEniCS function named refine(). The re f variable undergoes
evaluation for each element. If re f holds the value true, the FEniCS refine() function is invoked. In
this particular scenario, the original element undergoes subdivision into four distinct parts. The refinement
concludeswhenno furthermodifications exist in the count of elements over consecutive iterations. Furthermore,
refinement occurs continuously throughout the optimization process.When the global gray value exceeds 0.15,
refinement starts from the initial mesh configuration. Conversely, when the global gray value decreases to 0.15
or below, refinement begins from the most recently refined mesh.
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3.2 Spatial filter

Topology optimization often faces challenges related to mesh dependence and checkerboards. To mitigate
these issues, regularization is essential. In this study, we employ the spatial filter proposed by Bruns and
Tortorelli [42], a method mathematically validated by Bourdin [43]. This approach addresses concerns related
to mesh dependence and checkerboards. The numerical formulation utilized in this work is consistent with the
approach presented by Andreassen et al. [44]:

(m̃i )e = 1
Ne∑
j=1

Hej

Ne∑
j=1

Hej (mi )e
(51)

where m̃i represents the i-th component of the vector of filtered design variables. The index e corresponds to
element (e) in the finite element mesh, and Hei is a weight factor defined as:

Hei = max(0, rmin − �(e, i)) (52)

The parameter rmin represents the spatial filter radius, and �(e, i) is the distance between the center of the
element e and element i .

3.3 Optimization procedure

Solving Eq. (40) follows an iterative approach, as depicted in Fig. 4. Initially, the domain is defined, as well
its boundary condition. After that, initial assumptions are made for design variables. Subsequently, mesh
refinement follows the procedure outlined in Sect. 3.1. Upon acquiring the updated mesh, the forward problem
(Eq. (1)) is addressed through the Finite Element Method (FEM). Subsequently, the objective function J is
calculated and evaluated, aided by the FEniCS Project software [39]. The determination of sensitivities is
achieved through the utilization of Dolfin adjoint [38].

The optimization process is performed by using the L-BFGS-S algorithm [45]. The iteration process
persists until convergence is attained within SciPy [46]. Throughout this process, the design variables are
iteratively updated, and this sequence is repeated. Upon achieving convergence within SciPy, stop criteria for
the subproblem are evaluated to determine if an optimized design has been reached. If the any stop criteria is
reached, the parameters, including ρlb, ρub, pmin, pnlb , pnmax , βmin, r1, r2, λ1, and λ2, are adjusted, and the
process is reiterated.

The criteria to determine the convergence of the subproblems are based on the previous work [19]. The first
criterion checks if the maximum stress constraint (G1), the compliance constraint (G2), and the global gray
measure (ggl ) fall below predefined thresholds. Additionally, the convergence of the fiber angles, represented
by the variable χ , is also verified [9].

stopcrit,1 = ||G1||∞ ≤ lsc and G2 ≤ lcc and g ≤ lg and χ ≤ wi , i = 1, 2, ..., Nc (53)

where lsc is the allowable limit for the stress constraint, lcc is the allowable limit for the compliance constraint
G2, and lg is the allowable limit for the amount of gray measure ggl . The variable χ is defined as [9]

χ = 0.95
√

w2
1 + w2

2 + · · · + w2
Nc

(54)

The second stopping criterion is based on the objective function values in each subproblem, according to
Eq. (55).

condition 1 =
abs

(
ln
(
abs

(
Jk

J k−1

)))

ln
(
abs

(
J k
)) < ξ (55a)

condition 5 =
abs

(
ln
(
abs

(
Jk−1

Jk−2

)))

ln
(
abs

(
J k−1

)) < ξ (55b)
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Fig. 4 Optimization flowchart

where ξ is a suitable scalar number; the optimization process concludes when both conditions outlined in
Eq. (55) are met. However, if any of these criteria is satisfied within a specific number of iterations, the
stopping criterion becomes the maximum allowable number of iterations.

4 Results

This section presents the results obtained through the NDFO-adapt method considering Tsai–Wu as the stress
constraint criterion in solving three distinct problems: an L-bracket, aWall with opening, and a Hammerhead
pier support. The domains are parameterized with a length l = 1 m. The radius for the density filter rmin is set
to 0.07 l. The 46 candidate angles range from −π

2 to π
2 . The vector of candidate angles φc is represented as

φc = x, |, x = −π
2 + π

45 , n, n ∈ 0, 1, ..., 45.
For the first iteration, the height of the elements h0 is set to 0.05l, and λi i = 1, 2 are equal to 0. The

variable ξ , which controls the stop criteria based on the convergence, is equal to 1 ·10−6. Additional parameters
are shown in Table 1, while mesh refinement parameters are outlined in Table 2

4.1 L-bracket problem

The L-bracket serves as a benchmark for problems related to Topology Optimization (Topology Optimization
(TO)) while considering stress constraints. In Fig. 5, the domain dimensions and corresponding boundary
conditions are depicted. The structure is clamped at the top, and a load of t = 6 MPa is applied along a length
of 0.05 l. The move limit for the design variable ρ is defined as mρ = 0.2. The maximum number of iterations
is set to 500, and the variable nitmin is established at 400.

The fields of physical pseudo-densities ˜̃ρ and physical angles ˜̃
φ are depicted in Fig. 6a. The visualization

reveals that the fibers exhibit a consistent continuity, as highlighted in Details 2 and 3, owing to the spatial filter.
Additionally, it is evident that the fibers closely follow the path formed by the material distribution. However,
in the region emphasized in Detail 1, the fibers appear to be trapped in a local minimum. Wavy patterns are
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Table 1 Initial parameters shared for all problems

From Variable

Material properties E1 E2 G12 ν12 (σ T
1 )ult (σC

1 )ult (σ T
2 )ult (σC

2 )ult (σ6)ult
181.0 GPa 10.30 GPa 7.17 GPa 0.28 1500 MPa 1500 MPa 40 MPa 246 MPa 68 MPa

Augmented Lagrangian λ10 λ20
0 0

NDFO-adapt φ0 pn0 pnmax pnlb0
0 0.25 5 0.1

Threshold projection η β0 βmin0 βmax βw

0.5 1 1 1000 0.5
SIMP penalization p0 pmin0 pmax pw

3 1 8 0.5

Mechanical properties of graphite/epoxy with fiber volume fraction equal to 0.70 [24]
[·]0 represents the initial guess for the variable [·]

Table 2 Parameters for mesh refinement

G1 σer varρ

l[·] 1 · 10−2 0.1 0.02
nire f,[·] 2 2 2

n f
re f,[·] 2 2 2

Fig. 5 L-bracket domain

observed mainly in the lowest and oblique 45-degree members, indicating the necessity of increasing the
weight of the compliance constraint to address these irregularities more effectively.

As illustrated in Fig. 6b, the stress constraint is satisfied across nearly the entire domain. Although there
are certain regions where the stress constraint is not fully satisfied, it is essential to highlight that the maximum
stress constraint value is 9.29 ·10−3, which is very close to zero.

In Fig. 7, the convergences of the objective function and the compliance constraint for the L-bracket
problem are shown. The curves reveal that, after the first iteration, the objective function undergoes a significant
decrease from the initial guess of 0.5 to a value smaller than 0.1. However, from the second iteration onwards,
the objective function value experiences abrupt increases until iteration 23, reaching approximately 0.27.
Subsequently, the objective function exhibits small oscillations between iterations 20 and 90. After iteration
90, the curve forms steps and stabilizes, approaching the value of the variable nitmin . In Fig. 7b, the compliance
constraint demonstrates consistent convergence, barring minor oscillations between iterations 20 and 90.
This period corresponds to the sharp increase in the objective function value. Notably, the objective function
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Fig. 6 L-bracket result

Fig. 7 Convergences of the objective function and compliance constraint for the L-bracket result

increases to respect the compliance constraint; in other words, increasing the volume of the structure leads to a
reduction in compliance. The final value of the objective function is approximately 0.39, while the compliance
constraint reaches a final value of 2.8·10−2. Although the compliance constraint does not precisely reach zero
because the maximum number of iterations is reached, it is very close to this threshold, indicating a feasible
result.

Table 3 presents the evolution of design variable fields - ˜̃
φ, ˜̃ρ, p̃n , p̃, and β̃ - for the L-bracket problem

across different iterations. The first row displays the fields after the initial iteration, while subsequent rows
showcase the fields after iterations 10, 200, and 500. In the initial iteration, the field of physical pseudo-
densities ( ˜̃ρ) exhibits higher values in the region where fiber discontinuities occur and in the structure joints.
By iteration 10, a preliminary glimpse of the final topology emerges. The inferior horizontal members and
the vertical supporting members still retain gray values. However, by iteration 200, the structure becomes
predominantly free of gray, indicating substantial progress. Despite this, as evident in Fig. 7, the compliance
constraint is not yet met in this iteration. In the 500th iteration, the ˜̃ρ field closely resembles that of the 200th
iteration but with thicker members, ensuring that compliance constraint is satisfied. In the first iteration, the
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Table 3 Optimized fields for L-bracket in different iterations

field of penalizations ( p̃n) exhibits higher values in specific regions, such as the area close to the clamped part
in the center of the vertical section of the "L," where the presence of void (indicated by ˜̃ρ) is evident. Other
notable regions include the area above the inclined member uniting the two vertical members supporting the
structure and in the upper and bottom parts of the horizontal section of the "L." In the first iteration, p̃n ranges
from 0.1 to 2.6. By the 10th iteration, the field of penalization ( p̃n) remains similar to the first iteration, with
the main difference lying in its values, which now range from 8.56 ·10−2 to 3.47. The 200th iteration presents
a seemingly homogeneous field for p̃n , yet its values vary from 4.27 ·10−3 to 1.64 ·10−1. In the 500th iteration,
p̃n values range from 9.90 ·10−4 to 1.29 ·10−3, ensuring convergence of 99.7% of fiber angles (represented

by the variable ˜̃
φ) to the candidate angles, as depicted in Fig. 8. The field of p̃ exhibits its highest value in

the region between the two vertical members supporting the structure and the left bottom side. However, other
areas appear to be homogeneous, although it is noticeable that values are slightly higher in regions where ˜̃ρ
is higher than zero. In the first iteration, p̃ ranges from 1.11 to 5.84. By the 10th iteration, the field remains
very similar to the first iteration, with values slightly higher in regions where ˜̃ρ is higher than zero. Values of
p̃ for the 10th iteration vary from 1.02 to 5.9. In the 200th and 500th iterations, the fields are nearly identical,
featuring higher values in the interfaces between solids and voids and values closer to zero in most areas
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Fig. 8 Convergence of the fibers angles ˜̃
φ to the candidate angles

with voids in the structure. In both iterations, the values of p̃ range from 1.02 to 7.90. The β̃ field appears
homogeneous in iterations 1 and 10, but its values range from 2.87 to 10.1 in the first iteration and from 4.37
to 10.7 in the tenth iteration. By the 200th iteration, higher β̃ values concentrate at the interface between the
void and the material, mirroring the distribution of p̃. In this iteration, β̃ varies from 8.18 to 37.4. In the final
iteration, prominent β̃ values trace a path starting from the vertical member in the horizontal part of the "L,"
extending to the end of the inclined member connecting the two vertical members supporting the structure, and
at interfaces between the void and the material. In the last iteration, the values of β̃ vary from 8.18 to 101.0.

4.2 Wall with opening

The second case involves the Wall with Opening depicted in Fig. 9. This structure possesses dimensions of
l × 0.5, l and incorporates an opening on the left side at its bottom, with dimensions 0.35, l × 0.35, l. The left
side is clamped, while the support on the right side permits unrestricted displacement along the x axis. A load
of t = 6 MPa is applied, aligned with a length of 0.1, l, situated on the domain’s top at x = 0.65m. The move
limit for the variable ρ is established atmρ = 0.2. The maximum number of iterations is 500, with the variable
nitmin specified as 300.

The fields of physical pseudo-densities ˜̃ρ and physical fiber orientation ˜̃
φ are illustrated in Fig. 10. The

resulting structure is supported by two vertically oriented members, with the right member, closer to the load
application, being thicker than the left member. It is evident that the fibers tend to follow the path formed
by the material distribution, and the result exhibits consistent fiber continuity in most parts of the domain, as
highlighted in Detail 3. However, Details 1 and 2 stand out as exceptions, where the fibers undergo abrupt
changes in direction. In these regions, the values of ˜̃ρ demonstrate an early rise preceding that observed in
neighboring regions. This pattern is observed in Table 3. Observing the field of ˜̃ρ at the end of the first iteration
with deformations 100 times greater (Fig. 11), it is apparent that these regions are under bend solicitation. The
value of the objective function in the final iteration is approximately 0.32, and the compliance constraint is
equal to approximately −2.51.

In Fig. 12, the stress constraint field for the Wall with Opening result is presented. The stress constraint is
adhered to in almost the entire domain, with only a few elements showing stress constraint values equal to 5.8
·10−3, which is quite close to zero.

As depicted in Fig. 13, the convergence of the objective function exhibits small oscillations in the initial
iterations. Starting from iteration 200, the behavior begins to stabilize, demonstrating an almost constant value
until reaching iteration 321, where a slight decrease occurs. Subsequently, the objective function convergence
maintains an almost constant value.
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Fig. 9 Wall with opening domain

Fig. 10 Fiber orientation and material distribution for Wall with opening result

Fig. 11 Field of physical pseudo-densities ˜̃ρ for the Wall with opening result in the first iteration with the displacements 100
times greater

The design variable fields for the Wall with opening problem are showcased in Table 4 at iterations 1, 10,
200, and 500. As mentioned before, it is noticeable that the regions with an abrupt change in fiber direction
in both vertical members are among the areas where the value of the pseudo-densities is higher in the first
iteration. Subsequent iterations (10, 200, 500) demonstrate that the topology does not change significantly
during the iterations. The main difference is the grayscale, which decreases with incrementing iterations. The
variable p̃n exhibits similar behavior in iterations 1 and 10, with higher values in the region above the opening
and a considerable area in the center of the domain. The range for the values of p̃n is from 0.097 to 1.28 for
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Fig. 12 Stress constraint field for Wall with opening result

Fig. 13 Convergence of the objective function for the Wall with opening problem

iteration 1 and from 0.075 to 1.316 for iteration 10. In iteration 200, p̃n appears as a homogeneous field, and
the same trend continues in iteration 500. Indeed, in iteration 200, the range of p̃n is from 0.0016 to 0.016, and
in iteration 500, the range is from 0.0009 to 0.0013. In iteration 1, the filtered penalization p̃ is higher in two
specific domain regions: at the right side of the opening above the center of the domain and in the superior
right corner. In the first iteration, the values of p̃n range from 1.00 to 6.15. In iteration 10, a similar behavior is
observed, but the values of p̃n start to become higher in regions where ˜̃ρ is higher than 0. The values of p̃n vary
from 1.00 to 5.90 in iteration 10. The fields of p̃n are very similar for iterations 200 and 500, with significant
values in all regions of the domain where ˜̃ρ is higher than zero and even higher values in the area below the
application of the force, in the union of the inclined member with the vertical member, and the vertical right
member in a region below the center of the domain. The values of p̃n range from 1.08 to 7.85 in iteration 200
and from 1.10 to 7.84 in iteration 500. The variable β̃ seems homogeneous in the iterations 1 and 10. However,
its values range from 6.21 to 20.7 in the iteration 1 and from 6.34 to 21.25 in the iteration 10. In iteration 200,
the highest values of β̃ are observed in regions where ˜̃ρ is higher than 0. In iteration 200, the values of β̃ range
from 5.61 to 121.2. In the last iteration, the values of β̃ range from 7.38 to 305.4 and the highest values are
in the left lower area. Besides, it is possible to observe values higher than the average in the region above the
load application, in the union of the inclined member with the superior horizontal member, in the right lower
area, and in the left upper area.

4.3 Hammerhead Pier Support

The last example is the Hammerhead Pier Support, as presented in Fig. 14a. The domain is characterized
by a height of 0.75, l and a width of l. Notably, it incorporates two bottom openings, each possessing a
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Table 4 Optimized fields for Wall with opening in different iterations

height of 0.5, l, thus creating a member with a width of 1
6 , l. The simulation is focused on only half of the

domain, with corresponding boundary conditions outlined in Fig. 14b. Four loads, each with a magnitude
of t = 80, MPa, are strategically applied at the top to subject the structure to specific loading conditions.
Two loads are positioned at the far left and right ends, while the other two are symmetrically spaced, with a
separation of 1

3 , l. For this problem, the maximum number of iterations and the variable nitmin are both set to
300. The initial values for r1 and r2 are 10 and 5 · 10−4, respectively, while their maximum values, r1,max and
r2,max are 1 · 104 and 10. The variable αc is equal to 4.

Figure 15a shows the optimized material distribution and fiber orientation. Two vertical members support
the final topology, with most fibers oriented vertically. An exception can be observed in Detail 2, where
a discontinuity arises from a member that initially united the two vertical members, however, vanished in
the first iteration. This disappearance led to the entrapment of fibers in a local minimum. In areas where
forces are applied, such as in Detail 1 and the superior extremities of the structure, fibers are predominantly
oriented vertically. Similar to the previous examples, the fibers tend to follow the path formed by the material
distribution, resulting in consistent continuity.

The volume fraction of the optimized structure is approximately 0.39, and the compliance constraint G2
in the last iteration is equal to 6.93 · 10−3.

In Fig. 15b, the stress constraint field in the last iteration for the Hammerhead Pier Support is depicted. The
visualization reveals that the constraint is adhered to across nearly the entire domain, with a few exceptions,
where the red color signifies values slightly above zero. Nonetheless, the maximum stress constraint value is
5 · 10−3, which is extremely close to zero, making the result acceptable.
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Fig. 14 Hammerhead Pier Support domain

Fig. 15 Hammerhead result

Table 5 shows the design variables field for the optimized structure in iterations 1, 10, 200, and 300.
After the initial iteration, the physical pseudo-density ˜̃ρ exhibits a predominantly gray appearance, with values
ranging from 1.81 · 10−2 to 0.64. Notably, the emergence of a member connecting the two vertical supporters
of the structure is observed in this iteration, a region where, toward the end of optimization, the fiber is trapped
in a local minimum. By the 10th iteration, the physical pseudo-densities are between 0 and 0.99. Notably,
elevated values are concentrated in the upper region of the structure, as well as the space previously occupied
by the connecting member. The fields are similar in iterations 200 and 300, featuring values from 0 to 1 with
almost no gray values. In the same way, as observed in the previous work where the Tsai–Hill yield criterion is
considered [19], the last iterations ensure the convergence of 99.4% of the fiber angles to the candidate angles,
as shown in Fig. 16. Total convergence can be reached with additional iteration.

After the initial iteration, the optimization algorithm assigns p̃n values ranging from 0.0999 to 1.384, with
higher values concentrated in the upper part of the domain, coinciding with areas where the final result lacks
material. By the 10th iteration, the greater values persist in these regions, but the p̃n values exhibit a different
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Table 5 Optimized fields for Hammerhead Pier Support in different iterations

Fig. 16 Fiber convergence for the Hammerhead Pier Support
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range, spanning from 0.077 to 1.37. Subsequently, in iterations 200 and 300, the p̃n field becomes notably
more homogeneous, varying from 0.004 to 0.016 at iteration 200 and from 0.001 to 0.0013 at iteration 300.

After the initial iteration, the variable p̃ manifests values ranging from 1.01 to 6.96. Higher values are
concentrated in the upper part of the structure, proximate to the application points of the extremity forces, as
depicted in Table 5. By iteration 10, the values extend from 1.03 to 6.43, with the highest values persisting
in the same area observed in the initial iteration. Notably, in regions where the physical pseudo-densities ˜̃ρ
are greater than zero, the values of p̃ begin to increase, influenced by the update scheme based on the gray
values. The p̃ fields in iterations 200 and 300 display similarities, with values ranging from 1.06 to 7.9 in both
instances.

The variable β̃ starts with a seemingly homogeneous field. Although the first iteration field in Table 5
appears homogeneous, β̃ values range from 5.10 to 9.97. By the end of iteration 10, these values exhibit slight
changes, now varying from 5.29 to 10.06. In iteration 200, β̃ values increase in regions with material, ranging
from 5.73 to 63.12. By iteration 300, the smallest β̃ does not change. However, the highest value rises to
129.31.

5 Conclusions

This paper proposes the NDFO-adapt method to minimize the structure volume, incorporating compliance
and local stress constraints based on the Tsai–Wu yield criterion. The material model integrates penalization
as a design variable, eliminating the necessity for heuristically selecting values. This concept is extended to
include the projection parameter β and the SIMP penalization p, broadening the solution space and enabling
the exploration of new local minima.

Given the constraints previously mentioned, the challenge of minimizing the volume was effectively
addressed.Although some examples violated the constraints, the violationwasmarginal, with a value approach-
ing zero, rendering the results feasible.

New functions to control the continuation for the box constraints of the design variable were proposed to
circumvent the local minima obtained with the previous approach applied when the Tsai–Hill yield criteria
were considered. These new functions allow better control of the design variable values during optimization,
allowing for more feasible results.

The move limit scheme depends on the amount of gray in the structure, providing a strategy to navigate
around local minima, albeit without complete assurance. Furthermore, a new function to update the box
constraints of β and p is proposed, where the control above the increase in these values was improved,
allowing a smooth continuation precisely controlled by a maximum number of iterations.

The fiber orientation exhibited uniform continuity in most regions across all solved problems. However,
certain specific regions did present some discontinuities. These discontinuities can be managed effectively by
incorporating manufacturing constraints.

Future work will delve into refining the treatment of discontinuities, extending the methodology to 3D
domains, and enhancing the method’s robustness.
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