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Abstract In research on the vertical bending mechanical properties of trapezoidal box girders with corrugated
steel webs, the maximum angular rotation attributable to the in-plane shear deformation of flanges is tradition-
ally considered as the generalized displacement function. However, this analysis method is very complex and
the mechanical concepts are not well-understood. To address this, the presented work adopts the additional
deflection induced by the shear lag effect as the generalized displacement function. Furthermore, the accordion
effect, shear lag, shear deformation, and the self-equilibrium conditions of the shear lag warping stress and
bending moment are considered comprehensively. The differential equations and the corresponding natural
boundary conditions of the composite box girders in the elastic range are established using the energy varia-
tional method. Further, the closed-form solutions of the generalized displacements are obtained. The results of
the analysis method presented, a modification of the traditional shear lag theory algorithm, had high agreement
with finite element simulation results. In comparison to the traditional analysis theories, the accuracy of this
modified method was improved. Thus, the method presented provides a strong basis for understanding the
mechanical properties of composite box girders.

Keywords Composite trapezoidal box girder · Accordion effect · Shear lag · Energy-variation method ·
Modified calculation method

1 Introduction

With the rapid development of transportation needs, the width and span of bridge structures are continuously
increasing [1–3]. The trapezoidal box girder has good bending and torsion resistance, but also has a large
top slab width, which effectively increases the width of the bridge deck [4–6]. For example, considering the
Sunshine Skyway Bridge built in the United States in 1987, the Tatara Bridge completed in Japan in 1999, and
the Maillau Viaduct operated in France in 2004, the main beams of such long-span bridges all used trapezoidal
section beams. At present, there are more than 850,000 highway bridges in China, including many trapezoidal
box girder bridges with large spans (i.e. the Changsha Xiangjiang River North Bridge and the Sutong Bridge).
Hence, the trapezoidal section beams have a broad application prospect [2, 4, 6]. However, the traditional
prestressed concrete (PC) trapezoidal box girder is structurally heavy, has low prestressing efficiency, and is
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Fig. 1 PC trapezoidal box girder bridge in operation or maintenance

Fig. 2 Trapezoidal box girder bridge with corrugated steel webs

prone to cracking of webs and flanges (as shown in Fig. 1), which leads to a variety of bridge damage issues.
The main cause of bridge damage is the strong mutual restraint between the flange and the web [7–10].

Based on the aforementioned factors, in the early 1980s, French scholars were the first to propose replacing
the traditional PC box girder bridge webs with corrugated steel webs, and eventually built the Cognac bridge in
1986 [10–12]. Currently, the composite box girder bridgeswith corrugated steelwebs are very common inmany
countries around the world [12–14], such as Germany, South Korea, Spain, and Venezuela. In particular, Japan
hasmore than 200 such girder bridges, while China hasmore than 100 composite girder bridgeswith corrugated
steel webs. Since the trapezoidal composite girder bridge with corrugated steel webs is lightweight, has high
prestress efficiency, and effectively eliminates any the bridge damage caused by temperature effect, shrinkage,
and creep, it has good development prospects (as shown in Fig. 2) [12, 15, 16]. However, in existing research,
the accordion effect, shear lag, Timoshenko shear deformation, and the self-equilibrium conditions have yet to
be investigated comprehensively. Additionally, the mechanical performance analysis of trapezoidal composite
box girders has certain limitations. For example, the self-equilibrium conditions of the shear lag warping stress
and bending moment are not considered in traditional theory [16–18]. Based on this, the traditional analysis
method was modified in this study and the calculation example indicates that the modifiedmethod significantly
improves the calculation accuracy of this type of structure. Therefore, the theory presented will provide a more
accurate theoretical basis for the design of composite box girders [19–21].
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Fig. 3 Geometric shape of corrugated steel webs

Fig. 4 Cross section of trapezoidal box girders with corrugated steel webs

2 Governing differential equations and natural boundary conditions of composite trapezoidal box
girders

2.1 Modified formula for the shear modulus of corrugated steel webs

According to previous research results in [11, 18], the modified value of the shear modulus of corrugated steel
web can be expressed as

Gs � L1 + L3

L1 + L2

Es

2(1 + υs)
(1)

where Es and υs are the elastic modulus and Poisson’s ratio of corrugated steel web material, respectively;
and L1, L2, L3 are the length of the flat section, the length of the inclined slab section, and the projection
of the inclined slab section on the horizontal plane of the corrugated steel web, respectively. In mechanical
analysis, the z1 longitudinal axis is considered to be the intersection line between the corrugated steel webs
and the upper flange or lower flange (as shown in Fig. 3).

2.2 Setting of the longitudinal warping displacement function of trapezoidal box girder flanges

In the symmetric bending state, the composite trapezoidal box girder span is L(as shown in Fig. 4). w(z),
θ (z) are the vertical deflection and vertical rotation angles, respectively, of the section of the composite box
girders based on the elementary beam theory. v1(z), v2(z), v3(z) are the vertical deflections of composite box
girder caused by the shear lag effect of the cantilever slab, upper flange, and lower flange, respectively. The
longitudinal displacements U1, U2, U3 of the cantilever slab and the upper and lower flanges are the sum of
the theoretical values of the elementary beam, the longitudinal warping displacement of the box girder flanges
caused by the shear lag effect, and the interaction of the shear lag effect between the flanges. This can be
expressed as

(1) Cantilever slab (b1)

U1(x , y, z) � yθ + [y − λ1ϕ1(x) − ρ1]v1′ + (y − ρ2)v2′ + (y − ρ3)v3′ (2)

where ϕ1(x) � cos π (x−b2)
2b1

is the non-uniform distribution function of the cantilever slab of the composite
trapezoidal box girder;λ1, ρ1 are the modified factors when the cantilever slab meets the self-equilibrium
conditions of the shear lag warping stress and bending moment; and b2 ≤ x ≤ b1 + b2.
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Then, the shear lag warping stress of the cantilever flange can be expressed as

σ j1 � E[y − λ1ϕ1(x)]v
′′
1 − Eρ1v

′′
1 (3)

whereλ1, ρ1 are constant coefficients tomeet
∫
A σ j1d A � 0 and

∫
A σ j1yd A � 0;λ1 � π I

4h1b1t1
, ρ1 � −I

Ah1
.

(2) Upper flange (b2)

U2(x , y, z) � yθ + [y − λ2ϕ2(x) − ρ2]v
′
2 + (y − ρ1)v

′
1 + (y − ρ3)v

′
3 (4)

where ϕ2(x) � cos πx
2b2

is the non-uniform distribution function of the upper flange of the composite
trapezoidal box girder; λ2, ρ2 are the modified factors for the upper flange to meet the self-equilibrium
conditions for shear lag warping stress and bending moment; and 0 ≤ x ≤ b2.
Then, the shear lag warping stress of the upper flange can be given by

σ j2 � E[y − λ2ϕ2(x)]v
′′
2 − Eρ2v

′′
2 (5)

Similarly, where λ2, ρ2 are constant coefficients to meet
∫
A σ j2d A � 0 and

∫
A σ j2yd A � 0. Further,

λ2 � π I
4h1b2t1

, ρ2 � −I
Ah1

.
(3) Lower flange (b3)

U3(x , y, z) � yθ + [y − λ3ϕ3(x) − ρ3]v
′
3 + (y − ρ1)v

′
1 + (y − ρ2)v

′
2 (6)

where ϕ3(x) � cos πx
2b3

is the non-uniform distribution function of the lower flange of the composite
trapezoidal box girder;λ3, ρ3 are the modified factors for the lower flange to meet the self-equilibrium
conditions for shear lag warping stress and bending moment; and 0 ≤ x ≤ b3.
Then, the shear lag warping stress of the lower flange is expressed as

σ j3 � E[y − λ3ϕ3(x)]v
′′
3 − Eρ3v

′′
3 (7)

where λ3, ρ3 are constant coefficients to meet
∫
A σ j3d A � 0 and

∫
A σ j3yd A � 0. Further, λ3 � −π I

4h2b3t3
,

ρ3 � I
Ah2

.
In the study, the upper, lower, and cantilever flanges were regarded as independent shear lag warping
mechanical systems, which should respectively meet the self-equilibrium conditions for the shear lag
warping stress and bending moment. The overall shear lag mechanical system of box girders after the
superposition of the three also met the self-equilibrium condition. Further, the width of the top slab is the
sum of the widths of the cantilever slab and the upper flange, while the width of the bottom slab is the
width of the lower flange.

2.3 Total potential energy of composite trapezoidal box girders

(1) Stress of the cantilever slab, upper flanges, and lower flanges of composite trapezoidal box girders.

(1) Cantilever slab (b1)

σXB � Eyθ ′ + E(y − λ1ϕ1)v
′′
1 − Eρ1v

′′
1 + E(y − ρ2)v

′′
2 + E(y − ρ3)v

′′
3 (8)

τ j1 � G
∂U1

∂x
(9)

(2) Upper flange (b2)

σSY � Eyθ ′ + E(y − λ2ϕ2)v
′′
2 − Eρ2v

′′
2 + E(y − ρ1)v

′′
1 + E(y − ρ3)v

′′
3 (10)

τ j2 � G
∂U2

∂x
(11)
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(3) Lower flange (b3)

σXY � Eyθ ′ + E(y − λ3ϕ3)v
′′
3 − Eρ3v

′′
3 + E(y − ρ1)v

′′
1 + E(y − ρ2)v

′′
2 (12)

τ j3 � G
∂U3

∂x
(13)

(2) Deformation potential energy of composite trapezoidal box girders

�z1 � 1

2

¨
(
σ 2
XB

E
+

τ 2j1

G
+

σ 2
SY

E
+

τ 2j2

G
+

σ 2
XY

E
+

τ 2j3

G
)d Adz (14)

�z1 � 1

2

∫ l

0
E I (θ ′)2dz + E

2

∫ l

0
I1(v

′′
1 )

2dz +
E

2

∫ l

0
I3(v

′′
3 )

2dz

+ E
∫ l

0
2I4(v

′′
1v

′′
2)dz + E

∫ l

0
2I5(v

′′
1v

′′
3)dz +

∫ l

0
I2(v

′′
2 )

2dz+

E
∫ l

0
2I6(v

′′
2v

′′
3 )dz +

G

2

∫ l

0
IG1(v

′
1)

2dz +
G

2

∫ l

0
IG2(v

′
2)

2dz +
G

2

∫ l

0
IG3(v

′
3)

2dz (15)

where I1 � I +ρ2
1 A+λ21b1t1− 8

π
λ1h1b1t1+ 8

π
λ1ρ1b1t1; I2 � I +ρ2

2 A+λ22b2t2− 8
π
λ2h1b2t2+ 8

π
λ2ρ2b2t2;

I3 � I +ρ2
3 A+λ23b3t3 +

8
π
λ3h2b3t3 + 8

π
λ3ρ3b3t3;I4 � I +ρ1ρ2A+ 4

π
λ1b1t1(ρ2 −h1)+ 4

π
λ2b2t2(ρ1−h1);

I5 � I + ρ1ρ3A +
4

π
λ1b1t1(ρ3 − h1) +

4

π
λ3b3t3(ρ1 + h2); I6

� I + ρ2ρ3A +
4

π
λ2b2t2(ρ3 − h1) +

4

π
λ3b3t3(ρ2 + h2);

IG1 � λ21π
2t1

4b1
; IG2 � λ22π

2t2
4b2

; IG3 � λ23π
2t3

4b3
;I � ∫

A1
y2d A1+

∫
A2

y2d A2 +
∫
A3

y2d A3. A1 is the area of the
cantilever slab;A2 is the area of the upper flange;A3 is the area of the lower flange; and A � A1 + A2 + A3.

The shear strain energy of corrugated steel webs is

�z j � 1

2

∫ l

0
Gs As(w

′ − θ )2dz (16)

Gs is the modified shear modulus of corrugated steel webs; As is the effective shear area of corrugated
steel webs.

The external loading-induced potential energy

�p � −
∫ l

0
qy(z)[w(z) + v1(z) + v2(z) + v3(z)]dz−Q(z)[w(z) + v1(z) + v2(z) + v3(z)]

∣
∣
∣l0

+ [M1(z)v1′(z) + M2(z)v2′(z) + M3(z)v3′(z) + Mz(z)θ (z)]
∣
∣
∣l0 (17)

Then, the total potential energy of composite box girders can be obtained as follows:

� � �z1 + �z j + �p (18)

where M1(z), M2(z), M3(z) are the bending moments about the x-axis caused by the shear lag effect of the
cantilever slab, upper flange, and lower flange of the composite box girder; Mz(z) is the bending moment at
the section end of the composite trapezoidal box girder caused by the vertical angle θ (z) about the x-axis;
Qy is the vertical shear force at the end of composite box girder section; qy is the vertical distributed load on
the composite box girder; E and G are the Young’s modulus and shear modulus of the top and bottom slabs,
respectively; and I is the moment of inertia of the composite box girder about the x axis.
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2.4 Governing differential equations and natural boundary conditions of composite box girders

According to the energy-variation principle δ� � 0, the governing differential equations and natural boundary
conditions of composite trapezoidal box girders can be derived as follows.

Related shear lag warping mechanical system:

E I1v
(4)
1 − GIG1v

′′
1 + E I4v

(4)
2 + E I5v

(4)
3 − qy � 0 (19)

E I2v
(4)
2 − GIG2v

′′
2 + E I4v

(4)
1 + E I6v

(4)
3 − qy � 0 (20)

E I3v
(4)
3 − GIG3v

′′
3 + E I5v

(4)
1 + E I6v

(4)
2 − qy � 0 (21)

[E I1v
′′
1 + E I4v

′′
2 + E I5v

′′
3 − M1)]

∣
∣
∣l0δv

′
1 � 0 (22)

[E I1v
(3)
1 + E I4v

(3)
2 + E I5v

(3)
3 + Q(z)]

∣
∣
∣l0 δv1 � 0 (23)

[E I2v
′′
2 + E I4v

′′
1 + E I6v

′′
3 − M2)]

∣
∣
∣l0δv

′
2 � 0 (24)

[E I2v
(3)
2 + E I4v

(3)
1 + E I6v

(3)
3 + Q(z)]

∣
∣
∣l0 δv2 � 0 (25)

[E I3v
′′
3 + E I5v

′′
1 + E I6v

′′
2 − M3)]

∣
∣
∣l0δv

′
3 � 0 (26)

[E I3v
(3)
3 + E I5v

(3)
1 + E I6v

(3)
2 + Q(z)]

∣
∣
∣l0 δv3 � 0 (27)

Related elementary beam mechanical system:

E Iθ ′′ + Gs As(w
′ − θ ) � 0 (28)

Gs As(w
′′ − θ ′) + qy � 0 (29)

[E Iθ ′ + Mz)]
∣
∣
∣l0δθ � 0 (30)

[Gs As(w
′ − θ ) − Q]

∣
∣
∣l0 δw � 0 (31)

According to the abovementioned differential equations, a completemechanical system of composite trape-
zoidal box girders comprised two independent mechanical systems, primarily, the superposition of elementary
beam theory and shear lag theory, where a coupling relationship between them did not exist. Further, these
equations are only applicable to the mechanical analysis of the elastic range of trapezoidal composite box
girders.

2.5 Solutions of the governing differential equations of composite trapezoidal box girders

From the differential Eqs. (19) and (20), Eq. (32) was obtained as follows:

v
(4)
2 + M1v

′′
2 + M2v

(4)
1 + M3v

′′
1 + M4qy � 0 (32)

where M1 � GIG2 I5
E(I4 I6−I5 I2)

;M2 � I1 I6−I4 I5
I4 I6−I5 I2

;M3 � −GI6 IG1
E(I4 I6−I5 I2)

;M4 � I5−I6
E(I4 I6−I5 I2)

.

From the differential Eqs. (20) and (21), Eq. (33) follows

v
(6)
2 + N1v

(4)
2 + N2v

′′
2 + N3v

(6)
1 + N4v

(4)
1 + N5qy � 0 (33)

where N1 � G(IG2 I3+IG3 I2)
E(I 26 −I2 I3)

; N2 � −G2 IG2 IG3
E2(I 26 −I2 I3)

; N3 � I5 I6−I3 I4
I 26 −I2 I3

;N4 � GI4 IG3
E(I 26 −I2 I3)

; N5 � −GIG3
E2(I 26 −I2 I3)

◦.
By sorting and replacing differential Eqs. (32) and (33), Eq. (34) can be expressed as

v
(8)
1 +

M2N1 − M1N3 + (M3 − N4)

M2 − N3
v
(6)
1 +

M2N2 + M3N1 − M1N4

M2 − N3
v
(4)
1 +

M3N2

M2 − N3
v′′
1 +

M4N2 − M1N5

M2 − N3
qy � 0

(34)
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Based on Eq. (34), the solution of its eigenvalue equation can be given as.
r1, 2 � ±η1; r3, 4 � ±η2; r5, 6 � ±η3.
Then, the general solution of equation v1(z) was obtained as

v1(z) � c1chη1z + c2shη1z + c3chη2z + c4shη2z + c5chη3z + c6shη3z + c7z + c8 +
−qy

2GIG1
z2 (35)

Based on the solution of equation v1(z), first assuming the form of the v2(z) and v3(z) solutions, substituting
them into the differential Eqs. (19) to (21), and then obtaining the constant coefficients of the solutions of v2(z)
and v3(z) equations,v2(z) and v3(z) equations were expressed as

v2(z) � c1B1chη1z + c2B1shη1z + c3B3chη2z + c4B3shη2z + c5B5chη3z + c6B5shη3z + c9z + c10 +
−qy

2GIG2
z2

(36)

(37)

v3(z) � c1D1chη1z + c2D1shη1z + c3D3chη2z + c4D3shη2z

+ c5D5chη3z + c6D5shη3z + c11z + c12 +
−qy

2GIG3
z2

where B1 � E(I4 I5−I1 I6)η21+GIG1 I6
E(I4 I9−I2 I8)η21+GIG2 I5

; B3 � E(I4 I5−I1 I6)η22+GIG1 I6
E(I4 I9−I2 I8)η22+GIG2 I5

; B5 � E(I4 I5−I1 I6)η23+GIG1 I6
E(I4 I9−I2 I8)η23+GIG2 I5

; B5 �
E(I4 I5−I1 I6)η23+GIG1 I6
E(I4 I9−I2 I8)η23+GIG2 I5

.

D1 � (GIG1 − E I1η21) − B1E I4η21
E I5η21

; D3 � (GIG1 − E I1η21) − B1E I4η21
E I5η21

; D5 � (GIG1 − E I1η23) − B1E I4η23
E I5η23

.

where c1; c2; ...; c12 are constant coefficients of equations v1(z), v2(z), and v3(z), which can be solved according
to corresponding boundary conditions.

Similarly, when differential Eqs. (28) and (29) are arranged and replaced, the solutions of w(z) and θ (z)
equations can be obtained as follows:

w(z) � e1z
3 + e2z

2 + e3z + e4 +
qy

24E I
z4 (38)

θ (z) � e1(3z
2 +

6E I

Gs As
) + e22z + e3 +

qy
Gs As

z +
qy
6E I

z3 (39)

where e1, e2, e3, e4 are the constant coefficients of equation w(z) and θ (z), which can be solved according to
their corresponding boundary conditions.

3 Common boundary conditions of composite trapezoidal box girders

According to the boundary conditions (22) to (27) and (30) to (31), the specific boundary conditions of the
composite trapezoidal box girder can be obtained. For example, the specific form can be expressed as.

(1) The relevant w(z) and θ (z) simply supported boundary conditions.

(1) Uniformly distributed load

w(z)
∣
∣
∣l0 � 0 ;θ ′(z)

∣
∣
∣l0 � 0 (40)

(2) Concentrated load.
When there is a single or several concentrated loads in the span (as shown in Fig. 5), and the adjacent
distances are Lk1 and Lk2 about a load Pk , the w(z), θ (z) subscripts represent the z1 or z2 coordinate
systems. The continuous boundary conditions of Point k were expressed as

w1(Lk1) � w2(0);w1′(L) � w2′(0); θ1′(Lk1) � θ2′(0); θ1(Lk1) − θ2(0) � Pk
Gs As

(41)

(2) Relevant v1(z),v2(z), and v3(z) simply supported boundary conditions.

Uniformly distributed load

v1(z)
∣
∣
∣l0� 0;v2(z)

∣
∣
∣l0� 0;v3(z)

∣
∣
∣l0� 0; v

′′
1(z)

∣
∣
∣l0� 0;v

′′
2(z)

∣
∣
∣l0� 0;v

′′
3(z)

∣
∣
∣l0� 0 (42)

Similarly, other specific boundary conditions can be obtained based on Eqs. (22)–(27)and(30)–(31).
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Fig. 5 Coordinate and load systems of the composite box girder

4 Example and analysis of composite trapezoidal box girders

For the composite trapezoidal box girder, the corrugated steel web was made of a high-quality Q235 steel,
with the elastic modulus 206Gpa and Poisson’s ratio 0.26; the thickness of the corrugated steel web was tw
� 1.5 cm, and the beam height was h � 3 m. The upper, lower, and cantilever flanges of the box girder were
made of C50 concrete, with a thickness of t1 � t2 � t3 � 0.25 m; the lengths of flanges were b1 � 1.5 m,b2
� 3 m, and b3 � 2 m (as shown in Fig. 4). The corrugated form of the web is shown in Fig. 3, where L1 � L2
� 43 cm,L3 � 37 cm; in actual bridges, the corrugated steel web was connected with the upper and lower
flanges using embedded connecting keys, and the corrugated steel webs were embedded 0.1m into the top and
bottom slabs of concrete. In the mechanical analysis, the uniformly distributed load was qk(z) � 3× 10kN/m,
the concentrated load was Pk(z) � 3L × 10kN, and L was the span of the combined trapezoidal box girder.
The finite element analysis (as shown in Fig. 6) was conducted using ANSYS software to establish the finite
element calculation model. (1) The cantilever slabs, upper flange, and lower flange were simulated on solid
element Solid65, and the top slab and bottom slab were divided into 7200 and 4000 elements, respectively.
The corrugated steel webs were simulated on the Shell63 shell element, and divided into 3200 elements. Three
diaphragms were arranged at both ends and in the middle of the box girder, and the diaphragm slabs were
also simulated on solid element Solid65 and divided into 2520 elements (the diaphragm slab was 0.2m thick).
(2) For the connection between the corrugated steel webs and the concrete top and bottom slabs, the MPC
multi-point coupling contact method was applied. First, the grids were divided into solid and shell elements,
and target elements TARGE170 and contact elements CONTA175 were added to different elements in the
intersecting area. In this way, the top slab, bottom slab, and web slabs can be independently divided into grids,
which ensures the accuracy of the simulation. (3) In this study, simply supported boundary conditions were
used, which applied constraints in the x, y, and z directions at one end nodes of the box girder, and constraints
in the z and y directions at the other end nodes. (4) In the numerical simulation, to reduce local effects, a
concentrated force was symmetrically applied at the intersection of the flange and web slabs on both sides of
the mid-span. Similarly, the uniformly distributed force was symmetrically applied in the form of a linear load
at the intersection of the flange and web slabs on both sides. This paper adopted a 4-step loading form. Based
on this, verified the linear elasticity of structural mechanical properties. But only the mechanical results of the
final loading step are taken in the paper. In comparison to the theoretical analysis of the elastic range, finite
element simulation could support the effectiveness of the theory proposed in this paper. The finite element
calculation model example is shown in Fig. 6.

Here, the traditional shear lag theory algorithm does not consider self-equilibrium for the shear lag warping
stress and bending moment. Thus, the influence rates of the two algorithms are the differences between the
calculated stress values of this theory and the traditional theory, and its ratio to the calculated stress value of
the traditional theory. In the vertical bending state, the results are shown in Table 1, 2 and Fig. 7:

(1) The calculated value of the theory derived in this paper was the sum of the theoretical values of the
elementary beam and the influence value of shear lag. The complete mechanical system of the composite
trapezoidal box girder comprised two independent mechanical systems, primarily, the superposition of
the elementary beam and shear lag theories, where a coupling relationship did not exist between them. In
comparison to previous results, the theoretical values obtained in this study were in good agreement with
the finite element simulations.

(2) Due to the introduction of the self-equilibrium conditions, the calculation accuracy of the theory derived
in this paper was improved. For example, at the intersection of the top slab and corrugated steel web, the
influence rate of the two algorithms was 20.7% under a concentrated load, and the influence rate of the
two algorithms was 12.9% under uniform loading. Hence, the influence of the self-equilibrium conditions
was related to the type of load distribution. In comparison to the top slab, the self-equilibrium conditions
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Fig. 6 Finite element model of the calculation example for a composite trapezoidal box girder (L � 16m)

Fig. 7 Comparison between the traditional algorithm and the algorithm in this paper at the mid-span section (L � 16m)

had less influence on the mechanical properties of the bottom slab. In other words, the calculated value
of the traditional algorithm was evidently lower than the theoretical value presented in this study, which
could be unfavourable to the durability design of this type of structure.

Here, for box section girders, when calculated according to the elementary beam theory, the normal stress
on the flange slabs is uniformly distributed along the width direction. However, in practical situations, when
the composite trapezoidal box girder is vertically bent, the normal stress on the flange slabs is transmitted by
shear stress. Due to the influence of shear deformation, the stress at the junction of the flange slabs and web
slabs of the box girder is different from that at other positions, sometimes even significantly different. This
phenomenon is called the shear lag effect, and the magnitude of the shear lag effect is reflected in the shear
lag coefficients. The shear lag coefficients in this paper are the ratio of the presented theoretical value to the
theoretical value of the elementary beam. Tables 1, 2 and Figs. 8, 9 and 10 indicate the following.
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Table 2 Stress of the bottom slab for simply supported composite trapezoidal box girders [Lk1 � Lk2 � 8m] (concentrated load)

Lateral coordinates of the bottom slab (m) 0 0.5 1 1.5 2

Theoretical value of elementary beam (104 Pa) 62.55 62.55 62.55 62.55 62.55
Influence value of shear lag (104 Pa) − 15.40 − 12.53 − 3.92 10.44 30.54
Stress of bottom slab in this paper (104 Pa) 47.15 50.02 58.63 72.99 93.09
Finite element value (104 Pa) 43.74 46.82 56.98 71.18 87.52
Stress of bottom slab based on traditional theory (104 Pa) 44.19 47.96 55.42 69.23 89.26
Influence rate of two algorithms (%) 6.7 4.3 5.8 5.4 4.3
Stress of bottom slab (flat steel web) (104 Pa) 45.34 47.67 54.76 66.62 81.36
Accordion effect (%) 3.8 4.9 6.6 8.7 12.6
Shear lag coefficients 0.75 0.80 0.94 1.17 1.49

Fig. 8 Comparison of the stress on the top slab for composite trapezoidal box girders at the mid-span section (concentrated load,
Lk1 � Lk2 � 8m)

(1) Due to the influence of the shear lag effect, the stress distribution of the top and bottom slabs of the
trapezoidal box girder was uneven. Hence, the shear lag effect had a great impact on the mechanical
properties of the composite trapezoidal box girder. The stress concentration was more severe in the
concentrated load, while the stress concentration was relatively small in the uniform load. For example,
at the intersection of the top slab and corrugated steel web, the shear lag coefficient was 1.58 in the
concentrated load, and the shear lag coefficient was 1.16 in the uniform load. As the span increased, the
influence of the shear lag effect decreased.

(2) Due to the application of three different longitudinal displacement difference functions, the theoretical
analysis of the shear lag effect presented in this study was more accurate. For example, the shear lag
coefficients in this paper at the intersection of the top slab and the web and the top slab centre were 1.58
and 0.6, respectively. However, the shear lag coefficients at the intersection of the bottom slab and the web
and the bottom slab centre were 1.49 and 0.75, respectively. However, according to the traditional shear
lag theory, the shear lag coefficients at the intersection of the bottom slab and the web and the bottom
slab centre should also be 1.58 and 0.6, respectively.

Here, due to the application of corrugated steel webs, the mutual constraint between the flange slabs and
webs of composite box girders is weakened. In this type of structure, the top and bottom slabs mainly resist
bending, while the corrugated steel web has a small contribution to resisting bending, and its main function is to
resist shear. Therefore, the performance of corrugated steel webs is called the accordion effect. the accordion
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Fig. 9 Comparison of the stress on the bottom slab for composite trapezoidal box girders at the mid-span section (concentrated
load, Lk1 � Lk2 � 8m)

Fig. 10 Shear lag coefficients of top slab for simply supported composite trapezoidal box girder at the mid-span section

effect in the paper manifested in the stress difference between the corrugated and flat steel webs of equal
thicknesses, and its ratio to the calculated stress of composite trapezoidal box girder with flat steel webs.
Tables 1 and 2, along with Fig. 11, illustrate the following.

(1) The mechanical properties of the composite trapezoidal box girder were impacted by the accordion effect.
However, the accordion effect of the top slab was more impactful. At the intersection of the top slab and
the web in the concentrated load, the top slab compressive stress decreased by 15.6%. On the other hand,
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Fig. 11 Accordion effect for simply supported composite trapezoidal box girders at the mid-span section (L � 16m)

at the intersection of the bottom slab and the web under concentrated load, the tensile stress of the bottom
slab increased by 12.6%.

(2) In comparison to the uniform load, the accordion effect of the top and bottom slabs in the concentrated load
changed unevenly. At the same time, the accordion effect was related to the form of the load distribution,
where the effect of the composite trapezoidal box girder in the concentrated load was more prominent.
However, in bridge engineering, the dead weight of the bridge is commonly uniformly distributed load,
while the vehicle load is the concentrated load.

The following was inferred from the results presented in Table 3 and Fig. 12.

(1) Due to the introduction of the self-equilibrium conditions for the shear lag warping stress and bend-
ing moment, the vertical deflection of the composite box girder comprised the calculated values of the
independent elementary beam and shear lag theories. However, in comparison to the traditional calcula-
tion theory, the accuracy of the modified method in this paper improved by approximately 2%; hence,
the influence of self-equilibrium conditions on the vertical deflection was negligible. Therefore, the two
algorithms had minimal influence on the vertical deflection values.

(2) Under the influence of shear lag and the accordion effect, the vertical deflection of the composite box
girder increased to a certain level. The accordion effect greatly influenced the vertical deflection of the
composite box girder under uniform loading. In the example provided above, its influence value was
approximately 10%, while the shear lag effect was affected by approximately 6%. In the concentrated
force, the impact of the accordion effect was approximately 6.5%, and the effect of the shear lag was
about 13.2%. That is, under the influence of shear lag and the accordion effect, the vertical stiffness of
the composite box girder is greatly reduced. These results are of great importance to bridge designers.

5 Conclusion

Firstly, in the mechanical analysis of composite trapezoidal box girders, the additional deflections caused
by the shear lag effect of the flanges were considered as generalized displacement functions. Furthermore,
factors such as the accordion effect, shear deformation, self-equilibrium conditions for shear lagwarping stress,
and bending moment were considered comprehensively. In comparison to traditional calculation theory, the
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Table 3 Deflection for simply supported composite trapezoidal box girders [L � 16m] (uniform load)

Trapezoidal box girder longitudinal ordinates (m) 0 2 4 6 8

Theoretical value of elementary beam(10−5 m) 0 10.62 18.75 23.84 25.57
Influence value of shear lag(10−5 m) 0 0.73 1.25 1.62 1.74
Total deflection value in this paper(10−5 m) 0 11.35 20.00 25.46 27.31
Finite element value (10−5 m) 0 10.86 18.98 24.27 26.26
Traditional theoretical deflection value(10−5 m) 0 11.19 19.74 25.09 26.91
Influence rate of two algorithms (%) 0 1.4 1.3 1.5 1.5
Deflection of box girder with flat steel web(10−5 m) 0 10.29 18.19 23.16 24.85
Accordion effect(%) 0 10.3 9.9 9.9 9.9
Influence of shear lag effect (%) 0 6.4 6.3 6.4 6.4

Fig. 12 Deflections for simply supported trapezoidal box girders (concentrated load,Lk1 � Lk2 � 8m)

theoretical basis of this paper was stronger, and it is in good agreement with the finite element simulation; the
example shows that the accuracy in this paper is improved. Thus, the method presented provides a strong basis
for understanding the mechanical properties of composite box girders.

Secondly, the impact of the concentrated load on the shear lag effect of the composite trapezoidal box
girder was more evident, and the stress distribution of the top and bottom slabs was uneven. For example, the
shear lag coefficients in this paper at the intersection of the top slab and the web and the top slab centre are
1.58 and 0.6, respectively. The three different longitudinal displacement difference functions were employed
to accurately reflect the amplitude of change of shear lag in the trapezoidal box girders with various widths of
wing slabs, which also improved the calculation accuracy of the composite trapezoidal box girder’s mechanical
analysis.

Finally, in comparison to the traditional PC box girder, under the influence of shear lag and the accordion
effect, the vertical deflection of the composite box girder increased; therefore, the vertical stiffness of the
trapezoidal composite box girder was reduced. For the simply supported box beam, although the accordion
effect reduced the compressive stress of the top slab, it greatly increased the tensile stress of the bottom slab,
which could certainly result in cracks at reinforced concrete (RC) bottom slabs. However, the web accordion
effect effectively eliminates bridge damage caused by temperature stress, creep, and shrinkage of the PC box
girder. Moreover, its structural dead weight decreased by approximately 25%. The modified method in this
paper has important theoretical and practical significance for the layout of prestressed reinforcement and the
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durability design of such composite structures. Therefore, the computational theory in this paper will contribute
to the theoretical foundation for the design of composite box girder bridges.
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