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Abstract In this analytical study, we have presented a new type of solving procedure with the aim to obtain the
coordinates of small mass m, which moves around primary MSun, referred to non-inertial frame of restricted
two-body problem (R2BP) with a modified potential function (taking into account the variable velocity �V of
central bodyMSun motion in a prescribed fixed direction) instead of a classical potential function for Kepler’s
formulation of R2BP. Meanwhile, system of equations of motion has been successfully explored with respect
to the existence of an analytical way of presenting the solution in polar coordinates {r(t), ϕ(t)}. We have
obtained an analytical formula for function t � t(r) via an appropriate elliptic integral. Having obtained the
inversed dependence r � r(t), we can obtain the time dependence ϕ � ϕ(t). Also, we have pointed out how to
express components of solution (including initial conditions) from cartesian to polar coordinates as well.

Keywords Non-inertial restricted two-body problem · R2BP · Modified potential function in R2BP ·
Kepler’s formulation of R2BP

1 Introduction, equations of motion

In the restricted two-body problem (R2BP), the equations of motion describe the dynamics of a sufficiently
small satellitem under the action of gravitational force effected by one large celestial bodyMSun (m < <MSun).
The small mass m is supposed to move (as first approximation) inside the restricted region of space near the
massMSun [1] without influencing the position of large celestial bodyMSun even in anywhat negligible extent
(but outside the Roche’s limit [2] which is, as first approximation, not less than 7–10 RSun where RSun is the
radius of the celestial body MSun). In case of Newtonian type of gravitational forces, there is a well-known
analytical solution to the aforementioned problem (which has been associated earlier with Kepler’s type of
orbital motions both for the satellite and large celestial body around their common barycenter if we considerm
<MSun, instead of casem < <MSun). It is also known from classical works that if a large celestial bodyMSun is
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in a fixed position in the problem under consideration or is moving with constant velocity (i.e., its motion can
be referred with respect to the inertial frame), the aforeformulated problem should have the similar Kepler-type
solution. Therefore, the main aim of this research concerns the investigation of a case more complicated than
classical one regarding the existence of an analytical solution in non-inertial case of R2BPwhere {V1(t), V2(t)}
are the components of observable variable velocity �V of central bodyMSun which is supposed to be moving all
the time in one and the same fixed direction (in a plane of mutual orbiting m andMSun) with variable velocity
under restriction (V1/V2) � const.

The problem of two bodies represents the core of celestial mechanical studies, as well as the starting point
to strengthen our understanding of the n-body problem.

It is worth noting that there are a large number of both long-established and recent fundamental works
concerning analytical generalization of the R2BP equations to the case of three, four or even many bodies,
which should bementioned accordingly (see amongworks [1–20]).We should especially emphasize the theory
of orbits, which was developed in profound work [3] by V. Szebehely for the case of the circular restricted
problem of three bodies (CR3BP) (primaries are rotating around their common center of mass on circular
orbits) as well as the case of the elliptic restricted problem of three bodies [4–6] (ER3BP, primaries are
rotating around barycenter on elliptic orbits) and four bodies [7–9] (ER4BP, in various configurations).

Let us consider here and below a non-rotating and non-inertial cartesian coordinate system with the origin
O located at the chosen initial moment t in the center of mass of celestial body MSun which moves straight
forward in one and the same fixed direction (without rotation, in a plane of mutual orbiting m andMSun) with
velocity �V mentioned above under restriction to the components (V1/V2) � const. Since transformation of
velocity field �v from inertial coordinate system to the non-inertial frame of cartesian coordinate system �r �
{x, y, z} is expressed as follows (see page 166 in &39 from book [10]; here below �� is pseudo-vector of the
constant angular rotation)

�vinertial � �vnon-inertial + �V + �� × �r , ⇒(
d �vinertial

dt

)
inertial

�
(
d �vnon-inertial

dt

)
non-inertial

+
d �V
dt

+ 2 �� × �vnon-inertial + �� × ( �� × �r ), (1)

therefore, with the help of (1) thus far the dynamical equations of motion for small mass m with the absence
of rotation �� � �0 can be written in a well-known form as below (see page 166 in &39 from book [10]):⎧⎨

⎩
d2

x
dt2 + dV1

dt � − ∂U
∂x ,

d2
y

dt2 + dV2
dt � − ∂U

∂y ,
(2)

where U is the potential function which should be determined as U � −μ
R , R �√

(x +
∫
V1dt)2 + (y +

∫
V2dt)2 (whereas {V1(t), V2(t)} are the components of observable velocity of cen-

tral bodyMSun motion, (V1/V2) � const) instead of a classical potential function U � −μ
R , R � √x2 + y2

for Kepler’s formulation of R2BP (here below and above, μ � const � (m/MSun) is the gravitational mass
parameter in appropriate scale). Let us remark that partial derivatives in the right parts of Eq. (2) should not be
changed since expressions for {V1(t), V2(t)} do not contain variables {x, y} but depend only on time t. Initial
conditions are as follows (dot indicates (d/d t) in (3)):⎧⎨

⎩
x(0) � 1, y(0) � 1,
ẋ(0) � ε � const (ε ∼ 0),
ẏ(0) � √1 − (ẋ(0))2

⎫⎬
⎭ (3)

As for the generalization of the R2BP equations, let us mention that among works [12–16] various
approaches were presented in detail.

2 Solving procedure for the system of Eq. (2) with initial data (3)

Let us transform system (2) by the change of variables X � x +
∫
V1dt , Y � y +

∫
V2dt⎧⎪⎨

⎪⎩
d2

X
dt2 � − μX

(X2+Y 2)
3
2
,

d2
Y

dt2 � − μY

(X2+Y 2)
3
2
.

(4)
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Let us further transform system (4) by the change of variables X � r·cosϕ, Y � r·sinϕ to the polar
coordinates {r � r(t), ϕ � ϕ(t)}, r � R � √

X2 + Y 2, as below(
dX

dt

)
� r ′ cosφ − r sin φφ′,

(
dY

dt

)
� r ′ sin φ + r cosφφ′,

d2X

dt2
� r ′′ cosφ − 2r ′ sin φφ′ − r cosφ(φ′)2 − r sin φφ′′,

(
d2Y

dt2

)
� r ′′ sin φ + 2r ′ cosφφ′ − r sin φ(φ′)2 + r cosφφ′′, ⇒

{
r ′′ cosφ − 2r ′ sin φφ′ − r cosφ(φ′)2 − r sin φφ′′ � −μ cosφ

r2
,

r ′′ sin φ + 2r ′ cosφφ′ − r sin φ(φ′)2 + r cosφφ′′ � −μ sin φ

r2
.

(5)

As the first step, let us multiply the first equation of the last system (5) onto cosϕ, second onto sinϕ, then
sum the resulting equations one to the other:

r ′′ − r (φ′)2 � − μ

r2
⇒ (r · (φ′))2 � r · r ′′ + μ

r
(6)

As the second step, let us multiply the first equation of the last system onto sinϕ, second onto cosϕ, then
subtract the resulting equations one from the other:

− 2r ′φ′ − rφ′′ � 0 ⇒ −2r ′

r
� φ′′

φ′ ⇒ −2dr

r
� d(φ′)

φ′

⇒ ln

(
r20
r2

)
� ln

(
φ′

φ′
0

)
⇒ φ′ � φ′

0 ·
(
r20
r2

)
(7)

Taking into account (7), we could obtain from (6) as follows

r · r ′′ − (φ′
0)

2 · r40
r2

+
μ

r
� 0 ⇒

{
dr

dt
� r ′ ≡ p(r ) ⇒ r ′′ � dp

dr
· p
}

⇒ r · dp
dr

· p − (φ′
0)

2 · r40
r2

+
μ

r
� 0 ⇒ 1

2

d(p2)

dr
� (φ′

0)
2 · r40
r3

− μ

r2

(p2 − (r ′
0)

2) � 2(φ′
0)

2 · r40 · (−1

2
) ·
(

1

r2
− 1

r20

)
+ 2μ

(
1

r
− 1

r0

)
⇒

then further after having obtained the quadrature in the left part of Eq. (8) (by appropriate approximation
technique or, e.g., by series of Taylor expansions)

p � dr

dt
�
√√√√(r ′

0)
2 + 2(φ′

0)
2 · r40 · (−1

2
) ·
(

1

r2
− 1

r20

)
+ 2μ

(
1

r
− 1

r0

)
⇒

∫
dr√

(r ′
0)

2 − (φ′
0)

2 · r40 ·
(

1
r2

− 1
r20

)
+ 2μ

(
1
r − 1

r0

) � ±
∫

dt

{
(r ′
0)

2 − (φ′
0)

2 · r40 ·
(

1

R2 − 1

r20

)
+ 2μ

(
1

R
− 1

r0

)
> 0

}
(8)

we should find then the re-inverse dependence r � r(t) (but since the power of polynomial under the sign of
square root is greater than 2, the left part of (8) presents the appropriate elliptic integral). Then, afterwards, we
could obtain angle ϕ by direct integration procedure, using (7).
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3 Discussion

Aswe can see from the derivation above, equations ofmotion (1) are proven to be very hard to solve analytically.
Nevertheless, we have succeeded in obtaining analytical formulae for the components of the solution (6)–(8)
in the polar coordinates {r(t), ϕ(t)}. Let us clarify that while transforming Eq. (5) by virtue of special change
of variables, we have taken into account that independent variable (time t) is not included in the left and nor
right part of system (5). Therefore, we have reduced this ordinary differential equation of 2nd order (6) by

an elegant change of variables
{

dr
dt � r ′ ≡ p(r ) ⇒ r ′′ � dp

dr · p
}
to the 1st order differential equation. Then,

having solved the equation with regard to function p(t), we should solve ODE with regard to p � dr
dt �√

(r ′
0)

2 − (φ′
0)

2 · r40 ·
(

1
r2

− 1
r20

)
+ 2μ

(
1
r − 1

r0

)
in order to obtain the final result.

To conclude, let us highlight how to transformcomponents of solution (6)-(8) frompolar back→ to cartesian
coordinates (including the initial conditions in general form). Quadrature (8) determines the dependence in
general form t � t(r), which contains the elliptic integral in the left part of (8) {under appropriate initial
conditions; the upper limit of integral equals to r, low limit equals to r0}, the right part of the quadrature (8)
equals to (t–t0). We should re-inverse this expression into dependence r � r(t), which can be obtained by
numerical methods only (by appropriate approximation technique or, e.g., by series of Taylor expansions).

Having obtained the dependence r � r(t) from (8), we can then obtain from formula (7) the dependence
(9) for ϕ � ϕ(t):

φ � φ0 + φ′
0 ·

t∫
t0

(
r20

r2(t)

)
dt (9)

Let us also recall that the change of variables X � r·cosϕ, Y � r·sinϕ has been used for transformation of
system (4). This means that the transformation of initial coordinates should be done as pointed out in (10)–(12)
below:

r0 �
√
X2
0 + Y 2

0 , φ0 � arccos

⎛
⎝ X0√

X2
0 + Y 2

0

⎞
⎠,

{(
dX

dt

)
� r ′ cosφ − r sin φφ′,

(
dY

dt

)
� r ′ sin φ + r cosφφ′

}

(10)

⇒ 1) r ′ �
(
dX

dt

)
cosφ +

(
dY

dt

)
sin φ ⇒

r ′
0 �

(
dX

dt

)
0
·
⎛
⎝ X0√

X2
0 + Y 2

0

⎞
⎠ +

(
dY

dt

)
0
sin

⎛
⎝arccos

⎛
⎝ X0√

X2
0 + Y 2

0

⎞
⎠
⎞
⎠ (11)

2)

(
dY

dt

)
cosφ −

(
dX

dt

)
sin φ � rφ′ ⇒

φ′
0 �

( dY
dt

)
0

(
X0√
X2
0+Y

2
0

)
− ( dXdt )0 sin

(
arccos

(
X0√
X2
0+Y

2
0

))

√
X2
0 + Y 2

0

(12)

It would be also useful to discuss the possibility of considering the next generalization (in theoretical
sense) of non-inertial coordinate system in (1): namely, the case of rotation with constant angular velocity of
non-inertial coordinate system, in addition to obvious case of motion with variable in time velocity in one and
the same fixed direction in three dimensions (when all three components of velocity are linearly dependent:
(V1/V2) � C1 � const , (V2/V3) � C2 � const). Works [18, 19] present a procedure for solving a type
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Fig. 1 Periodic results of numerical calculations for radius of orbit of planetoid R(t) in Eq. (8) for classical Kepler solution at
�V � �0 (from perigee at Rmin ∼� 0.1 to apogee at Rmax ∼� 3.3), here restriction in (1)-(2) for the components of velocity is assumed
to be presented as V1 � const ∗ V2where V1, V2 � 0, 0

Fig. 2 Periodic results of numerical calculations for coordinate X(t) in Eq. (4) with initial conditions (3) for classical Kepler
solution at �V � �0, here restriction in (1)-(2) for the components of velocity is assumed to be presented as V1 � const ∗ V2 where
V1, V2 � 0, 0
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Fig. 3 Periodic results of numerical calculations for coordinate Y (t) in Eq. (4) with initial conditions (3) for classical Kepler
solution at �V � �0, here restriction in (1)-(2) for the components of velocity is assumed to be presented as V1 � const*V2 where
{V1, V2} � {0, 0}

Fig. 4 Periodic results of numerical calculations for dependence Y (X) in Eq. (4) with initial conditions (3) yield stable orbits with
high eccentricity (for classical Kepler solution at �V � �0), here restriction in (1)-(2) for the components of velocity is assumed to
be presented as V1 � const*V2 where {V1, V2} � {0, 0}
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Fig. 5 Periodic results of numerical calculations for coordinate x(t), x � X − ∫ V1dt where X stems from Eq. (4) with initial
conditions (3) for solution where �V � {V1(t), V2(t)} � 10−2 · {(1 − a1t), (1 − a2t)}(whereas a1 � a2)

Fig. 6 Periodic results of numerical calculations for coordinate y(t), y � Y − ∫ V2dt where Y stems from Eq. (4) with initial
conditions (3) for solution where �V � {V1(t), V2(t)} � 10−2 · {(1 − a1t), (1 − a2t)} (whereas a1 � a2)



774 S. Ershkov et al.

Fig. 7 Periodic results of numerical calculations for plot y(x), x � X − ∫ V1dt , y � Y − ∫ V2dt where {X, Y} stem from Eq.
(4) with initial conditions (3) for solution where �V � {V1(t), V2(t)} � 10−2 · {(1 − a1t), (1 − a2t)} (whereas a1 � a2)

(1) equation for the case of rotation with constant angular velocity of non-inertial coordinate system (where(
d�r
dt

)
� �vnon-inertial) (

d�r
dt

)
+ �� × �r � (�vinertial − �V )

which can be considered as being solved if we had solved the corresponding homogeneous variant of the
related differential equation of the 1st order (

d�r
dt

)
+ �� × �r � �0

The latter problem was fully solved and discussed accordingly in detail in works [18, 19] (see also all
related references therein in regard to this theoretical question which is beyond the topic discussed in the
current research).

4 Conclusion

In this paper, we have presented a new type of the solving procedure to obtain the coordinates of the
infinitesimal mass m which moves around the primary MSun (m < <MSun) for a special kind of restricted
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Fig. 8 Periodic results of numerical calculations for radius of orbit of planetoid Rabs � √x2 + y2 for solution where �V � {V1(t),
V2(t)} � 10−2 · {(1 − a1t), (1 − a2t)} with {a1(t), a2(t)} � {0.003[m · s−2], 0.003[m · s−2]}.

two-body problem, where MSun moves in one and the same fixed direction (in a plane of mutual orbit-
ing m and MSun) with variable velocity �V � {V1(t), V2(t)}, with modified potential function U � −μ

R ,

R �
√
(x +

∫
V1dt)2 + (y +

∫
V2dt)2 (where {V1, V2} are the components of observable variable velocity of

central body MSun motion whereas (V1/V2) � const) instead of the classical potential function U � −μ
R ,

R � √
x2 + y2 for Kepler’s formulation of R2BP. Meanwhile, the system of equations of motion has been

successfully explored with respect to the existence of analytical way for presentation of the solution in polar
coordinates X � x +

∫
V1dt � r cosφ, Y � y +

∫
V2dt � r sin φ, r � R.

We have obtained analytical formula (8) for function t � t(r). Having obtained the re-inverse dependence
r � r(t), we can then obtain the dependence ϕ � ϕ(t) via formula (7). Also, we have pointed out how to
express components of solution (including initial conditions) from cartesian to polar coordinates in general
form (11)–(12). Finally, we should note that such a restricted two-body problem (i.e., non-inertial R2BP in case
of variable velocity �V of central bodymotion in a prescribed fixed direction) is found to be realistic for practical
application in the real astophysical problems. Namely, when binary system (where large celestial body MSun
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is the leading Primary Mover) is moving with observable but variable velocity �V � {V1(t), V2(t)}(whereas
(V1/V2) � const) toward another star system [11], such system will nevertheless keep Kepler-type motion of
secondary body m < <MSun around primary bodyMSun.

It is worth comparing the obtained solution with already known result via a new numerical solution
calculated with help of aforepresented algorithm as follows: let us assume case �V � �0 to calculate classical
Kepler solution (Fig. 1), where restriction in (1)-(2) for the components of velocity is assumed to be presented
as V1 � const ∗ V2 whereas V1, V2 � 0, 0.

We have compared results of calculating R(t) in Eq. (8) for with those calculated with the help of (4), taking
into account that R � √

X2 + Y 2(see Figs. 2, 3 and 4): they are completely coincide for all possible variety of
initial values.

It is worth also to remark that it would be realistic to assume that the components of velocity �V � {V1(t),
V2(t)} are to be a functions which are linearly dependent on time t (with a small and restricted values of
accelerations or deceleration for both of them); in this case, initial values for cartesian variables X � x+

∫
V1dt ,

Y � y +
∫
V2dt are equal to those presented in (3).

In this premise, let us also compare the already constructed above solution (see Figs. 1, 2, 3 and 4)
with respect to the numerical solution (obtained with help of algorithm presented above, see (8)–(9)) in case
�V � {V1(t), V2(t)} � 10−2 · {(1 − a1t), (1 − a2t)} where {a1(t), a2(t)} � {0.003[m · s−2], 0.003[m · s−2]}
(Figs. 5, 6, 7 and 8).

Let us also mention works among [21–28], where refs [21–26] are within the framework of the analytical
approach to the study ofmathematicalmodels in applications to various nonlinear problems in electrodynamics,
mechanics or dynamics of rigid body rotation.
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