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Abstract This paper addresses the traveling wave vibration control of rotating functionally graded material
(FGM) conical shells via piezoelectric actuator and sensor pairs. Considering the circumferential initial stresses
and Coriolis forces induced by rotation, as well as arbitrary boundary conditions, the electromechanically
coupled governing equations of the rotating FGM conical shell with piezoelectric patches are established
using the Lagrange equation. The model validation is carried out through a comparative analysis with existing
literature. Base on the model, the linear–quadratic regulator controller is designed to suppress the traveling
wave vibrations of rotating FGM conical shells considering the participation of multi-vibration modes in the
dynamic responses. To evaluate the performance of the controller, free and forced vibrations of rotating FGM
conical shells with different rotational speeds, material compositions and excitation positions are investigated
in detail. Additionally, five typical piezoelectric sensors/actuators distributions are presented and the effects
of piezoelectric patch layout on the control efficiency are discussed.

Keywords Traveling wave vibration · Vibration control · Functionally graded material · Rotating conical
shell · Arbitrary boundary conditions

1 Introduction

In recent years, functionally graded material (FGM) [1–4] has received widespread attention in various engi-
neering fields due to their high strength, excellent toughness and lightweight properties. The vibration of
stationary plate-shell structures manifests as standing waves, and scholars have conducted extensive research
on the wave propagation properties [5–7]. Considering Coriolis force induced by rotation, vibrations of rotat-
ing shells are in the form of traveling wave [8–12]. Conical shells are widely used in various engineering
fields due to their easy processing and good mechanical load-bearing capacity. Rotating shells exhibit more
complex dynamic behaviors in working conditions. Undesirable vibrations not only reduce the performance
of the structure but also affect its integrity and reliability. Therefore, it is of practical importance to investigate
the traveling wave vibration control of rotating FGM conical shells.

Vibration control of conical shell has attracted the attention of many scholars. Active vibration control
is currently the preferred and effective method for vibration suppression. Feedback control is achieved by
leveraging the characteristics of smart materials such as piezoelectric and magnetostrictive materials [13, 14].
Li et al. [15] studied the active control of axial, lateral and transverse vibrations of conical shells with clamped-
free boundary using distributed piezoelectric actuators. Li et al. [16] investigated the active control of forced
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vibration of conical shells using negative velocity feedback, while also examining the optimal placement of
actuator segments. Sun et al. [17] proposed an independent modal fuzzy sliding mode controller to suppress
the vibration of conical shells. Jamshidi and Jafari [18, 19] explored the impact of geometric parameters on
the modal actuator force under three different piezoelectric element layouts. Magnetostrictive actuators were
used to control the vibration of simply supported conical shells by Mohammadrezazadeh and Jafari [20]. By
comparing the controlled and uncontrolled free and forced vibration responses of conical shells with four
different piezoelectric plate layouts, Jamshidi and Jafari [21] evaluated the vibration control effect of conical
shells with distributed piezoelectric sensors/actuator patches. With the widespread application of composite
materials, some scholars turned their research interests to the vibration control of composite conical shells. Shah
and Ray [22] studied the vibration and acoustic active control of laminate composite truncated conical shells.
Hajmohammad et al. [23] explored the intelligent control of sandwich truncated conical shells. Moghaddam
and Ahmadi [24] studied the active vibration control of FGM truncated conical shells using piezoelectric smart
materials. Hao et al. [25] investigated the active damping control of truncated conical shells made of porous
metal foam.

The aforementioned research primarily focuses on stationary conical shells. With the increasing emphasis
on the reliability of key components in rotating machinery, the study of the dynamics and control of high-speed
rotating conical shells has become a recent hotspot. The study on the travelingwave vibration of rotating conical
shell [26–30] reveals that the Coriolis force induces natural frequency of rotating conical shell bifurcation,
resulting in the generation of forward and backward traveling waves. This distinctive vibration behavior,
different from that of stationary conical shells, has prompted scholars to study the vibration control of rotating
conical shells. Kumar and Ray [31] investigated the active vibration control of a laminated composite conical
shell rotating at a specific speed using an active constraint layer damping treatment. Mohammadrezazadeh and
Jafari [32] utilized magnetostrictive plates as actuators to control the vibration of rotating laminated composite
conical shells under simply supported boundaries.Niasar et al. [33] optimized the position of FGMpiezoelectric
sensors and actuators to improve the vibration behavior of rotating simply supported FGM conical shells. Only
a single mode was considered in the corresponding calculations.

To sum up, there are relatively fewer investigations on the vibration control of rotating conical shells,
compared to stationary shells. From these studies, the following shortcomings can be identified. First, the
electromechanical coupling model used for vibration control is specific to certain boundary conditions, such
as simply supported-simply supported and clamped-free, and the model applicable to arbitrary boundary
conditions should be developed. Second, the controllers designed in previous studiesmainly focus on individual
modes, and few articles consider multiple vibrationmodes. In addition, a specific rotational speed is considered
during the controller design in previous investigations, indicating the need for further research to assess its
applicability over a range of speeds.

In light of thementioned shortcomings in previous studies, this paper addresses the travelingwave vibration
control of rotating functionally gradedmaterial (FGM) conical shells via piezoelectric actuator and sensor pairs.
The main contributions of this paper are as follows: (1) An electromechanical coupling model for rotating
FGM conical shells, covered with surface-bonded piezoelectric sensors/actuators, is established considering
circumferential initial stresses andCoriolis forces induced by rotation, as well as arbitrary boundary conditions.
(2) An LQR (linear–quadratic regulator) controller is designed for traveling wave vibration control of rotating
FGM conical shells over a range of speeds, considering the participation of multi-vibration modes in the
dynamic responses. (3) Free and forced vibrations of rotating FGM conical shells with different rotational
speeds, material compositions and excitation positions are shown to evaluate the performance of the controller.
(4) The optimization of piezoelectric patch layout is carried out by analyzing the performance of the controller
for rotating FGM conical shells with typical piezoelectric sensors/actuators distributions.

2 Theoretical formulation

2.1 Model description

As shown in Fig. 1, the FGM conical shell with four sets of piezoelectric sensors and actuators attached to
the shell’s inner and outer surfaces rotates around the symmetry axis at an angular velocity �. In the figure,
α is the semi-vertex angle, L is the meridional length, r is the radius,h is the thickness of the conical shell.
An orthogonal curvilinear coordinate system (x, θ , z) is fixed on the middle surface of the conical shell, and
the displacements are denoted by u, v and w in meridional (x), circumferential (θ ) and radial (z) directions,
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Fig. 1 Rotating FGM conical shell with piezoelectric sensors/actuators and elastic constraints

respectively. Five sets of continuously uniformly distributed artificial springs are introduced at the boundary
of the conical shell to simulate different boundary conditions, including three sets of translational springs ku,
kv, kw, and two sets of rotational springs kx, kθ . In the figure, the black dashed lines at the boundaries of the
conical shell represent uniformly distributed artificial springs. By adjusting the spring stiffness, it is possible
to simulate various boundary conditions.

The FGM conical shell is composed of ceramics and metals, and the material properties vary along the
thickness direction.According to the power-law function, the volume fractions of differentmaterial components
can be expressed as can be written as follows [1]:

Vc1 �
(
2z + h

2h

)p

, Vc2 � 1 −
(
2z + h

2h

)p

, (1)

where p is the volume fraction index, and the subscripts “c1” and “c2” represent metal and ceramic materials,
respectively. The effective material propertiesP (z) of FGM at specific temperatures, such as Young’s modulus,
density and Poisson’s ration, can be expressed as:

P(z) � (Pc1 − Pc2)Vc1 + Pc2. (2)

According to the above equation, the Young’s modulus E, density ρ and Poisson’s ratio μ of FGM conical
shell are written as:

E(z) � Ec2 + (Ec1 − Ec2)

(
2z + h

h

)p

,

μ(z) � μc2 + (μc1 − μc2)

(
2z + h

h

)p

,

ρ(z) � ρc2 + (ρc1 − ρc2)

(
2z + h

h

)p

.

(3)

2.2 Energy functions of rotating conical shell

According to the first-order shear deformation shell theory, the conical shell’s displacement fields can be
written as [25] ⎧⎨

⎩
u(x , θ , z, t) � u0(x , θ , t) + zφx (x , θ , t)
v(x , θ , z, t) � v0(x , θ , t) + zφθ (x , θ , t)
w(x , θ , z, t) � w0(x , θ , t)

, (4)

where u0, v0 and w0 are, respectively, the displacements of the points on the middle surface in x, θ and z
directions. φx and φθ are, respectively, rotations of the transverse normal about θ and x axes.
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The kinetic energy of the rotating FGM conical shell is given by

Tc � 1

2

∫ 2π

0

∫ L

0

∫ h/ 2

−h/ 2
ρ(z)

[
(u̇ − �v sin α)2 + (ẇ − �v cosα)2 + (v̇ + �u sin α + �w cosα)2

]
r (x)dzdxdθ ,

(5)

where r (x) � r + x sin α.
The stress–strain relationship of the rotating FGM conical shell is⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σx

σθ

τxθ

τxz

τθ z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

�

⎡
⎢⎢⎢⎣
Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εx

εθ

γxθ

γxz

γθ z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (6)

in which

Q11� E11(z)

1 − μ12μ21
, Q22� E22(z)

1 − μ12μ21
, Q12� μ21E11(z)

1 − μ12μ21
, Q44 � G23, Q55 � G13, Q66 � G12, (7)

Here, G23, G13, G12 are the shear moduli of material.
The strain components at an arbitrary point of the FGM conical shell are given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εx

εθ

γxθ

γxz

γθ z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εx ,0

εθ ,0

γxθ ,0

γxz,0

γθ z,0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ z

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κx

κθ

κxθ

κxz

κθ z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8)

where
{
εx , 0 εθ , 0 γxθ , 0 γxz, 0 γθ z, 0

}T and {κx κθ κxθ κxz κθ z
}T are the strain components and curvature com-

ponents of the middle surface, respectively. According to the geometric deformation relationship, they are
expressed as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εx ,0
εθ ,0
γxθ ,0
γxz,0
γθ z,0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u0
∂x

1
r (x)

∂v0
∂θ

+ w0 cosα
r (x) + u0 sin α

r (x)
∂v0
∂x + 1

r (x)
∂u0
∂θ

− v0 sin α
r (x)

ϕx +
∂w0
∂x

ϕθ + 1
r (x)

∂w0
∂θ

− v0 cosα
r (x)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κx
κθ

κxθ
κxz
κθ z

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂φx
∂x

1
r (x)

∂φθ

∂θ
+ φx sin α

r (x)
1

r (x)
∂φx
∂θ

+ ∂φθ

∂x − φθ sin α
r (x)

0
0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (9)

The elastic strain energy of the FGM conical shell is written as

Uε � 1

2

∫ 2π

0

∫ L

0

∫ h/ 2

−h/ 2

[
σxεx + σθεθ + τxθγxθ + Kxτxzγxz + Kθ τθ zγθ z

]
r (x)dzdxdθ , (10)

where Kx and Kθ are the shear correction factors and the typical value is 3/4 or 5/6.
The strain energy of the rotating FGM conical shell due to the initial hoop tension is given by

Ur � 1

2

∫ L

0

∫ 2π

0

∫ h
2

− h
2

ρ(z)�2

[(
∂u

∂θ
− v sin α

)2

+

(
∂v

∂θ
+ u sin α + w cosα

)2

+

(
v cosα − ∂w

∂θ

)2
]
r (x)dxdθ.

(11)

The potential energy generated by the spring sets at the boundaries is obtained by

Us � 1

2

∫ 2π

0
r
(
kuu

2
0 + kvv

2
0 + kww2

0 + kxφ
2
x + kθφ

2
θ

)∣∣
x�0 + R

(
kuu

2
0 + kvv

2
0 + kww2

0 + kxφ
2
x + kθφ

2
θ

)∣∣
x�Ldθ.

(12)

Generally, the value of ku, kv, kw, kx and kθ can be determined through experiments. For classical boundary
conditions, the corresponding values are listed in Table 1.
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Table 1 Values of spring stiffness under three classical boundary conditions

Boundary Geometric boundary conditions Spring stiffness

Free None ku � kv � kw � kx � kθ � 0
Simply supported v0 � w0 � φθ � 0 ku � kx � 0, kv → ∞, kw → ∞, kθ → ∞
Clamped constrains u0 � v0 � w0 � φx � φθ � 0 ku → ∞, kv → ∞, kw → ∞, kx → ∞, kθ → ∞

Fig. 2 Deformation relationship between piezoelectric patches and core

2.3 Energy functions of piezoelectric sensor/actuator pairs

Based on Loves’ shell theory, the displacement fields of piezoelectric sensors and actuators can be written as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uλ(x , θ , zλ, t) � uλ
0(x , θ , t) − zλ

∂wλ
0

∂x

vλ(x , θ , zλ, t) � vλ
0 (x , θ , t) +

zλ
rλ(x)

(
vλ
0 cosα − ∂wλ

0

∂θ

)

wλ(x , θ , zλ, t) � wλ
0 (x , θ , t)

. (λ�a, s) (13)

where “a” and “s” represent actuators and sensors, respectively.
According to the deformation relationship shown in Fig. 2, the displacement continuity condition between

the piezoelectric sensor/actuator and the conical shell is

⎧⎨
⎩

u(x , θ , z, t)|z�−h/2 � us(x , θ , zs , t)|zs�hs/2
v(x , θ , z, t)|z�−h/2 � vs(x , θ , zs , t)|zs�hs/2
w(x , θ , z, t)|z�−h/2 � ws(x , θ , zs , t)|zs�hs/2

,

⎧⎨
⎩

u(x , θ , z, t)|z�h/2 � ua(x , θ , za , t)|za�−ha/2
v(x , θ , z, t)|z�h/2 � va(x , θ , za , t)|za�−ha/2
w(x , θ , z, t)|z�h/2 � wa(x , θ , za , t)|za�−ha/2

, (14)

where hs and ha, respectively, represent the thickness of the sensor and actuator.
Substituting expressions (4) and (13) into (14) yields

⎧⎪⎨
⎪⎩
us0(x , θ , t) � u0(x , θ , t) − h

2φx (x , θ , t) +
hs
2

∂w0
∂x

vs0(x , θ , t) � v0(x , θ , t) − h
2φθ (x , θ , t) +

hs
2rs (x)

∂w0
∂θ

ws
0(x , θ , t) � w0(x , θ , t)

,

⎧⎪⎨
⎪⎩
ua0(x , θ , t) � u0(x , θ , t) + h

2φx (x , θ , t) − ha
2

∂w0
∂x

va0 (x , θ , t) � v0(x , θ , t) + h
2φθ (x , θ , t) − ha

2ra (x)
∂w0
∂θ

wa
0 (x , θ , t) � w0(x , θ , t)

.

(15)
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Assuming that piezoelectric material is isotropic, the constitutive equation of piezoelectric materials is
expressed as [34]

σλ �
⎧⎨
⎩

σλ
x

σλ
θ

τλ
xθ

⎫⎬
⎭ � Qλελ − eTEλ �

⎡
⎣C11 C12 0
C12 C22 0
0 0 C66

⎤
⎦
⎧⎨
⎩

ελ
x

ελ
θ

γ λ
xθ

⎫⎬
⎭ −

⎡
⎣ 0 0 0

0 0 0
e31 e32 0

⎤
⎦
T⎧⎨
⎩

0
0

V0(t)
/
hλ

⎫⎬
⎭,

Dλ �
⎧⎨
⎩

0
0
Dz

⎫⎬
⎭ � εελ + 4Eλ �

⎡
⎣ 0 0 0

0 0 0
e31 e32 0

⎤
⎦
⎧⎨
⎩

σλ
x

σλ
θ

τλ
xθ

⎫⎬
⎭ +

⎡
⎣�11

�22
�33

⎤
⎦
⎧⎨
⎩

0
0

V0(t)
/
hλ

⎫⎬
⎭.

(16)

where σλ and ελ, respectively, denote stress and strain vector, Dλ is the electric displacement vector, e is
equivalent piezoelectric coefficient matrix, � is the equivalent dielectric coefficient matrix, Eλ is the electric
field intensity vector where V0(t) is the external voltage, andQλ is the stiffness coefficient matrix where elastic
stiffness coefficient can be substituted by

C11�C22 � Eλ

1 − μ2
λ

, C12� μλEλ

1 − μ2
λ

, C66� Eλ

2(1 + μλ)
, (17)

in which, Eλ and μλ are the Young’s modulus and Poisson’s ratio of piezoelectric materials, respectively.
The strain components at arbitrary point of the piezoelectric sensor/actuator pairs are given by

⎧⎨
⎩

ελ
x

ελ
θ

γ λ
xθ

⎫⎬
⎭ �

⎧⎨
⎩

ελ
x ,0

ελ
θ ,0

γ λ
xθ ,0

⎫⎬
⎭ + z

⎧⎨
⎩

κλ
x ,0

κλ
θ ,0

κλ
xθ ,0

⎫⎬
⎭. (18)

{
ελ
x , 0 ελ

θ , 0 γ λ
xθ , 0

}T
and

{
κλ
x , 0 κλ

θ , 0 κλ
xθ , 0

}T
are the strain components and curvature components, respectively,

which are expressed as

ελ
x ,0 � ∂uλ

0

∂x

ελ
θ ,0 � 1

rλ(x)

∂vλ
0

∂θ
+
sin α

rλ(x)
uλ
0 +

cosα

rλ(x)
wλ
0

γ λ
xθ ,0 � ∂vλ

0

∂x
+

1

rλ(x)

∂uλ
0

∂θ
− sin α

rλ(x)
vλ
0

κλ
x ,0 � −∂2wλ

0

∂x2

κλ
θ ,0 � − sin α

rλ(x)

∂wλ
0

∂x
− 1

r2λ(x)

∂2wλ
0

∂θ2
+
cosα

r2λ(x)

∂vλ
0

∂θ

κλ
xθ ,0 � 2

(
sin α

r2λ(x)

∂wλ
0

∂θ
− 1

rλ(x)

∂2wλ
0

∂x∂θ
+
cosα

rλ(x)

∂vλ
0

∂x
− sin α cosα

r2λ(x)
vλ
0

)
,

(19)

The kinetic energy of the piezoelectric sensor/actuator pairs is expressed as

Tλ � 1

2

np∑
i�1

∫
Vai

ρa

[(
u̇a

)2 + (
v̇a

)2 + (
ẇa)2]dV +

1

2

np∑
i�1

∫
Vsi

ρs

[(
u̇s

)2 + (
v̇s
)2 + (

ẇs)2]dV , (20)

where np represents the number of piezoelectric sensor/actuator pairs.
The strain energy of the piezoelectric sensor/actuator pairs is given by

Uλ � 1

2

np∑
i�1

∫
Vai+Vsi

(
ελ

)T
σλdV − 1

2

np∑
i�1

∫
Vai

(
Dλ

)T
EλdV . (21)
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2.4 The displacement field

It is assumed that the displacement functions of the rotating FGM conical shell are expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(x , θ , t) �
∞∑

m�1

∞∑
n�0

[
uc,mn(t)Uc,m(x) cos nθ + us,mn(t)Us,m(x) sin nθ

] � U(x , θ)qu(t)

v0(x , θ , t) �
∞∑

m�1

∞∑
n�0

[
vc,mn(t)Vc,m(x) cos nθ + vs,mn(t)Vs,m(x) sin nθ

] � V(x , θ)qv(t)

w0(x , θ , t) �
∞∑

m�1

∞∑
n�0

[
wc,mn(t)Wc,m(x) cos nθ + ws,mn(t)Ws,m(x) sin nθ

] � W(x , θ)qw(t)

φx (x , θ , t) �
∞∑

m�1

∞∑
n�0

[
ϕc,mn(t)�c,m(x) cos nθ + ϕs,mn(t)�s,m(x) sin nθ

] � �(x , θ)qx (t)

φθ (x , θ , t) �
∞∑

m�1

∞∑
n�0

[
ψc,mn(t)�c,m(x) cos nθ + ψs,mn(t)�s,m(x) sin nθ

] � �(x , θ)qθ (t)

, (22)

wherem and n are half axialwave numbers and circumferentialwave numbers in x and θ directions, respectively.
qu(t), qv(t), qw(t), qx(t) and qθ (t) are the generalized coordinates that are unknown functions of time t. U(x,
θ ), V(x, θ ),W(x, θ ), �(x, θ ) and �(x, θ ) are the vibration mode functions of the rotating conical shell, which
can be obtained by the Rayleigh–Ritz method [11, 27].

2.5 Governing equations

Assuming that external excitation is a concentrated force in the radial direction, the virtual work done by the
external force is expressed as

W � F0 cos(ωdt)w(x , θ , t)|x�x0, θ�θ0 , (23)

where F0 is the amplitude of the concentrated force,ωd is the excitation frequency and (x0, θ0) denotes the
excitation position on the shell.

The governing equations of the rotating FGM conical shells with piezoelectric sensor/actuator pairs can
be derived using Lagrange equations,

(Mc +Ma +Ms)q̈(t) + (G + C)q̇(t) + (Kε +Kr +Ka +Ks)q(t) +KeVa(t) � F(t). (24)

Here q(t) � {
qu(t)T, qu(t)T, qu(t)T, qu(t)T, qu(t)T

}T is the generalized coordinate vector, Mc, G, C,
Kε andKr are themassmatrix, gyroscopicmatrix, dampingmatrix, initial stress stiffnessmatrix and centrifugal
stiffness matrix of the rotating FGM conical shell, respectively. Ma and Ka are the mass and stiffness matrix
of the piezoelectric actuator, respectively. Ms and Ks are the mass and stiffness matrix of the piezoelectric
sensor. Ke is the electromechanical coupling matrix and Va(t) is the external voltage vector. F(t) is the force
vector. Here, proportional damping is considered, and the damping matrix C is derived from

PTCP �
⎡
⎢⎣
2ξ1ω1 · · · 0

...
. . .

...
0 · · · 2ξNωN

⎤
⎥⎦ (25)

where ω j (j � 1, 2, …, N) is natural frequency, ξ j (j � 1, 2, …, N) is the corresponding modal damping ratios
of each generalized coordinate and N is the number of generalized coordinates considered. P is the modal
matrix. The expressions for the other matrix mentioned above are provided in the Appendix.
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3 Control loop design

According to the positive piezoelectric effect of piezoelectric materials, piezoelectric sensors can deform under
external forces, causing changes in charge. The value of charge generated by the ith piezoelectric sensor can
be expressed as [34]

Qsi (t) �
∫
Asi

DzdA �
∫
Asi

e31εxx + e32εθθdA � 0̂siq(t), (26)

where Asi is the surface area of the ith sensor. The induced voltage Vs
i(t) of the ith sensor can be expressed

by:

V s
i (t) � h p

�33i Asi
Qsi (t) � h p

�33i Asi
�̂siq(t) � �siq(t) (27)

The sensor voltage generated by the entire control system can be written as

Vs(t) � �sq(t). (28)

The LQR method is used to design the controller. Based on the equation of motion (27), the standard
state-space model used for controller design and numerical simulation can be expressed as:

Ż � AZ + BvU + B f F,
Y � CZ

(29)

where

Z � {
qT q̇T

}T, C � [
�s 0

]
, U � Va ,

A �
[

0 I
−(Mc +Ma +Ms)−1(Kε +Kr +Ka +Ks) −(Mc +Ma +Ms)−1(G + C)

]
,

Bv �
[

0
−(Mc +Ma +Ms)−1Ke

]
,

B f �
[

0
(Mc +Ma +Ms)−1

]
.

(30)

In Eq., Z is the state variable,Y is the sensor output,A is the state matrix, Bv and Bf are the control matrix
and disturbance matrix, respectively. The optimal input U of the system satisfies the objective minimum cost
function, which is written as

J �
∫ ∞

0

[
ZTQZ + UTRU

]
dt , (31)

where Q is the state weight matrix and R is the control weight matrix. The voltage can be calculated by the
following equation

U � −GlZ, (32)

where Gl is the feedback control gain matrix, which is written as:

Gl � R−1BTH, (33)

in which H is calculated from algebraic Riccati equation:

HA + ATH − HBR−1BTH +Q � 0. (34)
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Table 2 Comparison of the natural frequencies (Hz) for non-rotating FGM cylindrical shell (α � 0◦, m � 1, h
/
r � 0.05,

L
/
r � 20)

n Loy et al. [1] Present

p � 0 p � 1 p � 5 p � 0 p � 1 p � 5

1 13.572 13.235 13.021 13.430 13.095 12.880
2 33.296 32.430 31.910 33.228 32.357 31.841
3 93.001 90.553 89.109 92.682 90.219 88.788
4 178.06 173.36 170.60 177.063 172.298 169.569
5 287.79 280.20 275.73 285.18 277.582 273.188
6 422.05 410.91 404.36 416.582 405.487 399.073

Table 3 Comparison of the natural frequencies (Hz) for rotating FGM conical shell (α � 20◦, r � 0.5, h
/
r � 0.1, L

/
r � 4,

� � 79.6 rps

n m Forward wave frequency Backward wave frequency

Afshari [26] Present Afshari [26] Present

1 1 1599.276 1601.797 2474.444 2476.563
2 2851.743 2868.629 3262.936 3273.467
3 3511.507 3503.932 3761.422 3747.959

2 1 1135.714 1136.975 1820.777 1818.896
2 2226.313 2225.856 2758.933 2751.896
3 3143.231 3144.983 3481.664 3477.552

3 1 1399.870 1402.467 1909.564 1910.235
2 2134.948 2134.753 2584.914 2579.888
3 3029.421 3033.130 3376.556 3376.335

4 1 2005.311 2010.923 2387.900 2392.906
2 2540.410 2545.215 2897.215 2899.441
3 3299.112 3306.651 3604.141 3608.950

4 Numerical results and discussions

4.1 Model validation

To assess the validity of the present solution procedure, comparison studies are carried out. Firstly, the natural
frequencies of non-rotating FGM cylindrical shell under simply supported boundary conditions are calculated
and compared with the results form Loy et al. [1]. As shown in Table 2, the current results exhibit slight
differences from the data reported previously, which is attributable to differences in shell theory. Next, the
comparative verification is conducted on the frequencies of rotating conical shell under clamped–clamped
boundary conditions. As shown in Table 3, the calculated results of the forward and backwardwave frequencies
of a rotating conical shell are compared with those reported by Afshari [26]. It is apparent to discover that the
current calculation results are almost consistent with the compared literature data. These comparisons listed
in Tables 2 and 3 indicate that the theoretical formulation and numerical calculation in the paper are correct.

4.2 Vibration analysis

The FGM conical shell is composed of Ti–6Al–4V and ZrO2, and the relevant material parameters are listed
as follows:

Ec1 � 105.749Gpa, ρc1 � 4420kg/m3, μc1 � 0.2984,

Ec2 � 116.380Gpa, ρc2 � 3657kg/m3, μc2 � 0.3330.
(35)

The geometric parameters of the conical shell are: α � 30°, h � 0.01m, L � 0.45m, r � 0.2m. The
modal damping ratios ξ j are assumed to be 0.001. Unless otherwise specified, the volume fraction index
and angular velocities of the FGM conical shell are p � 1 and � � 50rps, respectively. The material of the
piezoelectric sensor and actuator is PZT-G1195N, and the physical parameters are shown in Table 4. The layout
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Table 4 Geometric and material parameters of the piezoelectric pairs

Parameter Symbol Value Units

Thickness hλ 0.2 mm
Density ρλ 7600 kg/m3

Young’s modulus Eλ 63 N/m2

Poisson’s ratio μλ 0.3
Dielectric coefficient �33 1.5×10–8 F/m
Strain coefficient d31, d32 245×10–12 m/V

Fig. 3 Campbell diagram and mode shapes of rotating FGM conical shell

of piezoelectric pairs is shown in Fig. 1, with four groups of piezoelectric pairs uniformly distributed in the
circumferential direction, and each piezoelectric pair has a circumferential coverage angle of 45° and an axial
coverage length of L. The amplitude of the concentrated force F0 is 2000N. Taking the clamped conical shell
at both ends as an example, the traveling wave vibration control of a rotating FGM conical shell is investigated
in this section.

Figure 3 displays the Campbell diagram and mode shapes of the rotating FGM conical shell. As shown in
the figure, with the increase in rotational speed, the natural frequency of vibration mode with specific (n, m)
combinations bifurcates, and backward and forward wave frequencies appear due to the effects of centrifugal
and Coriolis effects. The natural frequency of backward wave is higher than that of forward wave at each
rotational speed. The study primarily focuses on the control effect of FGM conical shells having angular
velocity within the range 0–100 rps. Within the research scope, the fundamental frequency of the conical shell
is 916 Hz and six sets of vibration modes can be observed. The corresponding mode shapes are shown in
Fig. 3. The above analysis lays the foundation for subsequent research.

The modal convergence of the rotating FGM conical shell is investigated utilizing the mode superposition
method in Fig. 4. As shown in the figure, the amplitude–frequency characteristic curves of forced vibration
and the displacement time–history curves of free vibration are considered for four different values of m and
n. Whether for forced vibration or free vibration, the vibration response curves of conical shells are almost
superposed in three cases except for n � 1–7, m � 1–3. Consequently, traveling vibration modes with m �
1–3 and n � 1–8 are considered in the following calculation.
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Fig. 4 Convergence analysis of dynamic responses considering different number of vibration modes (x0 � L/2, θ0 � 0) a free
vibration responses; b forced vibration responses

Fig. 5 Effect of weighting ratio Q/R on the forced vibration responses (x0 � L/2, θ0 � 0) a forced vibration response; bmaximum
voltage of actuators required

Figure 5 presents the traveling wave vibration control effect of rotating FGM conical shells under different
values of Q/R. As shown in the figure, the amplitude–frequency characteristic curves and the corresponding
maximum voltage for the rotating conical shell are provided for three different values of Q/R. Clearly, the LQR
controller effectively suppresses the travelingwave vibration of the rotating FGMconical shell. It is noteworthy
that there are significant differences in the control effectiveness and maximum control voltage under different
gains. As the value of Q/R increases, the vibration suppression effect becomes more pronounced, but the
provided voltage also increases accordingly. Therefore, considering Fig. 5a, b comprehensively, Q/R � 100 is
chosen to ensure both significant control effect and reasonable control voltage.

In Fig. 6, the control effect of free vibration of rotating conical shells is depicted under the selected value
of Q/R mentioned above. The displacement time–history curve of controlled and uncontrolled free vibration
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Fig. 6 Free vibration responses with and without control (x0 � L/2, θ0 � 0) a free vibration responses; b maximum voltage of
actuators required

Fig. 7 Control efficiency of the free and forced vibration responses for different volume fraction indices (x0 � L/2, θ0 � 0)



Traveling wave vibration control of rotating functionally graded conical shells 2781

Fig. 8 Control efficiency of the free and forced vibration responses for rotating FGM conical shells with different rotational
speeds (x0 � L/2, θ0 � 0)

is described in Fig. 6a. It can be observed that, compared to the uncontrolled free vibration response of the
conical shell, the controlled free vibration exhibits a significantly reduced amplitude and the vibration response
converges quickly. Figure 6b displays the maximum voltage of four actuators required. Notably, the maximum
control voltage is less than 300 V each until the free vibration is controlled. These conclusions prove the
rationality of the current value of Q/R, which can be used for subsequent calculations and discussions.

The vibration suppression effects of free and forced vibration under different volume fraction indices and
rotational speeds are shown in Figs. 7 and 8, respectively. Figure 7 displays the displacement time–history
curves of free vibration and amplitude–frequency characteristic curves of forced vibration under the two
conditions of p� 5 and p� 10. The comparison results indicate the current control method still produces good
control efficiency under different volume fraction indices. As shown in Fig. 8, the control efficiency of forced
and free vibration of rotating conical shells at two different speeds, namely 80rps and 100rps, is considered.
By describing the vibration response at different speeds, it is demonstrated that the current control method
can effectively suppress vibration over a range of rotational speeds and there is no significant difference in the
control efficiency at each speed under the selected value of Q/R above.

Figure 9 demonstrates the control effects of free vibration and forced vibration at various positions in the
meridian direction. In Fig. 9, the two positions (L/3, 0) and (L/6, 0) are mainly selected. According to the
controlled and uncontrolled displacement time–history curves and amplitude–frequency characteristic curves
in Fig. 9, it can be concluded that the current control method effectively controls the free vibration and forced
vibration of the conical shell at different positions. Additionally, changes in the positions of the action and
measurement points in the meridional direction have a noticeable impact on the dynamic behavior of the
conical shell. Specifically, when these points are closer to the boundary, the amplitude of the conical shell is
reduced.

Figure 10 shows five classic layouts of piezoelectric sensors/actuators. The effect of piezoelectric patch
layout on the control effectiveness of traveling wave vibration is investigated. As shown in Fig. 10, the
circumferential coverage angle for each piezoelectric patch remains constant in the first three layouts, and



2782 S. Sun et al.

Fig. 9 Control efficiency of the free and forced vibration responses for rotating FGM conical shells at different positions in the
meridional direction

Fig. 10 Five cases of layouts of piezoelectric patches
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Fig. 11 Control efficiency of the forced vibration responses for shells with different numbers of piezoelectric patches arranged
in meridional direction (x0 � L/2, θ0 � 0)

Fig. 12 Control efficiency of the forced vibration responses for shells with different numbers of piezoelectric patches arranged
in circumferential direction (x0 � L/2, θ0 � 0)

Fig. 13 Control efficiency of the forced vibration responses for shells with different meridional and circumferential layouts of
piezoelectric patches (x0 � L/2, θ0 � 0)

four, eight and twelve piezoelectric patches are used in Cases 1, Case 2 and Case 3, respectively. For the last
two layouts, the meridional coverage length of each piezoelectric patch is consistent, and Case 4 and Case 5
use eight and twelve piezoelectric patches, respectively. It is worth noting that the optimization of piezoelectric
layout studied in this article is conducted for the typical layouts proposed. Piezoelectric sensors and actuators
for all these five cases have the same location and total area of piezoelectric patches.

The control efficiency of rotating FGM conical shells under the five types of piezoelectric distribution
mentioned above is discussed. Figures 11 and 12, respectively, explore the effects of variations in the number
of meridional and circumferential piezoelectric patches on control efficiency. As shown in Fig. 11, the control
effectiveness of Case1 consistently surpasses that of Case2 and Case3, and the control effect of Case2 shows
only a slight improvement compared to that of Case3. Therefore, fewer piezoelectric patches arranged in the
meridional direction can yield more effective vibration control. Figure 12 shows that Case 1, Case 4 and
Case 5 exhibit various advantages and disadvantages in different frequency ranges. Figure 13 illustrates the
uncontrolled and controlled forced vibration response with the same number of piezoelectric sensors/actuators
in different layouts. It is found that the vibration suppression effect in Case 4 is superior to Case 2, suggesting
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that arranging more piezoelectric patches in the circumferential direction yields better control effectiveness
than placing more piezoelectric patches in the meridional direction when the number of piezoelectric patches
remains constant.

5 Conclusion

The paper conducts traveling wave vibration control of rotating FGM shells using piezoelectric sensors and
actuators. Considering circumferential initial stresses and Coriolis forces induced by rotation, as well as
arbitrary boundary conditions, the electromechanically coupled governing equations of the rotating FGM
conical shell with piezoelectric patches are established. To suppress vibrations of rotating FGM conical shells
within a certain rotational speed range, an LQR controller is designed and the effectiveness of the controller
is evaluated by the dynamic response. Furthermore, the optimization of piezoelectric patch layout is carried
out by analyzing the performance of the controller for rotating FGM conical shells with typical piezoelectric
sensors/actuators distributions.

The main findings are summarized as follows: (1) The electromechanical coupling equations established
in this paper are applicable to the traveling wave vibration analysis and control of rotating FGM conical
shells under arbitrary boundary conditions. (2) The LQR controller is highly effective in suppressing the
traveling wave vibrations of rotating FGM conical shells over a speed range. (3) As long as the Q/R ratio
is well-optimized, variations in rotational speed, material composition and excitation force position are not
significantly impact the control effectiveness. (4) The arrangement of piezoelectric patches plays a crucial role
in influencing the efficiency of active control. Specifically, with the total area and position of the piezoelectric
patches held constant, a higher control efficiency is achieved with fewer patches in meridional direction.
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Appendix

The mass matrix Mc of conical is given by.

Mc �

⎡
⎢⎢⎢⎣

Mc, uu 0 0 Mc, ux 0
0 Mc, vv 0 0 Mc, vθ

0 0 Mc,ww 0 0
MT

c, ux 0 0 Mc, xx 0
0 MT

c, vθ 0 0 Mc, θθ

⎤
⎥⎥⎥⎦,

where
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Mc, uu �
∫ L

0

∫ 2π

0
I0UTUr (x)dxdθ , Mc, ux �

∫ L

0

∫ 2π

0
I1UT�r (x)dxdθ ,

Mc, vv �
∫ L

0

∫ 2π

0
I0VTVr (x)dxdθ , Mc, vθ �

∫ L

0

∫ 2π

0
I1VT�r (x)dxdθ ,

Mc,ww �
∫ L

0

∫ 2π

0
I0WTWr (x)dxdθ , Mc, xx �

∫ L

0

∫ 2π

0
I2�

T�r (x)dxdθ ,

Mc, θθ �
∫ L

0

∫ 2π

0
I2�

T�r (x)dxdθ.

The gyroscopic matrix G of conical shell is given by.

G �

⎡
⎢⎢⎢⎢⎣

0 Guv 0 0 Guθ−GT
uv 0 Gvw Gvx 0

0 −GT
vw 0 0 Gwθ

0 −GT
vx 0 0 Gxθ−GT

uθ 0 −GT
wθ −GT

xθ 0

⎤
⎥⎥⎥⎥⎦,

where

Guv � −2
∫ L

0

∫ 2π

0
I0� sin αUTVr (x)dxdθ , Guθ � −2

∫ L

0

∫ 2π

0
I1� sin αUT�r (x)dxdθ ,

Gvw � 2
∫ L

0

∫ 2π

0
I0� cosαVTWr (x)dxdθ , Gvx � 2

∫ L

0

∫ 2π

0
I1� sin αVT�r (x)dxdθ ,

Gwθ � −2
∫ L

0

∫ 2π

0
I1� cosαWT�r (x)dxdθ , Gxθ � −2

∫ L

0

∫ 2π

0
I2� sin α�T�r (x)dxdθ.

The initial stress stiffness matrix Kε of conical shell is given by

Kε �

⎡
⎢⎢⎢⎢⎣

Kε, uu Kε, uv Kε, uw Kε, ux Kε, uθ

KT
ε, uv Kε, vv Kε, vw Kε, vx Kε, vθ

KT
ε, uw KT

ε, vw Kε,ww Kε,wx Kε,wθ

KT
ε, ux KT

ε, vx KT
ε,wx Kε, xx Kε, xθ

KT
ε, uθ KT

ε, vθ KT
ε,wθ KT

ε, xθ KT
ε, uv

⎤
⎥⎥⎥⎥⎦,

where

Kε, uu �
∫ 2π

0

∫ L

0

[
A66

r2(x)

∂UT

∂θ

∂U
∂θ

+ A11
∂UT

∂x

∂U
∂x

+
A22 sin2 α

r2(x)
UTU +

(A12 + A21) sin α

2r (x)
(
∂UT

∂x
U + UT ∂U

∂x
)

]
r (x)dxdθ ,

Kε, uv �
∫ 2π

0

∫ L

0

[
A66

r (x)

∂UT

∂θ

∂V
∂x

− A66 sin α

r2(x)

∂UT

∂θ
V +

A22 sin α

r2(x)
UT ∂V

∂θ
+

(A12 + A21)

2r (x)

∂UT

∂x

∂V
∂θ

]
r (x)dxdθ ,

Kε, uw �
∫ 2π

0

∫ L

0

[
A22 sin α cosα

r2(x)
UTW +

(A12 + A21) cosα

2r (x)

∂UT

∂x
W

]
r (x)dxdθ ,

Kε, ux �
∫ 2π

0

∫ L

0

[
B11

∂UT

∂x

∂�

∂x
+

B66

r2(x)

∂UT

∂θ

∂�

∂θ
+
(B12 + B21) sin α

2r (x)
(
∂UT

∂x
� + UT ∂�

∂x
) +

B22 sin2 α

r2(x)
UT�

]
r (x)dxdθ

Kε, uθ �
∫ 2π

0

∫ L

0

[
B66

r (x)

∂UT

∂θ

∂�

∂x
− B66 sin α

r2(x)

∂UT

∂θ
� +

B22 sin α

r2(x)
UT ∂�

∂θ
+
(B12 + B21)

2r (x)

∂UT

∂x

∂�

∂θ

]
r (x)dxdθ

Kε, vv �
∫ 2π

0

∫ L

0

[
A22

r2(x)

∂VT

∂θ

∂V
∂θ

+ A66
∂VT

∂x

∂V
∂x

+
Kθ A44cos2α + A66sin2α

r2(x)
VTV − A66 sin α

r (x)
(VT ∂V

∂x
+

∂VT

∂x
V)

]
r (x)dxdθ

Kε, vw �
∫ 2π

0

∫ L

0

[
A22 cosα

r2(x)

∂VT

∂θ
W − Kθ A44 cosα

r2(x)
VT ∂W

∂θ

]
r (x)dxdθ

Kε, vx �
∫ 2π

0

∫ L

0

[
B22 sin α

r2(x)

∂VT

∂θ
� − B66 sin α

r2(x)
VT ∂�

∂θ
+

B66

r (x)

∂VT

∂x

∂�

∂θ
+
(B12 + B21)

2r (x)

∂VT

∂θ

∂�

∂x

]
r (x)dxdθ
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Kε, vθ �
∫ 2π

0

∫ L

0

[
− Kθ A44 cosα

r (x)
VT� + B66

∂VT

∂x

∂�

∂x
+

B66 sin2 α

r2(x)
VT� − B66 sin α

r (x)
(VT ∂�

∂x
+

∂VT

∂x
�) +

B22

r2(x)

∂VT

∂θ

∂�

∂θ

]
r (x)dxdθ

Kε,ww �
∫ 2π

0

∫ L

0

[
Kx A55

∂WT

∂x

∂W
∂x

+
Kθ A44

r2(x)

∂WT

∂θ

∂W
∂θ

+
A22 cos2 α

r2(x)
WTW

]
r (x)dxdθ

Kε,wx �
∫ 2π

0

∫ L

0

[
B22 sin α cosα

r2(x)
WT� + Kx A55

∂WT

∂x
� +

(B12 + B21) cosα

2r (x)
WT ∂�

∂x

]
r (x)dxdθ

Kε,wθ �
∫ 2π

0

∫ L

0

[
Kθ A44

r (x)

∂WT

∂θ
� +

B22 cosα

r2(x)
WT ∂�

∂θ

]
r (x)dxdθ

Kε, xθ �
∫ 2π

0

∫ L

0

[
D66

r (x)

∂�T

∂θ

∂�

∂x
+
D22 sin α

r2(x)
�T ∂�

∂θ
− D66 sin α

r2(x)

∂�T

∂θ
� +

(D12 + D21)

2r (x)

∂�T

∂x

∂�

∂θ

]
r (x)dxdθ

Kε, xx �
∫ 2π

0

∫ L

0

[
sin α(D12 + D21)

2r (x)
(
∂�T

∂x
� + �T ∂�

∂x
) + D11

∂�T

∂x

∂�

∂x
+

D66

r2(x)

∂�T

∂θ

∂�

∂θ
+

D22 sin2 α

r2(x)
�T� + Kx A55�

T�

]
r (x)dxdθ

The centrifugal stiffness matrix Kr of the conical shell is given by.

Kr �

⎡
⎢⎢⎢⎢⎣

Kr , uu Kr , uv 0 Kr , ux Kr , uθ

KT
r , uv Kr , vv Kr , vw Kr , vx Kr , vθ

0 KT
r , vw Kr ,ww 0 Kr ,wθ

KT
r , ux KT

r , vx 0 Kr , xx Kr , xθ
KT

r , uθ KT
r , vθ KT

r ,wθ KT
r , xθ Kr , θθ

⎤
⎥⎥⎥⎥⎦,

where

Kr , uu �
∫ L

0

∫ 2π

0
I0�

2 ∂UT

∂θ

∂U
∂θ

r (x)dxdθ , Kr , uv �
∫ L

0

∫ 2π

0
I0�

2
(
sin αUT ∂V

∂θ
− sin α

∂UT

∂θ
V
)
r (x)dxdθ

Kr , ux �
∫ L

0

∫ 2π

0
I1�

2 ∂UT

∂θ

∂�

∂θ
r (x)dxdθ , Kr , uθ �

∫ L

0

∫ 2π

0
I1�

2
(
sin αUT ∂�

∂θ
− sin α

∂UT

∂θ
�

)
r (x)dxdθ

Kr , vv �
∫ L

0

∫ 2π

0
I0�

2 ∂VT

∂θ

∂V
∂θ

r (x)dxdθ , Kr , vw �
∫ L

0

∫ 2π

0
I0�

2
(
cosα

∂VT

∂θ
W − cosαVT ∂W

∂θ

)
r (x)dxdθ

Kr , vx �
∫ L

0

∫ 2π

0
I1�

2
(
sin α

∂VT

∂θ
� − sin αVT ∂�

∂θ

)
r (x)dxdθ , Kr , vθ �

∫ L

0

∫ 2π

0
I1�

2 ∂VT

∂θ

∂�

∂θ
r (x)dxdθ

Kr ,ww �
∫ L

0

∫ 2π

0
I0�

2 ∂WT

∂θ

∂W
∂θ

r (x)dxdθ , Kr ,wθ �
∫ L

0

∫ 2π

0
I1�

2
(
cosαWT ∂�

∂θ
− cosα

∂WT

∂θ
�

)
r (x)dxdθ

Kr , xx �
∫ L

0

∫ 2π

0
I2�

2 ∂�T

∂θ

∂�

∂θ
r (x)dxdθ , Kr , xθ �

∫ L

0

∫ 2π

0
I2�

2
(
sin α�T ∂�

∂θ
− sin α

∂�T

∂θ
�

)
r (x)dxdθ

Kr , θθ �
∫ L

0

∫ 2π

0
I2�

2 ∂�T

∂θ

∂�

∂θ
r (x)dxdθ

The mass matrix Ma of piezoelectric actuators is given by,

Ma�

⎡
⎢⎢⎢⎢⎣

Ma, uu 0 Ma, uw Ma, ux 0
0 Ma, vv Ma, vw 0 Ma, vθ

MT
a, uw MT

a, vw Ma,ww Ma,wx Ma,wθ

MT
a, ux 0 MT

a,wx Ma, xx 0
0 MT

a, vθ MT
a,wθ 0 Ma, θθ

⎤
⎥⎥⎥⎥⎦,

where

Ma, uu � 1

2

np∑
i�1

∫ θ̃i

θ̄i

∫ x̃i

x̄i

∫ ha/2

−ha/2
2UTUρara(x)dzadxdθ ,

Ma, uw � 1

2

np∑
i�1

∫ θ̃i

θ̄i

∫ x̃i

x̄i

∫ ha/2

−ha/2
−(ha + 2za)UT ∂W

∂x
ρara(x)dzadxdθ ,
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Ma, ux � 1

2

np∑
i�1

∫ θ̃i

θ̄i

∫ x̃i

x̄i

∫ ha/2

−ha/2
hcUT�ρara(x)dzadxdθ ,

Ma, vv � 1

2

np∑
i�1

∫ θ̃i

θ̄i

∫ x̃i

x̄i

∫ ha/2

−ha/2

2[ra(x) + za cosα]2

ra(x)
VTVρadzadxdθ ,

Ma, vw � 1

2

np∑
i�1

∫ θ̃i

θ̄i

∫ x̃i

x̄i

∫ ha/2

−ha/2
− [(ha + 2za)ra(x) + haza cosα][ra(x) + za cosα]

ra2(x)
VT ∂W

∂θ
ρadzadxdθ ,

Ma, vθ � 1

2

np∑
i�1

∫ θ̄i

θ̃i

∫ x̄i

x̃i

∫ −ha/2

ha/2
−hc[ra(x) + za cosα]2

ra(x)
VT�ρa dzadxdθ ,

Ma,ww � 1

2

np∑
i�1

∫ θ̄i

θ̃i

∫ x̄i

x̃i

∫ −ha/2

ha/2

[
[(ha + 2za)ra(x) + haza cosα]2

2r4a (x)

∂WT

∂θ

∂W
∂θ

+
(ha + 2za)2

2

∂WT

∂x

∂W
∂x

+ 2WTW

]
ρara(x)dzadxdθ ,

Ma,wx � 1

2

np∑
i�1

∫ θ̄i

θ̃i

∫ x̄i

x̃i

∫ −ha/2

ha/2
− (ha + 2za)hc

2

∂WT

∂x
�ρara(x)dzadxdθ ,

Ma,wθ � 1

2

np∑
i�1

∫ θ̄i

θ̃i

∫ x̄i

x̃i

∫ −ha/2

ha/2
− [(ha + 2za)ra(x) + hazacosα][ra(x) + Zacosα]hc

2r2a (x)

∂WT

∂θ
�ρadzadxdθ ,

Ma, xx � 1

2

np∑
i�1

∫ θ̄i

θ̃i

∫ x̄i

x̃i

∫ −ha/2

ha/2
−h2c

2
�T�ρara(x)dzadxdθ

Ma, θθ � 1

2

np∑
i�1

∫ θ̄i

θ̃i

∫ x̄i

x̃i

∫ −ha/2

ha/2

[ra(x) + zacosα]h2c
ra(x)

�T�ρara(x)dzadxdθ

The stiffness matrix Ka of piezoelectric actuators is given by,

Ka�

⎡
⎢⎢⎢⎢⎣

Ka, uu Ka, uv Ka, uw Ka, ux Ka, uθ

KT
a, uv Ka, vv Ka, vw Ka, vx Ka, vθ

KT
a, uw KT

a, vw Ka,ww Ka,wx Ka,wθ

KT
a, ux KT

a, vx KT
a,wx Ka, xx Ka, xθ

KT
a, uθ KT

a, vθ KT
a,wθ KT

a, xθ Ka, θθ

⎤
⎥⎥⎥⎥⎦,

where

Ka, uu � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

[
2C11

∂UT

∂x

∂U
∂x

+
2C12 sin α

ra(x)
(
∂UT

∂x
U + UT ∂U

∂x
) +

2C22 sin2 α

r2a (x)
UTU +

2C66

r2a (x)

∂UT

∂θ

∂U
∂θ

]
ra(x)dzdxdθ

Ka, uv � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

⎡
⎢⎢⎢⎣

2C12(ra(x) + za cosα)

r2a (x)

∂UT

∂x

∂V
∂θ

+
2C66(ra(x) + 2za cosα)

r2a (x)

∂UT

∂θ

∂V
∂x

+
2C22 sin α(ra(x) + za cosα)

r3a (x)
UT ∂V

∂θ
− 2C66 sin α(ra(x) + 2za cosα)

r3a (x)

∂UT

∂θ
V

⎤
⎥⎥⎥⎦ra(x)dzdxdθ

Ka, uw � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2C66[ra(x)(ha + 2za) + haza cosα]

r3a (x)

∂UT

∂θ

∂2W
∂x∂θ

+
2C12 cosα

ra(x)

∂UT

∂x
W

+
sin α[ra(x)(ha + 2za) + 2haza cosα]

r4a (x)

(
2C66

∂UT

∂θ

∂W
∂θ

− C22UT ∂2W
∂θ2

)

−C11(ha + 2za)
∂UT

∂x

∂2W
∂x2

− C12[ra(x)(ha + 2za) + haza cosα]

r3a (x)

∂UT

∂x

∂2W
∂θ2

−C12 sin α(ha + 2za)

ra(x)

(
∂UT

∂x

∂W
∂x

+ UT ∂2W
∂x2

)
+
C22 sin 2α

r2a (x)
UTW

−C22 sin2 α(ha + 2za)

r2a (x)
UT ∂W

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ra(x)dzdxdθ
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Ka, ux � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

[
C12h sin α

ra(x)
(
∂UT

∂x
� + UT ∂�

∂x
) +

C22h sin2 α

r2a (x)
UT� +

C66h

r2a (x)

∂UT

∂θ

∂�

∂θ
+ C11h

∂UT

∂x

∂�

∂x

]
ra(x)dzdxdθ

Ka, uθ � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

⎡
⎢⎢⎢⎣

C22h sin α[ra(x) + za cosα]

r3a (x)
UT ∂�

∂θ
− C66h sin α[ra(x) + 2za cosα]

r3a (x)

∂UT

∂θ
�

+
C12h[ra(x) + za cosα]

r2a (x)

∂UT

∂x

∂�

∂θ
+
C66h[ra(x) + 2za cosα]

r2a (x)

∂UT

∂θ

∂�

∂x

⎤
⎥⎥⎥⎦ra(x)dzdxdθ

Ka, vv � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

⎡
⎢⎢⎢⎣

2C66[ra(x) + 2za cosα]2

ra(x)

∂VT

∂x

∂V
∂x

− 2C66 sin α[ra(x) + 2za cosα]2

r2a (x)
(
∂VT

∂x
V + VT ∂V

∂x
)

+
2C22[ra(x) + za cosα]2

r3a (x)

∂VT

∂θ

∂V
∂θ

+
2C66

[
ra(x) sin α + za sin 2α

]2
r3a (x)

VTV

⎤
⎥⎥⎥⎦dzdxdθ

Ka, vx � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

⎡
⎢⎢⎢⎣

C12h[ra(x) + za cosα]

r2a (x)

∂VT

∂θ

∂�

∂x
+
C66h[ra(x) + 2za cosα]

r2a (x)

∂VT

∂x

∂�

∂θ

+
C22h sin α[ra(x) + za cosα]

r3a (x)

∂VT

∂θ
� − C66h sin α[ra(x) + 2za cosα]

r3a (x)
VT ∂�

∂θ

⎤
⎥⎥⎥⎦ra(x)dzdxdθ

Ka, vθ � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C66h[ra(x) + 2za cosα]2

r2a (x)

∂VT

∂x

∂�

∂x
− C66h sin α[ra(x) + 2za cosα]2

r3a (x)

∂VT

∂x
�

+
C22h[ra(x) + za cosα]2

r4a (x)

∂VT

∂θ

∂�

∂θ
+
C66h sin2 α[ra(x) + 2za cosα]2

r4a (x)
VT�

−C66h sin α[ra(x) + 2za cosα]2

r3a (x)
VT ∂�

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
ra(x)dzdxdθ

Ka, vw � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−C66ha sin2 α[ra(x) + 2za cosα]2

r5a (x)
VT ∂W

∂θ

−C22 sin α(ha + 2za)[ra(x) + za cosα]

r3a (x)

∂VT

∂θ

∂W
∂x

+
2C66 sin α[ra(x)(ha + 2za) + 2zaha cosα][ra(x) + 2za cosα]

r4a (x)

∂VT

∂x

∂W
∂θ

+
2C66 sin α[ra(x)(ha + 2za) + zaha cosα][ra(x) + 2za cosα]

r4a (x)
VT ∂2W

∂x∂θ

−C12(ha + 2za)[ra(x) + za cosα]

r2a (x)

∂VT

∂θ

∂2W
∂x2

+
2C22 cosα[ra(x) + za]

r3a (x)

∂VT

∂θ
W

−2C66[ra(x)(ha + 2za) + zaha cosα][ra(x) + 2za cosα]

r3a (x)

∂VT

∂x

∂2W
∂x∂θ

−C22[ra(x)(ha + 2za) + zaha cosα][ra(x) + za cosα]

r5a (x)

∂VT

∂θ

∂2W
∂θ2

−C66 sin2 α[ra(x)(ha + 4za) + 2zaha cosα][ra(x) + 2za cosα]

r5a (x)
VT ∂W

∂θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ra(x)dzdxdθ

Ka,ww � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2C22 sin2 α[ra(ha + 2za) + 2haza cosα]2

r5a (x)

∂WT

∂θ

∂W
∂θ

+
C22 sin2 α(2za + ha)2

2ra(x)

∂WT

∂x

∂W
∂x

−2C22 cosα[ra(x)(ha + 2za) + haza cosα]

r3a (x)

∂2WT

∂θ2
W + C12 sin α(2za + ha)

2 ∂WT

∂x

∂2W
∂x2

−2C12 cosα(2za + ha)
∂2WT

∂x2
W +

C12[ra(ha + 2za) + haza cosα](ha + 2za)

r2a (x)

∂2WT

∂x2
∂2W
∂θ2

+
C22 sin α[ra(x)(ha + 2za) + haza cosα](ha + 2za)

r3a (x)

∂WT

∂x

∂2W
∂θ2

+
2C22 cos2 α

ra(x)
WTW

−4C66 sin α[ra(x)(ha + 2za) + haza cosα][ra(x)(ha + 2za) + 2haza cosα]

r4a (x)

∂2WT

∂x∂θ

∂W
∂θ

+
2C66[ra(x)(ha + 2za) + haza cosα]2

r3a (x)

∂2WT

∂x∂θ

∂2W
∂x∂θ

+
C11ra(x)(2za + ha)2

2

∂2WT

∂x2
∂2W
∂x2

−2C22 sin α cosα(2za + ha)

ra(x)

∂WT

∂x
W +

C22[ra(x)(ha + 2za) + haza cosα]2

2r5a (x)

∂2WT

∂θ2

∂2W
∂θ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dzdxdθ
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Ka,wx � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−C11h(ha + 2za)

2

∂2WT

∂x2
∂�

∂x
− C12h[ra(x)(ha + 2za) + haza cosα]

2r3a (x)

∂2WT

∂θ2

∂�

∂x

−C66h[ra(x)(ha + 2za) + haza cosα]

r3a (x)

∂2WT

∂x∂θ

∂�

∂θ
− C12h sin α(ha + 2za)

2ra(x)

∂WT

∂x

∂�

∂x

−C22h sin2 α(ha + 2za)

2r2a (x)

∂WT

∂x
� − C12h sin α(ha + 2za)

2ra(x)

∂2WT

∂x2
�

+
C22h sin α cosα

r2a (x)
WT� +

C66h sin α[ra(x)(ha + 2za) + 2haza cosα]

r4a (x)

∂WT

∂θ

∂�

∂θ

+
C12h cosα

ra(x)
WT ∂�

∂x
− C22h sin α[2ra(x)(ha + za) + haza cosα]

2r4a (x)

∂2WT

∂θ2
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ra(x)dzdxdθ

Ka,wθ � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−C66h sin2 α[ra(x)(ha + 2za) + 2haza cosα][ra(x) + 2za cosα]

r5a (x)

∂WT

∂θ
�

+
C66h sin α[ra(x)(ha + 2za) + 2haza cosα][ra(x) + 2za cosα]

r4a (x)

∂WT

∂θ

∂�

∂x

+
C66h sin α[ra(x)(ha + 2za) + haza cosα][ra(x) + 2za cosα]

r4a (x)

∂2WT

∂x∂θ
�

−C66h[ra(x)(ha + 2za) + haza cosα][ra(x) + 2za cosα]

r3a (x)

∂2WT

∂x∂θ

∂�

∂x

−C22h[ra(x)(ha + 2za) + haza cosα][ra(x) + za cosα]

2r5a (x)

∂2WT

∂θ2

∂�

∂θ

−C22h sin α(ha + 2za)[ra(x) + za cosα]

2r3a (x)

∂WT

∂x

∂�

∂θ

+
C22h cosα[ra(x) + za cosα]

r3a (x)
WT ∂�

∂θ

−C12h(ha + 2za)[ra(x) + za cosα]

2r2a (x)

∂2WT

∂x2
∂�

∂θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ra(x)dzdxdθ

Ka, xx � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

[
C22h2 sin2 α

2r2a (x)
�T� +

C12h2 sin α

ra(x)

∂�T

∂x
� +

C11h2

2

∂�T

∂x

∂�

∂x
+
C66h2

2r2a (x)

∂�T

∂θ

∂�

∂θ

]
ra(x)dzdxdθ

Ka, xθ � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

⎡
⎢⎢⎢⎣

C12h2[ra(x) + za cosα]

2r2a (x)

∂�T

∂x

∂�

∂θ
+
C66h2[ra(x) + 2za cosα]

2r2a (x)

∂�T

∂θ

∂�

∂x

+
C12h2 sin α[ra(x) + za cosα]

2r3a (x)
�T ∂�

∂θ
− C66h2 sin α[ra(x) + 2za cosα]

2r3a (x)

∂�T

∂θ
�

⎤
⎥⎥⎥⎦ra(x)dzdxdθ

Ka, θθ � 1

2

np∑
i�1

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha / 2

−ha / 2

⎡
⎢⎢⎢⎣

C66h2[ra(x) + 2za cosα]2

2r2a (x)

∂�T

∂x

∂�

∂x
− C66h2 sin α[ra(x) + 2za cosα]2

r3a (x)

∂�T

∂x
�

+
C66h2 sin2 α[ra(x) + 2za cosα]2

2r4a (x)
�T� +

C22h2[ra(x) + za cosα]2

2r4a (x)

∂�T

∂θ

∂�

∂θ

⎤
⎥⎥⎥⎦ra(x)dzdxdθ.
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It is worth noting that by replacing h, ha and za in the mass matrix and stiffness matrix of the actuator with
− h, − hs and zs, respectively, the mass matrix Ms and stiffness matrix Ks of the sensor can be obtained.

The electromechanical coupling matrix Ke is given by.

Ke�

⎡
⎢⎢⎢⎢⎣

Ke
u1 Ke

u2 · · · Ke
unp

Ke
v1

. . .
...

...
. . .

...
Ke

θ1 · · · · · · Ke
θnp

⎤
⎥⎥⎥⎥⎦,

where

Ke
ui �

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha/2

−ha/2
−
[
e31
ha

∂UT

∂x
+
e32 sin α

hara(x)
UT

]
ra(x)dzadxdθ

Ke
vi �

∫ θ̃i

θ i

∫ x̃i

xi

∫ ha/2

−ha/2
−e32[za cosα + ra(x)]

hara(x)

∂VT

∂θ
dzadxdθ

Ke
wi �

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha/2

−ha/2

⎡
⎢⎢⎢⎣

e32[ra(x)(2 za + ha) + zaha cosα]

2har3a (x)

∂2WT

∂θ2
+
e31(2 za + ha)

2ha

∂2WT

∂x2

+
e32 sin α(2 za + ha)

2hara(x)

∂WT

∂x
− e32 cosα

hara(x)
WT

⎤
⎥⎥⎥⎦ra(x)dzadxdθ

Ke
xi �

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha/2

−ha/2
−
[
e31h

2ha

∂�T

∂x
+
e32h sin α

2hara(x)
�T

]
ra(x)dzadxdθ

Ke
θ i �

∫ θ̃i

θ i

∫ x̃i

x i

∫ ha/2

−ha/2
−e32h[za cosα + ra(x)]

2har2a (x)

∂�T

∂θ
dzadxdθ

The force vector F(t) is given by,

F(t) � {
0 0 F0W(x0, θ0) cos(ωd t) 0 0

}T
The coefficients used are listed as follows

Ai j �
∫ h/ 2

−h/ 2
Qi jdz, Bi j �

∫ h/ 2

−h/ 2
zQi jdz, Di j �

∫ h/ 2

−h/ 2
z2Qi jdz,

I0 �
∫ h/ 2

−h/ 2
ρ(z)dz, I1 �

∫ h/ 2

−h/ 2
ρ(z)zdz, I2 �

∫ h/ 2

−h/ 2
ρ(z)z2dz.
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