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Abstract It has been corroborated that thermoelastic damping (TED) is one of incontrovertible sources of
energy dissipation and limiting the quality factor (Q-factor) in micro/nanostructures. On the other hand, it
has been clarified that the fitting description of heat transfer process in structures with such small dimensions
should be carried out through non-Fourier models of heat conduction. This article strives for providing a size-
dependent analytical framework for estimating the value of TED in circular cross-sectional micro/nanorings
with the help ofMoore–Gibson–Thompson (MGT) generalized thermoelasticity theory. To reach this objective,
after deriving the equation of heat conduction according to MGT model, the fluctuation temperature in the
ring is obtained. Then, by applying the existing definition of TED in the purview of entropy generation (EG)
method, an analytical relationship in the form of infinite series is rendered to evaluate the amount of TED. In
the results section, first, the precision of the developed formulation is examined by way of a validation study.
Graphical data are then presented to illuminate howmany terms of the extracted infinite series yield convergent
results. The final stage is to conduct an all-embracing parametric analysis to make clear the role of various
crucial factors in the alterations of TED. According to the obtained results, the impact of MGT model on TED
sorely relies on the vibrational mode number of the ring.

S. I. S. Al-Hawary
Department of Business Administration, Business School, Al Al-Bayt University, P.O. Box 130040, Mafraq 25113, Jordan

Y.-L. Huamán-Romaní · F. Kuaquira-Huallpa
Academic Department of Basic Sciences, National Amazonian University of Madre de Dios, Puerto Maldonado, Peru

M. K. Sharma
Department of Mathematics, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India

R. Pant
Mechanical Engineering Department, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India

R. M. Romero-Parra (B)
Department of General Studies, Universidad Rafael Belloso Chacín, Ciudad Ojeda, Venezuela
e-mail: rosarioromeroparra@gmail.com

D. Thabit
Medical Technical College, Al-Farahidi University, Baghdad, Iraq

M. A. Gatea
Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq

M. A. Gatea
Department of Physics, College of Science, University of Kufa, Kufa, Iraq

S. A. Zearah
Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq

http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-023-02529-7&domain=pdf


470 S. I. S. Al-Hawary et al.

Keywords Thermoelastic damping (TED) ·Toroidal microring ·Generalized thermoelasticity ·Moore–Gib-
son–Thompson (MGT) equation of heat conduction · Size-dependency · Mathematical modeling

1 Introduction

With the rapid development of the productionof engineering tools in tinydimensionswithmicro andnanoscales,
the use of micro/nanoelectromechanical systems (MEMS/NEMS) in industrial, engineering, technology and
medical applications is growing day by day.MEMS/NEMSdevices are utilized in awide variety of applications
like accelerometers [1, 2], gyroscopes [3], inertia sensors, pressure sensors [4], humidity sensors [5], energy
harvesters [6–8], flow sensors [9], mass sensors [10] and biosensors [11, 12]. The mechanical part of these
advanced systems predominantly consists of principal mechanical elements such as beams, plates, shells and
rings. Various studies have investigated the effect of size on the behavior of these small-sized elements [13, 14].
Circular and rectangular cross-sectional micro/nanorings are employed for applications with a vast range of
purposes inMEMS/NEMS. One of the key issues in the design ofMEMS/NEMS is to minimize the energy loss
in them in such a way that they can exhibit a performance close to the optimum operation. Various researches
have been conducted on concepts such as energy storage and energy dissipation inmechanical systems [15, 16].
Various mechanisms have been identified that bring about energy dissipation in the mechanical elements that
constituteMEMS/NEMS,which are generally divided into two categories of intrinsic and extrinsicmechanisms
of energy loss.Oneof the incontrovertible intrinsic sources of energydissipation inmicro/nanostructures,which
also has experimental support, is thermoelastic damping (TED) [17–19]. The mechanism of this phenomenon
is that when a structure oscillates under bending, a non-uniform strain field is formed in it. Due to the coupling
of strain and temperature fields, non-uniform temperature distribution occurs across the structure, which causes
thermal currents to appear. Given that these heat flows are thermodynamically irreversible, they lead to entropy
increase and ultimately energy loss in the structure.

The Fourier model is one of the most famous and oldest heat conduction models, which is impotent to
expound the heat transfer process in special situations such as small dimensions or rapid heating due to its
simplicity and lack of scale parameters. To obviate the restrictions of the Fourier model, in recent decades and
years, many efforts have been made by researchers to provide a proper mathematical model that is qualified to
describe the heat transfer process in certain conditions. One of the first of these models is the model proposed
by Lord and Shulman (LS model), which can characterize some special states of heat transfer by utilizing a
parameter called the relaxation time [20]. Owing to the use of a phase lag parameter, this model is also known
as single-phase-lag (SPL) model. By adding a variable called thermal displacement to the Fourier model,
Green and Naghdi put forward another non-Fourier model known as Green–Naghdi thermoelasticity theory
of type III (GN-III model) [21]. By exploiting the linearized form of Moore-Gibson-Thompson model and
combining LS and GN-III models, Quintanilla [22] introduced a more complete model for heat transfer, which
is called MGT model in the literature. Guyer and Krumhansl [23] propounded a model (GK model) in which
both the nonlocal and phase lagging effects have been taken into account. That’s why this model is also known
as the nonlocal single-phase-lag (NSPL) model. By using another phase lag parameter in LS model, Tzou [24]
established dual-phase-lag (DPL) model, which can reflect scale effects in both time and space domains.

To theoretically model and compute the amount of TED in different structures, various investigations have
been conducted. The first mathematical modeling in this field has been established by Zener [25], in which an
analytical relationship was provided to estimate TED value in Euler–Bernoulli beams by applying an approach
called the entropy generation (EG) method. By introducing another approach called the complex frequency
(CF) method, Lifshitz and Roukes [26] arrived at a mathematical formula to determine the value of TED in
small-sized Euler–Bernoulli beams. Both models presented by Zener [25] and Lifshitz and Roukes [26] have
been derived in the purview of the Fourier heat conduction model. In the last two decades, based on different
models of heat transfer and two EG and CF methods, many articles have been published about TED in various
structures, the most prominent of which will be introduced below.

Guo et al. [27] utilized DPL model along with CF method to render a nonclassical theoretical framework
for TED calculation in Euler–Bernoulli micro/nanobeams. According to the Fourier model and CF method,
Emami and Alibeigloo [28] developed an exact solution for TED in functionally graded (FG) Timoshenko
microbeams. In the context of DPL model and nonlocal strain gradient theory (NSGT), Gu et al. [29] analyzed
TED in thin beam resonators. With the aid of memory-dependent model of LS model, Wang et al. [30] derived
a closed-form solution for TED in slender microbeams. On the basis of EG method and the Fourier model,
Li et al. [31] performed a thorough study to extract explicit expressions for TED in rectangular and circular
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microplates. In the research of Zhou et al. [32], EG method together with GK model have been used to present
a three-dimensional (3D) model for TED in rectangular small-sized plates. By utilizing EG method, Fang and
Li [33] developed an analytical model for TED in rings with rectangular cross section according to the Fourier
model. In a similar investigation, Li et al. [34] provided an analytical solution for TED in circular cross-sectional
microring resonators. By employing LS and DPL models, Zhou et al. [35] and Zhou and Li [36] rendered non-
Fourier formulations for TED in rectangular cross-sectional miniaturized rings, respectively. Kim and Kim
[37], Jalil et al. [38] and Jalil et al. [39] exploited LS, GK and DPL models, respectively, to scrutinize scale
effects on TED in small-scaled ring resonators with circular cross section. By implementing EG method in the
framework of the Fourier model, Zheng et al. [40] proposed a solution for predicting TED value in circular
cylindrical shells with arbitrary boundary conditions. By means of modified couple stress theory (MCST) and
DPL model, Borjalilou et al. [41] established a size-dependent model to evaluate TED in Euler–Bernoulli
microbeam resonators. Singh et al. [42] utilized MCST and MGT model to appraise size effects on TED in
microbeams. In the article of Ge et al. [43], NSGT and GK model have been applied simultaneously to survey
TED in rectangular micro/nanoplates. With the help of MCST and fractional DPL model, Wang et al. [44]
presented an exact solution for computing TED value in circular microplates. By employing nonlocal theory
(NT) in conjunctionwithDPLmodel, Li et al. [45] derived an analytical formulation to examine scale effects on
TED in thin tubular nanoshells. Ge and Sarkar [46] studied size effects on TED in rectangular cross-sectional
rings by making use of MCST and nonlocal DPL (NDPL) model. In the purview of NT and GK model, Li and
Esmaeili [47] extracted an explicit solution for TED in circular nanoplates. In addition to the reviewed works,
other valuable analytical studies have been conducted on TED in small-sized mechanical elements [48–67].

Attention to the reviewedmatters above enlightens that research on thermoelastic damping (TED) in small-
sized structures including microrings is of enormous significance. Besides, it was found that the heat transfer
process in these microstructures doesn’t comply with the Fourier law and should be modeled through the non-
Fourier models of heat conduction. The present paper employsMoore–Gibson–Thompson (MGT) generalized
thermoelasticity theory to develop a novel model for TED in circular cross-sectional microrings and provide
a formula to calculate its value in such rings. The first step is to extract the temperature field in the ring by
solving the equation of heat conduction established on the basis of MGTmodel. In the next step, the maximum
amounts of dissipated thermal energy and strain energy during one cycle of vibration are computed. By using
these values in the framework of the entropy generation (EG) method, a mathematical formulation is given
for estimation of the amount of TED. The correctness of the provided solution is surveyed by conducting
a comparative study. A convergence analysis is also performed to specify how many terms of the obtained
infinite series are adequate to achieve accurate results. Lastly, various graphical results are given to scrutinize
the influence of momentous parameters on the magnitude of TED.

2 Fundamentals of Moore–Gibson–Thompson (MGT) thermoelasticity theory

According to Moore-Gibson-Thompson (MGT) generalized thermoelasticity theory, the process of heat con-
duction in isotropic solids is expressed by [22]:(

1 + τ
∂

∂t

)
q � −k∇ϑ − k∗∇υ (1)

in which q defines heat flux vector. Also, variable ϑ � T − T0 represents temperature variation in which
T and T0 refer to the current and surrounding temperature, respectively. Moreover, variable υ is known as
thermal displacement, which is defined via the relation ϑ � ∂υ/∂t . Parameters k and k∗ stand for the thermal
conductivity of the material and thermal conductivity rate, respectively. Material constant τ is called relaxation
time or phase lag of heat flux. One thing to mention here is that when k∗ is set to zero, MGTmodel corresponds
to LS model. In addition, in the absence of τ , Eq. (1) is converted to equation of heat conduction of GN-III
model. Furthermore, by dropping the terms containing parameters k∗ and τ , the constitutive relation of MGT
model reduces to that of the Fourier model.

The equation of conservation of energy is written as follows [24]:

−∇. q � ρcv

∂ϑ

∂t
+

EαT0
1 − 2ν

∂εmm

∂t
(2)

where ρ and cv are mass density and specific heat per unit mass, respectively. Material constant α denotes
thermal expansion coefficient of the material. Parameters E and ν are also the Young modulus and the Poisson
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ratio, respectively. Variable εmm indicates cubical dilatation, which is equal to the trace of strain tensor ε.
By deleting heat flux q from Eqs. (1) and (2), one can achieve the coupled equation of heat conduction
corresponding to MGT model as follows:

(
1 + τ

∂

∂t

)(
ρcv

∂2ϑ

∂t2
+

EαT0
1 − 2ν

∂2εmm

∂t2

)
� k∗

(
1 + τ ∗ ∂

∂t

)
∇2ϑ (3)

in which

τ ∗ � k/k∗ (4)

Moreover, ∇2 represents the Laplace operator or Laplacian. As can be seen, Eq. (3) is a hyperbolic
differential equation, which guarantees the finite speed of heat transfer, and in addition to temperature change
ϑ , thermal displacement parameter υ is also involved in it as a constitutive variable. Therefore, MGT-based
heat equation has solved the defects of both LS and GN models.

3 Thermoelastic model of rings with circular cross-section according to MGT thermoelasticity theory

In this section, a mathematical framework is developed for thermoelastic modeling of small-scaled circular
cross-sectional rings on the basis of MGT heat conduction model. To do so, the following assumptions are
applied: (1) Flexural vibrations take place in the plane of the ring without undergoing any extension of the
centerline of the ring (in-extensionality assumption), (2) The cross-sectional dimensions of the ring are small
compared to the radius of the centerline of the ring (thin ring assumption), and (3) Thermal stresses can be
ignored compared to mechanical stresses (weak thermoelastic coupling assumption).

The geometry and coordinate systems of a rectangular cross-sectional ring with the mean radius R0 and
cross-sectional radius r0 is portrayed in Fig. 1. To define global and local coordinate systems, the symbols
(R, θ , Z ) and (x , y, z) are used, respectively. Additionally, independent variable ϕ represents the angle in
local coordinates. Parameter u(θ , t) stands for the displacement of any arbitrary point of the ring in the
radial direction. Also, parameter v(θ , t) denotes the tangential displacement of the centerline. In the modeling
of rings, it is generally assumed that the tangential centerline of the ring is inextensible. Considering this
assumption yields the following mathematical relationship [68]:

u � −∂v

∂θ
(5)

Accordingly, the tangential strain εθθ at any point of the ring is expressed by [68]:

εθθ � − x

R2
0

(
u +

∂2u

∂θ2

)
(6)

Based on thermoelastic case of Hooke’s law in rings, one can write [69]:

σθθ � E(εθθ − αϑ) (7)

Here, σθθ denotes the normal tangential stress. Substitution of Eq. (6) into above equation gives:

σθθ � − Ex

R2
0

(
u +

∂2u

∂θ2

)
− Eαϑ (8)

According to Hooke’s law, the two normal strains εRR and εZ Z are given by [70]:

εRR � εZ Z � −ν
σθθ

E
+ αϑ (9)

By inserting Eq. (8) into Eq. (9), one can arrive at the following relations:

εRR � εZ Z � ν
x

R2
0

(
u +

∂2u

∂θ2

)
+ (1 + ν)αϑ (10)
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Fig. 1 Schematic view of a ring with circular cross section

Thus, by employing Eqs. (6) and (10), the cubical dilatation εmm can be obtained by:

εmm � εRR + εθθ + εZ Z � −(1 − 2ν)
x

R2
0

(
u +

∂2u

∂θ2

)
+ 2(1 + ν)αϑ (11)

By placing above equation into Eq. (3) and arranging the result, the following heat conduction equation is
derived:

χ

τ ∗

(
1 + τ ∗ ∂

∂t

)
∇2ϑ �

(
1 + τ

∂

∂t

){[
1 +

2(1 + ν)

1 − 2ν
�E

]
∂2ϑ

∂t2
− �E

α

∂2

∂t2

[
x

R2

(
u +

∂2u

∂θ2

)]}
(12)

with

χ � k/ρcv (13a)

�E � Eα2T0/ρcv (13b)

For most solids, [2(1 + ν)/(1 − 2ν)]�E � 1. By accounting for this point, the heat conduction Eq. (12)
becomes:

χ

τ ∗

(
1 + τ ∗ ∂

∂t

)
∇2ϑ �

(
1 + τ

∂

∂t

){
∂2ϑ

∂t2
− �E

α

∂2

∂t2

[
x

R2

(
u +

∂2u

∂θ2

)]}
(14)

To extract temperature distribution at different points of the ring, functions ϑ and u are assumed as follows
[71]:

ϑ(R, θ , Z , t) � ϑ0(R, θ , Z )e
iωnt (15a)

u(θ , t) � Unsin(nθ)eiωnt (15b)
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In the last two relations, ωn stands for the nth natural frequency of the ring, which can be determined by
[34, 72]:

ωn � n
(
n2 − 1

)
√
n2 + 1

√
E I

ρAR4
0

(n ≥ 2) (16)

in which

I � πr40/4 (17a)

A � πr20 (17b)

By placing Eqs. (15a) and (15b) into Eq. (14) and sorting the outcome, one can arrive at the equation below:

∇2ϑ0 +
τ ∗ω2

n(1 + iωnτ)

χ(1 + iωnτ ∗)
ϑ0 � �E

α

τ ∗ω2
n(1 + iωnτ)

χ(1 + iωnτ ∗)
x

R2

(
1 − n2

)
Unsin(nθ) (18)

In global coordinate system (R, θ , Z ), the Laplace operator is defined by [34]:

∇2 � ∂2

∂R2 +
1

R

∂

∂R
+

1

R2

∂2

∂θ2
+

∂2

∂Z2 (19)

From Fig. 1, it is clear that:

x � rsinϕ (20a)

z � rcosϕ (20b)

In addition:

R � R0 + x (21)

By substituting Eqs. (20a), (20b) and (21) in Eq. (19), implementing the chain rule and paying attention to
the fact that we have R0 � x in thin rings, the Laplace operator defined in Eq. (19) takes the following form
[73]:

∇2 � ∂2

∂r2
+
1

r

∂

∂r
+

1

R2
0

∂2

∂θ2
+

1

r2
∂2

∂ϕ2 (22)

Thus, partial differential Eq. (18) can be written in the following form:

∂2ϑ0

∂r2
+
1

r

∂ϑ0

∂r
+

1

R2
0

∂2ϑ0

∂θ2
+

1

r2
∂2ϑ0

∂ϕ2 +
τ ∗ω2

n(1 + iωnτ)

χ(1 + iωnτ ∗)
ϑ0 � �E

α

τ ∗ω2
n(1 + iωnτ)

χ(1 + iωnτ ∗)
x

R2

(
1 − n2

)
Unsin(nθ)

(23)

Thermal boundary conditions on the outer surface of the ring are considered adiabatic, which can be
expressed through the following mathematical relationship:

∂ϑ0(r , θ ,ϕ)

∂r
� 0atr � r0 (24)

Moreover, temperature function ϑ0 must be periodic in terms of angles θ and ϕ. Considering this point and
Eq. (24), function ϑ0(r , θ , ϕ) should be in the following form to satisfy both the governing Eq. (23) and the
mentioned boundary conditions [34]:

ϑ0 �
∑∞

p�1

∑∞
q�1

Apq J1

(
βp

r0
r

)
sin(qθ )sinϕ (25)

In the above equation, J1 represents the first order Bessel function of the first kind. The value of unknown
coefficients βp can be determined by applying the adiabatic boundary condition of Eq. (24) to the solution
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Table 1 The value of first ten terms of βp

p βp

1 1.841
2 5.331
3 8.536
4 11.706
5 14.864
6 18.016
7 21.164
8 24.311
9 27.457
10 30.602

presented in Eq. (25). By doing this and using the properties of Bessel functions of the first kind, the following
relationship is finally obtained:

J1
(
βp

) − βp J0
(
βp

) � 0 (26)

By using again the properties of Bessel functions of the first kind, the above equation can also be expressed
as follows:

J2
(
βp

) − J0
(
βp

) � 0 (27)

By solving one of the transcendental Eqs. (26) or (27), the coefficients βp in Eq. (25) are determined. Table
1 contains some values for coefficients βp.

To calculate the coefficients Apq in Eq. (25), the orthogonality property of Bessel and sine functions
is exploited, so that first Eq. (25) is inserted into Eq. (23), then the result is multiplied by expression r J1(

βi
r0
r
)
sin(nθ )sinϕ, and the integral is finally taken from the derived expression in the range of the entire ring,

i.e. 0 ≤ r ≤ r0, 0 ≤ θ < 2π and 0 ≤ ϕ < 2π . In this way, the coefficient Ai j is obtained as follows:

Ain � 2
�E

α

r0
R2
0

(
n2 − 1

)
Un(

β2
i − 1

)
J1(βi )

τiτ
∗ω2

n(1 + iωnτ)(
1 + ψ2

in

)
(1 + iωnτ ∗) − τiτ ∗ω2

n(1 + iωnτ)
(28)

with

τi � r20
χβ2

i

(29a)

ψin � n

βi

r0
R0

(29b)

Substitution of Eq. (28) into Eq. (25) yields the following relation for temperature field ϑ0:

ϑ0 � 2
�E

α

Unr0
R2
0

(
n2 − 1

)
sin(nθ) sin ϕ

∞∑
i�1

J1
(

βi
r0
r
)

(
β2
i − 1

)
J1(βi )

τiτ
∗ω2

n(1 + iωnτ)(
1 + ψ2

in

)
(1 + iωnτ ∗) − τiτ ∗ω2

n(1 + iωnτ)

(30)

4 MGT-based thermoelastic damping in circular cross-sectional rings

In different structures, the inverse of quality factor (Q-factor) is used to estimate the value of TED. In the
context of the entropy generation (EG) method, this value is computed via the following relation [31]:

Q−1 � 1

2π

�W

Wmax
(31)
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In the above equation,Wmax and�W represent themaximum amount of strain energy per cycle of vibration
and the dissipated thermoelastic energy, respectively. In a body with a volume of V , the values of these two
terms are computed by [56], [74]:

Wmax � 1

2

˚
V
σ̂i j ε̂i jdV (32a)

�W � −π

˚
V
σ̂i j Im

(̂
εthi j

)
dV (32b)

where σi j and εi j denote the components of stress and strain tensors, respectively. The hat symbol represents

the peak value of any variable in a cycle of oscillation. Additionally, Im
(
εthi j

)
is the imaginary part of thermal

strain tensor. In a circular cross-sectional ring, Wmax and �W are expressed as follows:

Wmax � 1

2

˚
V
σ̂θθ ε̂θθdV (33a)

�W � −π

˚
V
σ̂θθ Im

(̂
εthθθ

)
dV (33b)

Given faint thermoelastic coupling effect, one can ignore thermal stress in comparison with mechanical
stress. Accordingly, on the basis of Eqs. (6), (8) and (15b), the following relations for ε̂θθ and σ̂θθ are obtained:

ε̂θθ � − x

R2
0

(
1 − n2

)
Unsin(nθ) (34a)

σ̂θθ � − Ex

R2
0

(
1 − n2

)
Unsin(nθ) (34b)

In a ring with circular cross section, one can write:

dV � Rdθ.dr.rdϕ (35)

By employing Eqs. (20a) and (21) in the above equation, one can arrive at the following relation:

dV � r(R0 + rsinϕ).drdθdϕ (36)

Substitution of Eqs. (34a), (34b) and (36) into Eq. (33a) leads to:

Wmax � 1

2

∫ 2π

0

∫ 2π

0

∫ r0

0

EU 2
n

R4
0

(
1 − n2

)2
r2sin2ϕ.sin2(nθ).r(R0 + rsinϕ).drdθdϕ (37)

By doing the above integration, one can get the following relationship:

Wmax � 1

2
πEIR0

[(
1 − n2

)
Un

R2
0

]2

(38)

According to Eq. (15a), one can write ε̂thθθ � αϑ0. Thus, with the help of Eq. (30), the following relation
can be derived:

(39)Im
(
ε̂thθθ

)

� 2�E
r0Un

R2
0

(
1 − n2

)
sin (nθ ) sin ϕ

∞∑
i�1

J1
(

βi
r0
r
)

(
β2
i − 1

)
J1 (βi )

(
1 + ψ2

in

) (
τ ∗ − τ

)
τiτ

∗ω3
n(

1 + ψ2
in − τiτ ∗ω2

n

)2
+

[(
1 + ψ2

in

)
τ ∗ − τiτ ∗τω2

n

]2
ω2
n

By putting Eqs. (34b), (36) and (39) into Eq. (33b) and performing calculations like what was done to
extract Wmax, finally the following expression for �W is obtained:

�W � π2�EEIR0

[(
1 − n2

)
Un

R2
0

]2∑∞
i�1

8

β2
i

(
β2
i − 1

)
(
1 + ψ2

in

)
(τ ∗ − τ)τiτ

∗ω3
n(

1 + ψ2
in − τiτ ∗ω2

n

)2
+

[(
1 + ψ2

in

)
τ ∗ − τiτ ∗τω2

n

]2
ω2
n

(40)
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Fig. 2 Validation analysis for a circular cross-sectional ring with specifications r0 � 1 µm and R0/r0 � 50

At the final stage, by inserting Eqs. (38) and (40) into Eq. (31), one can attain the following relation for
TED in circular cross-sectional rings based on MGT equation of heat conduction:

Q−1 � �E

∑∞
i�1

Ci

(
1 + ψ2

in

)
(τ ∗ − τ)τiτ

∗ω3
n(

1 + ψ2
in − τiτ ∗ω2

n

)2
+

[(
1 + ψ2

in

)
τ ∗ − τiτ ∗τω2

n

]2
ω2
n

(41)

In the above equation, Ci is the weighting coefficient that can be computed through the following relation-
ship:

Ci � 8

β2
i

(
β2
i − 1

) (42)

5 Results and discussion

In this section, various numerical results are prepared with the aim of conducting validation, convergence
and parametric studies. The point to be noted here is that the relation presented for TED in Eq. (41) is for the
three-dimensional (3D) case of heat transfer. In the two-dimensional (2D) model, heat transfer in the tangential
direction is not considered [34]. Therefore, according to Eqs. (22) and (30), to extract the results corresponding
to 2D model, it is sufficient to eliminate term ψ2

in from Eq. (41).
To validate the developed formulation, the results of this research are compared with those reported by Kim

and Kim [37] for the Fourier and LS models. To convert the relationships of MGTmodel to those of LS model,
it is necessary to set k∗ � 0. Thus, according to Eq. (4), to extract the results based on LS model, relationship
τ ∗ → ∞ should be applied in Eq. (41). Moreover, to achieve the results in the framework of the Fourier model,
in addition to the relation τ ∗ → ∞, the value of τ must be set equal to zero in Eq. (41).With these explanations,
in Fig. 2, the diagram of TED changes with respect to the vibrational mode number n is plotted for a ring
with geometrical characteristics R0 � 50 µm and r0 � 1 µm at T0 � 293K . The properties of the material
are as follows: E � 165.9GPa, ρ � 2330 kg/m3, cv � 713 J/kg K, k � 156W/mK, α � 2.59 ∗ 10−61/K
and τ � 3.95649ps. The full agreement between the curves extracted via the formulation presented in this
work and those published in the research of Kim and Kim [37] betokens the authenticity and exactness of the
developed model.

In the following, except for the examples in which the effect of the material of the ring on TED value is
discussed, in the rest of the cases, the graphs are drawn for a silicone ring at reference temperature T0 � 300K .
Table 2 contains the characteristics of silicon (Si) at this temperature. Figures 3 and 4 are prepared to determine
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Table 2 Mechanical and thermal properties of three types of materials at T0 � 300K [49]

Material constant Silicon (Si) Copper (Cu) Gold (Au)

E (GPa) 169 110 79
ρ

(
kg/m3

)
2330 8940 19,300

cv (J/kg K) 713 385.9 129.1
α

(
10−6/K

)
2.6 16.5 14.2

k (W/mK) 70 386 315
k∗ (W/mK s) 157 70 150
τ (ps) 3.95 27.3 93.5

Fig. 3 Convergence analysis for a Si-ring with characteristics r0 � 1 µm and R0/r0 � 100 a 3D model b 2D model
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Fig. 4 Convergence analysis for a Si-ring with characteristics r0 � 2 µm and R0/r0 � 20 a 3D model b 2D model

howmany terms of the solution derived in this study are sufficient to gain convergent results. Figure 3 is drawn
for a ring with specifications r0 � 1 µm and R0/r0 � 100, and Fig. 4 is depicted for a ring with geometrical
characteristics r0 � 2µmand R0/r0 � 20. In these figures, Q−1

j represents the amount of TED by considering
the first j terms of the obtained solution. As it is evident in these two figures, for both 2D and 3D models, and
for all vibrational mode numbers examined (i.e. n � 2, 100, 200, 500 and 1000), with the increase of j , the
results rapidly approach and converge to TED value estimated by exploiting the first ten terms. This issue is
related to the fact that the sequence of the weighting factor introduced in Eq. (42) is sorely descending. All in
all, it can be said that the use of first ten terms of the relationship given for TED is adequate to attain highly
accurate outcomes.

In Fig. 5, for a ring with geometrical ratio R0/r0 � 20, the effect of GN-III and MGT models on TED
diagram in terms of vibrational mode number n is examined. Figure 5a, b are drawn for cases r0 � 1 µm and
r0 � 10µm, respectively. As can be seen, in low vibrationalmodes, the predictions ofMGT andGN-III models
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Fig. 5 TED versus vibrational mode number in the framework of MGT and GN-III models a r0 � 1 µm and R0/r0 � 20
b r0 � 10 µm and R0/r0 � 20

are almost the same, but as the vibrational mode number ascends, the difference between the estimations of
these two models enlarges, so that MGT model yields a smaller value for TED than GN-III model. Also,
these curves reveal that for both MGT and GN-III models, the amount of TED obtained from 3D case of
heat conduction is higher than that for 2D case. Another point that can be mentioned is that due to the larger
dimensions of the ring in Fig. 5b compared to Fig. 5a, the difference between the outputs of MGT and GN-III
models in Fig. 5b is smaller, which is a confirmation of the diminution of size effect in larger dimensions.

Figure 6 is drawn with the same conditions as Fig. 5, with the only difference being that the geometrical
ratio R0/r0 is considered equal to 100. In other words, the size of the ring in Fig. 6 is assumed to be larger than
that in Fig. 5. As it is clear in Fig. 6a, the effects of MGT and GN-III models as well as 2D and 3D cases of heat
conduction are qualitatively similar to those in Fig. 5, but given the larger dimensions of the ring, the amount
of these effects is quantitatively reduced and only in very high vibrational mode numbers are perceptible. In
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Fig. 6 TED versus vibrational mode number in the framework of MGT and GN-III models a r0 � 1 µm and R0/r0 � 100
b r0 � 10 µm and R0/r0 � 100

Fig. 6b, where both r0 and R0/r0 take a large value, the size effect is minimized and it becomes difficult
to distinguish between the results of MGT and GN-III models. It was mentioned earlier that the difference
between the results of 2D and 3D models is due to the terms including term ψ2

in . According to Eq. (29b), this
difference is less in low vibrational mode numbers or high ratios of R0/r0. It is evident in Figs. 5 and 6 that
the difference between the estimates of 2D and 3D models augments with the increase of the vibrational mode
number n. Also, because of the larger ratio of R0/r0 in Fig. 6 compared to Fig. 5, the difference between
the predictions of 2D and 3D models lessens. As it is clear from the diagrams of Fig. 6, the peak amount of
TED comes about in a vibrational mode number located in the middle of the studied range. The reason of this
outcome can be explained that the temperature field of the ring arrives at balance in a particular time τ0. At low
vibrational mode numbers that are comparable to small frequencies, one can state τ0 � ω−1

n . Consequently,
because the period of vibration is long in this case, the oscillating body is isothermal and remains in equilibrium
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Fig. 7 TED variation with cross-sectional radius according to MGT and GN-III models a n � 100 and R0/r0 � 20 b n � 200
and R0/r0 � 20

conditions. Therefore, the amount of thermal energy loss is slight. At large vibrational mode numbers or high
frequencies (that is τ0 � ω−1

n ), a cycle of oscillation happens very quickly, and the vibrating body hasn’t
sufficient time to reach equilibrium. Hence, a trivial amount of thermal energy is dissipated. Accordingly, the
peak amount of TED occurs at τ0 ∼ ω−1

n , which corresponds to intermediate vibrational mode numbers.

The variations of TED with the cross-sectional radius r0 are displayed in Fig. 7a, b for vibrational mode
numbers n � 100 and n � 200, respectively. These curves are plotted for a ring with fixed geometrical ratio
R0/r0 � 20. According to these diagrams, the value of TED calculated by MGT model is lower than that
anticipated by GN-III model. The physical meaning of this outcome can be that the dispersion velocity of
thermal waves in GN-III model is more than that in MGT model. Therefore, the heat induced by the non-
uniform stress field in the framework of MGT model has less time to transfer per cycle of vibration, which
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Fig. 8 TED variation with cross-sectional radius according to MGT and GN-III models a n � 100 and R0/r0 � 100 b n � 200
and R0/r0 � 100

weakens energy dissipation caused by TED. Consequently, the amount of TED computed by GN-III model
is larger than that estimated by MGT model. In addition, for case n � 200, the discrepancy between the
outcomes of MGT and GN-III models is greater than case n � 100. Another point that can be observed in the
graphs of Fig. 7 is that with the increase of the value of cross-sectional radius r0, the results of MGT model
approach those of GN-III model, which clearly demonstrates the weakening of size effect with the increase
of ring dimensions. One of the things that are very significant in the analytical studies related to TED is to
find a characteristic size in which the peak value of TED takes place. For example, the characteristic size in
plates and rectangular cross-sectional beams is their thickness (h) and in circular cross-sectional rings is the
radius of their cross section (r0), which is known as “critical thickness” or “critical radius”. Depending on the
purpose of using the studied structure, TED can have a detrimental or beneficial effect on the performance of
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Fig. 9 Comparison of TED value for three materials silicon, copper and gold for a ring with geometrical properties r0 � 0.5 µm
and R0/r0 � 20 a 3D model b 2D model

that structure, based on which it should be decided whether or not the structure is designed within the critical
size range. Considering these explanations, another difference between the results of MGT and GN-III models
is that in the range under investigation (i.e. 0.1 µm ≤ r0 ≤ 10 µm), GN-III model predicts a downward trend
for TED, but according to MGT model, the peak value of TED occurs at a radius within this range, that is at
critical radius.

Figure 8 is depicted with the same assumptions as Fig. 7, with the only difference being that the geometrical
ratio R0/r0 is considered equal to 100. By ascending the value of R0/r0 compared to Fig. 7 and consequently
increasing size of the ring, it can be seen that, as expected, the effect of size and consequently the difference
between the results of MGT and GN-III models drops noticeably. The noteworthy point in Fig. 8a is that TED
value estimated byMGTmodel is higher than that predicted by GN-III model, although the difference between
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Fig. 10 Comparison of TED value for three materials silicon, copper and gold for a ring with geometrical properties r0 � 5 µm
and R0/r0 � 20 a 3D model b 2D model

them is not very large. This implies that although in most cases MGT model anticipates a lower TED value
than GN-III model, a different result may occur in some vibrational mode numbers or ratios of R0/r0.

To survey the impact of the material on TED spectrum, in Fig. 9, the diagram of changes of TED with
vibrational mode number n is displayed for three materials silicon (Si), copper (Cu) and gold (Au). The
mechanical and thermal properties of these three materials at reference temperature T0 � 300K are given
in Table 2. To draw these curves, r0 � 0.5 µm and R0/r0 � 20 are considered. In addition, Fig. 9a, b are
dedicated to the results of 3D and 2D models, respectively. As it is obvious, the discrepancy between the
outcomes of MGT and GN-III models in low vibrational mode numbers is small for all three studied materials,
but in high vibration modes, MGT model estimates a lower amount than GN-III model for TED. Although
TED value obtained for each material is highly dependent on the vibrational mode number, in general, it can
be said that in high vibrational mode numbers (i.e. approximately n > 100), MGT model predicts the highest
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Fig. 11 TED value obtained by 3D model versus cross-sectional radius for three materials silicon, copper and gold for a ring
with R0/r0 � 40 a n � 50 b n � 200

TED value for Cu-rings and the lowest TED value for Si-rings. Figure 10 is drawn with the same conditions as
Fig. 9, but for a ring with a cross-sectional radius of r0 � 5 µm. As the dimensions of the ring become larger
compared to Fig. 9, it can be observed that the difference between the output of MGT and GN-III models is
insignificant in a larger range of n, which indicates the reduction of size effect.

In Fig. 11, the diagram of TED alterations with respect to cross-sectional radius r0 for the three studied
materials in Figs. 9 and 10 is shown. The curves of this figure are extracted for 3D model and geometrical ratio
R0/r0 � 40. Figure 11a, b are drawn for vibrational mode numbers n � 50 and n � 200, respectively. As it
is clear, in Fig. 11a, where the value of n is relatively small, MGT model predicts a higher value for TED than
GN-III model B, but in Fig. 11b, where the vibrational mode number n is larger, TED value obtained through
MGT model is lower than that computed by GN-III model. In both Fig. 11a, b, the convergence of the output
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Fig. 12 Comparison of predictions of MGT and DPL models for TED value for a ring made of lead with R0/r0 � 40 a n � 50
b n � 100

of MGT model to that of GN-III model can be clearly seen as the ring size increases. Furthermore, regardless
of the vibrational mode number and the value of cross-sectional radius, Si-ring shows the lowest TED value.

For a ring made of lead (Pb) with geometrical ratio R0/r0 � 40, Fig. 12a, b compare TED values obtained
in the context of MGT and DPL models at vibrational mode numbers n � 50 and n � 100, respectively.
According to the findings of Jalil et al. [39], TED relation for small-sized toroidal rings on the basis of DPL
model is given by:
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where τq and τT are the phase lags of heat flux and temperature in DPLmodel, respectively. Thermomechanical
properties of lead at T0 � 300K are as follows [39, 49]: E � 16GPa, ρ � 11340 kg/m3, cv � 128 J/kgK,
k � 35.3W/mK, k∗ � 150W/mKs, α � 28.9 ∗ 10−61/K , τ � τq � 0.1670ps and τT � 12.097ps. As
can be seen, in smaller radii, the predicted value for TED in the framework of DPL model is lower than that
determined by MGT model, but as the radius increases and the effect of size diminishes, the amount of TED
obtained by both models is almost the same.

6 Conclusions

In the present article, by capturing scale effect on thermal field via the Moore-Gibson-Thompson (MGT)
generalized thermoelasticity theory, a novel formulation for estimation of the magnitude of thermoelastic
damping (TED) in microrings with circular cross section has been developed. By deriving the equation of heat
conduction in the context of MGT model, placing the harmonic form of fluctuation temperature and radial
displacement in it and finding the solution of extracted partial differential equation (PDE), the distribution of
temperature throughout the ring has been derived. By utilizing the obtained temperature distribution in the
calculation of the peak values of wasted thermal energy and strain energy and inserting these values in the
relationship defined for TED in the entropy generation (EG) method, a mathematical formula in the form
of infinite series has been extracted through which TED value can be predicted by taking into account the
nonclassical parameters of MGT model. The accuracy of the model has been confirmed via a comparative
study. Also, by way of a convergence study, the number of terms necessary to arrive at precise and convergent
outcomes has been determined. Finally, through the presentation of various results, a parametric analysis has
been done to clarify the way and extent of the impact of different factors on TED. The essential outcomes of
this research can be encapsulated as follows:

• According to the result of convergence analysis, using the first ten terms of the solution obtained in the
framework of MGT model is quite enough to reach precise answer.

• While in low vibrational mode numbers (that is approximately n < 100), the predictions ofMGT andGN-III
models exhibit little difference, in high vibration modes, GN-III model estimates much more TED value
than MGT model.

• By increasing the dimensions of ring, size effect dwindles and the output of MGT model converges to that
of GN-III model.

• In low vibrational mode numbers and high ratios of R0/r0 (i.e. thin rings), the difference between the results
of 2D and 3D models is minimized.

• Among the three investigated materials (i.e. silicon, copper and gold), Si-rings show the lowest amount of
TED, which can be used as a benchmark for optimal design of microring resonators.
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