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Abstract In this paper, a new crack surface energy for the simulation of ductile fracture is proposed, which is
based on theAllen–Cahn theory of diffuse interfaces. In contrast to existing fracture approaches, here, the crack
surface energy density is a double-well potential based on a new interpretation of the crack surface. That is,
the energy associated with the whole diffuse region between the fully cracked and intact regions is interpreted
as crack surface energy. This kind of formulation, on the one hand, results in the balance of micromechanical
forces and on the other hand, is a priori thermodynamically consistent. Furthermore, the proposed formulation
is based on a gamma-convergent interface energy and it is in agreementwith the classical solution of Irwin (Appl
Mech Trans ASME E24:351–369, 1957). It is shown that in contrast to existing models, crack irreversibility is
automatically fulfilled and no further constraints related to neither local nor global irreversibility are needed. To
also account for potential plastic shear band localization, the approach is extended by amicromorphic plasticity
model. By analyzing two different classical numerical benchmark problems, the proposed formulation is shown
to enable mesh-independent results which are in agreement with the results of competing approaches.

Keywords Ductile phase-field fracture · Micromorphic extension · Finite strains · Crack irreversibility ·
Balance of micro-forces · �-convergence

1 Introduction

Prediction of crack initiation and the way it propagates in the engineering structures has been a big challenge
during the past decades. As an example, in the mechanized tunneling, the cutting disks are subject to fracture.
Since these tools are mainly constructed from ductile steels, they are subject to ductile fracture. The study
of crack goes back to the end of the 19th century when Kirsch [33] studied the stress concentration around
a circular hole subject to crack initiation. Similarly, Inglis [28] studied the stress field around a flat elliptical
hole, regarding it as a crack. His approach resulted in infinite stresses at the crack tip, in the limit of a perfectly
sharp crack. This mathematical flaw, was eliminated in the energy-balance approach proposed by [21]. Based
on this classical approach, two energy-free triangular-like regions at the top and bottom of the crack are
considered to be formed. Considering these energy-free regions, an increase in the crack length results in a
more released energy. Furthermore, new crack surfaces are created, and the crack surface energy increases.
Using this approach and taking the first variation of the total energy with respect to the crack length, one can
find a critical crack length, for which the crack propagates spontaneously. This is the case observed in the
fracture of brittle materials. Griffith defined the material constant gc = 2γ , which is indeed the critical energy
dominating the cohesive forces, where γ is crack surface energy per unit length. Later, Orowan [56] stated,
that this parameter is inadequate to describe fracture in ductile materials. He proposed that the plastic work
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(wp) plays a dominant role. Taking this into account, [29] modified the Griffith approach. He stated that the
release of strain energy is not only dissipated by the propagated crack’s surface energy, but also by the plastic
work in the vicinity of the crack tip. In his modification, he introduced the modified Griffith parameter, taking
the plastic work into account

gIrwinc = 2γ + wp. (1)

Although these studies established the foundation of fracture mechanics, they are unable to predict the crack
path and to elucidate crack kinking or branching. This flaw is addressed and removed in the so-called classical
Finite Fracture Mechanics (FFM). One of the first authors who introduced the concept of FFM was Hashin
[26], where the formation of many cracks of finite surface in a very short time is considered. Leguillon [41]
used this framework and defined a double-condition criterion to be fulfilled simultaneously for the onset of
brittle fracture. The two necessary conditions (also called coupled criterion) are an energy condition analogous
to Griffith approach and a stress condition for the formation of a crack of finite size, i.e., the stress that a
material can undergo before it breaks. The first condition results in a lower bound of admissible crack length
whereas the second criterion defines an upper bound according to [41]. Within this framework, the stress and
energy flux are analyzed at a finite distance from the crack tip. This distance is assumed to be small enough
compared to the geometrical size of the specimen and prescribed as a structural parameter rather than amaterial
constant according to [13]. However, this approach is very sensitive to the estimated material properties where
the critical tension can be highly affected by the preexisting micro-cracks or voids within the specimen [67].
The interested reader is referred to the review by [70].

Different numerical techniques have been developed to overcome the aforementioned flaw. A classical
approach to simulate fracture is based on its description in terms of strong discontinuities, cf. e.g., Simo et
al. [64]. In this context, the finite elements are divided where the crack propagates. However, aside from
a quite sophisticated implementation, this method lacks generality and causes complications for, e.g., crack
branching. The other commonmethod is the Extended Finite ElementMethod (XFEM), developed by [8]. This
method is based on adding local enrichment functions into finite element formulations using the partition of
unity concept. In this framework, a crack is defined implicitly using level sets that result in crack propagation
independent from the underlying finite element mesh. Although this method is mesh-independent, it has its
own disadvantages. Topology definition using level set functions increases numerical complexity, specifically
for 3D cracks, crack kinking or branching. In addition to that, using the enrichment coefficients as additional
degrees of freedom increases the computational cost.

Another class of approaches considers the crack not as a strong discontinuity, but rather in a smeared
sense. This can be directly described in terms of continuum damagemechanics formulations. However, a major
problem thereof is that the strongly damaged zones,which are interpreted as the crack, localize and the structural
simulation becomesmesh-dependent. Therefore, gradient-enhanced formulations were developed, for instance
based on ideas in [15] to enable mesh-independent calculations. There, the damage field is considered as a
separate variable whose gradient is additionally included in the energy density function. c.f. [58], [69] The
additional field leads to an increased number of degrees of freedom in associated finite element calculations.
However, significant improvements with regard to efficiency could be obtained in [30] for the geometrically
linear case and in [31] for the nonlinear setting, see also [61] which allows for a simple implementation in terms
of standard finite element interfaces. An alternative to gradient damage formulations based on convexification
of incremental stress potentials at the integration points is proposed in [7]. This so-called relaxation approach
does not require additional primary variables in finite element implementations and it still allows for mesh-
independent calculations of damage. This approach has been extended to describe sophisticated stress-softening
hysteresis of soft biological tissues in [62] and to strain softening in [34]. Another approach, where the crack
is not considered as strong discontinuity, is based on eroding those finite elements which represent the crack.
The eigenerosion method, which was initially proposed by Pandolfi and Ortiz [57] stemmed from the work
of Francfort and Marigo [20] and provided a suitable framework for the mesh-independent modeling of crack
propagation. There, the net gained energy defined as the difference between the potential energy and the
effective crack surface energy is computed and based thereon, any element with the highest positive net
gained energy is eroded in an iterative process. Wingender and Balzani [72] extended this method to simulate
crack propagation in ductile materials undergoing large deformations, see also [71] for an extension to crack
propagation through heterogeneous structures. However, the nonlocal normalization of the crack surface as
major part of the eigenerosion concept, requires information from neighboring finite elements and thus, a
rather sophisticated implementation.
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Phase-field fracture is another example of continuous methods, which has gained a lot of attention in
the mechanics’ society in the past decade and which shares strong analogies with micromorphic gradient
damage approaches, see e.g., [38,39]. This method, which goes back to the work of Francfort and Marigo
[20], is based on two pillars. Those are the Griffith balance of energy and the continuum description of the
crack. In this framework, the displacement field is considered continuous across the crack using a phase-field
parameter. A direct link to the continuum mechanics, on the one hand, and a straightforward implementation
in finite element (FE) packages, render this method as a robust one. However, discretized forms of existing
formulations, cf. Karma et al. [32], Hakim andKarma [25], Bourdin [10],Miehe et al. [47],Miehe et al. [50], are
not proven to be both �-convergent and thermodynamically consistent. �-convergence is, however, important
in order to ensure that the smeared crack yields the discrete crack in the limit and that stable minimizers are
obtained in the presence of continuous perturbations. In this paper, based on a modified crack definition, a
modification to the phase-field fracture approach is presented. The resulting formulation is consistent with
both the Allen–Cahn theory of diffusive interfaces and the Irwin’s classical model. Furthermore, a new crack
surface energy density functional is used, whose counterpart in the context of phase transformation has been
proven to be �-convergent [11,52]. Furthermore, the proposed formulation for ductile fracture at finite strains
is thermodynamically consistent. The method is implemented using a user element (UEL) in ABAQUS. Two
numerical benchmark experiments are carried out. The paper is organized as follows: Sect. 2 deals with the
phase-field theory, its origination and a short overview of micro-forces. In Sect. 3, a short summary of existing
approaches with respect to �-convergence and with regard to the incorporation of fracture irreversibility is
provided, which is followed by the proposed phase-field approach, where fracture irreversibility is a priori
fulfilled. In addition to that, this section proposes a further micromorphic extension for ductile fracture and
provides a description of a monolithic algorithmic implementation. Finally, to illustrate the performance of
the proposed formulation, in Sect. 4 two numerical benchmark problems are investigated and the results are
discussed. In Sect. 5 the proposed formulation is summarized and argued.

2 Recapitulation of phase-field approaches

In order to put the extensions proposed in this paper in perspective to existing phase field approaches, it is
important to recapitulate the fundamental ideas of the major phase-field fracture models in connection with
similar approaches in a diffusion context. Starting point of phase field fracture models is a fundamental idea in
the context of phase transformation phenomena. There, a phase-field parameter is defined to represent sharp
interfaces in a smeared manner. The model proposed in this paper is constructed in line with the original
Allen–Cahn theory, which is why we recapitulate briefly the main idea. The classical approach is based on
diffusion theory to model material properties of a media consisting of more phases, cf. e.g., [66]. The phase-
field theory was mainly developed by [12] and [4], where the latter is considered here. The Allen–Cahn theory
of diffusive interfaces was proposed to compute the interface energy in an inhomogeneous region between
two phases, α and β. In this theory, a phase-field parameter p, or the so-called order parameter, is introduced.
This parameter is equal to c for phase α and −c for phase β. These two values are the minimizer of a free
energy density f0 of a homogeneous phase which is thus, considered to be a double-well functional. In other
words, the lowest energy states are given by the first variation of this energy functional with respect to the
order parameter, i.e., δp f0 = ∂ f0

∂p δp = 0. The physical space between these two energetic minimum states
is defined as the interface, and its length is equal to the atomistic interface length ls = 2c [66]. Within this
space, the order parameter possesses values between −c and c (−c ≤ p ≤ c). Any change of order parameter
from the infimum states would increase f0. Therefore, an increment � f0 can be defined as the difference of
free energy between a homogeneous state of arbitrary order parameter and those infimum states p = −c and
p = c [4]. Based thereon, an excess energy density is defined as

� f (p, ∇ p) = � f0(p) + 2θ(∇ p)2. (2)

This energy appears as homogenization of microstructure, where a mixture of the two states exists. Therefore,
it is assumed that aside from the local point also the neighboring microstructure contributes to the response,
which is why the gradient of the order parameter is also included. The parameter θ is the associated material
constant. By integrating over the physical domain of the body, the total excess energy reads
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�F(p, ∇ p) =
∫




� f (p, ∇ p)dV . (3)

Based on the excess energy density defined in equation (2) and considering the micromechanical stress ϒ and
the internal micromechanical force π , the reduced dissipation inequality results in [24]

D = −� ḟ − π ṗ + ϒ · ∇ ṗ ≥ 0, (4)

where the micromechanical stress and internal force are conjugated to the order parameter and its gradient,
respectively. The micromechanical dissipation inequality can be rewritten as

(
∂� f

∂p
+ π

)
ṗ +

(
∂� f

∂∇ p
− ϒ

)
· ∇ ṗ ≤ 0. (5)

In order to fulfill this inequality for any arbitrary process, the micromechanical stress vector reads

ϒ = ∂∇ p� f (p, ∇ p). (6)

Therefore, inequality (5) simplifies to
(

∂� f

∂p
+ π

)
︸ ︷︷ ︸

πdis

ṗ ≤ 0. (7)

For the statical case, where ṗ = 0, πdis = 0 is considered which yields

π = −∂� f

∂p
. (8)

Taking the variation of the excess free energywith respect to the order parameter to be zero, applying divergence
theorem and partial integration, the Euler–Lagrange equations at the micromechanical level are obtained as

∇ · ϒ + π = ξ (9)

Herein, ξ denotes external micromechanical forces which may be considered zero. For the dynamic case where
p is allowed to evolve, the inequality (7) can be a priori fulfilled if πdis is assumed to have the general form
[24]

πdis = −κ

2
ṗ, (10)

where κ is a non-negative modulus interpreted as kinetic modulus. Then, the micromechanical dissipation
reads

D = 1

2
κ ṗ2 ≥ 0. (11)

Then, the Allen–Cahn equation of interface motion is obtained by minimizing the sum of excess energy
and dissipation. According to the static case, we set the variation with respect to p equal to zero, apply the
divergence theorem and partial integration, and obtain the Euler–Lagrange equation

∇ · ϒ − ∂� f

∂p
= ξ + ∂D

∂ ṗ
. (12)

Again, the micromechanical forces ξ are usually considered to be zero. Then, this Euler–Lagrange equation
is equivalent to

∂p

∂t
= −β

∂� f0
∂p

+ 4βθ∇ · ∇ p, (13)

where β = 1
κ
is a positive kinetic constant interpreted as viscosity or mobility of the interface [53]. This

equation is also reffered to as the time-dependent Ginzburg–Landau equation in the literature [24].
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Due to the presence of sharp interfaces in case of cracks, it appears reasonable to apply the major idea
of smearing out the sharp crack using an order parameter. Therefore, a variety of different approaches have
been proposed in the past two decades. Taking crack surface and bulk energies into account in a variational
setting, [20] studied crack propagation for a quasi-static problem in a brittle material. Later on, [10] suggested
a regularized approximation of the proposed variational formulation. This was performed by introducing an
auxiliary crack parameter, which interpolates between the cracked and fully intact regions. Subsequently, [47]
proposed a thermodynamically consistent phase-field fracture model introducing an irreversibility condition.
This method has been further developed by different authors to simulate crack propagation for small and finite
strains in a wide range of materials, including metals, concretes, soft tissues, etc., cf. Gültekin et al. [22,23],
Msekh et al. [54], Miehe and Schänzel [46], Miehe et al. [50], Spetz et al. [65], Aldakheel et al. [2], Aldakheel
et al. [3], Raina and Miehe [60], Ambati et al. [5], Ambati et al. [6].

As already mentioned in the Introduction, the phase-field fracture method is based on two pillars, the
Griffith balance of energy and the continuum description of the crack. The Griffith balance of energy states
that the crack surface energy increases to the same amount as the bulk energy reduces as soon as the crack
propagates. In a first step, an auxiliary parameter (d) is defined. This parameter is interpreted as a damage
parameter smoothening the transition between two phases α and β. The phase α represents the intact zone and
the phase β the fully cracked region. Therefore, values zero and one are assigned to the parameter d at each
phase, respectively

d =
{
0 intact region, phase α,
1 fully cracked, phase β.

(14)

Based thereon, the regularized crack surface can be defined as

�l(d) =
∫




γ (d,∇d) dV . (15)

In this equation, γ is the crack density and 
 denotes the physical domain of the body. [47] proposed γ to
consist of two terms, a polynomial and a gradient term, i.e.,

γ (d) = 1

2 l f
d2 + 1

2
l f |∇d|2, (16)

where l f is a positive constant describing an internal length scale. The expression γ represents therefore an
approximation of a sharp crack surface density. For the vanishing length scale l f → 0, the regularized interface
reduces to a sharp one. According to [47], the damage parameter is then said to minimize the regularized crack
surface, which results in the Euler–Lagrange equations

d − l2f �d = 0 in 
 and ∇d · n0 = 0 on ∂n0
 (17)

under the Dirichlet boundary condition d(X, t) = 1 on X ∈ �l(t); n0 denotes the outwards normal on the
surface. It is required that the minimizer of the regularized smooth functional �l converges to the minimizer
of the functional � in the limiting case l → 0. Furthermore, the minimizers have to be local and stable in
the presence of continuous perturbations [11], where the perturbations are controlled by the higher-order term
∇d . However, Maqy et al. [45] have proven numerically that �-convergence is not necessarily obtained for the
discretized formulation for brittle fracture based on the functional in equation (16). This is addressed by Linse
et al. [42] to root from the irreversibility condition, which results in a high amount of error in the approximated
crack surface energy. Bourdin [10] considered the phase-field parameter to be locally reversible. That means
the phase-field parameter could decrease locally at some points while increasing at others. Furthermore, within
his approach, the Dirichlet-type boundary conditions are enforced as soon as the phase-field parameter reaches
the value d = 1. In other words, the crack can not heal as soon as it is formed.

The model of Miehe et al. [47] incorporated local irreversibility of the phase-field parameter. Later on,
Miehe et al. [50] enforced this local constraint just in a specified part of the domain. This region was defined as
material points reaching a certain amount of energy. This approach will be discussed in more detail in section
3.1 as it will be in close connection to the local reversibility feature of our model. For more technical details
regarding phase-fieldmodeling of brittle fracture in line with the approach ofMiehe et al. [47] see Appendix B.
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3 An extended phase-field fracture approach

In this section, we first briefly summarize the main approaches in the literature to address the issue of irre-
versibility and associated �-convergence in Sect. 3.1 in order to motivate our extension proposed in Sect. 3.2,
which is followed by a further micromorphic extension for the ductile aspect in Sect. 3.3 and a description of
a potential algorithmic implementation in Sect. 3.4.

3.1 �-convergence and irreversibility constraints of existing phase-field fracture formulations

In the context of the approach proposed in this paper, the connected notions of �-convergence and thermo-
dynamical consistency will be particularly important. Therefore, we first discuss existing formulations with
view to these aspects. Thermodynamic consistency is discussed in the sense that the total amount of dissipated
energy in the body should not reduce over time, i.e., no healing should occur. Most existing formulations
consider a local irreversibility, i.e., the damage parameter d at the material point is not allowed to decrease
over time. This automatically ensures that also the dissipation rate is always positive at every material point
and thus, also over the total body. However, the damage parameter d in phase-field fracture formulations is
rather an auxiliary variable to describe a diffuse crack. It does not necessarily phenomenologically describe
a softening response resulting from micro-cracks or -voids in the bulk material, which would be the physical
basis for continuum damage mechanics models. Thus, in continuum damage mechanics, it is indeed physically
required that the damage variable does not decrease over time. For phase-field fracture, however, it means that
a locally irreversible evolution of the auxiliary parameter d is not essential. In fact, it may be sufficient to only
ensure that ḋ stays positive if d reaches the value one, i.e., whenever it describes the physical crack. Everywhere
else, ḋ may be allowed to be negative, provided that the associated dissipation rate remains non-negative. This
behavior will be referred to as crack irreversibility in this paper. There are even possible physical explanations
for such a response, considering that the microstructural effects at the crack happen at a very small scale. For
instance, the intrinsic nonlinearity due to the anharmonicity of potentials associated with atomic binding forces
[55] may explain a nonlinear elastic unloading, which occurs close to the crack upon complete detachment
of the neighboring crack surfaces. This corresponds to a decrease in d but no decrease in local dissipation,
which may only happen for small values of d . This important difference between phase-field fracture and
continuum damage mechanics will be significant to the model proposed in this paper. In the context of the
issues of irreversibility and �-convergence, already existing formulations can be mainly categorized into the
following four groups.

3.1.1 Models without irreversibility constraint

Karma et al. [32] and Hamkin and Karma [25] considered a double-well potential to define the crack surface
energy. However, a non-convex degradation function was introduced in their formulation, which does not fulfill
the crack irreversibility of an initiated crack [49]. The approach proposed here will, however, make use of the
double-well potential in combination with the modified degradation function given in (28).

3.1.2 Locally reversible phase-field parameter accompanied by a global constraint

Bourdin [10] introduced a formulation that allows the local reversibility of the phase-field parameter. That
means, the phase-field parameter can increase as well as decrease, and no restriction is taken into consideration.
This approach enforces the crack irreversibility of the phase-field parameter as soon as it reaches the value
one by adaptively incorporating a special Dirichlet-type boundary condition. Although this model is reported
to be �-convergent, it is not in general thermodynamically consistent [50].

3.1.3 Locally irreversible phase-field parameter accompanied by a fracture threshold

The third group is based on the work of Miehe et al. [47], where similar to continuum damage formulations, a
fracture threshold is determined. This threshold is mainly based on the local fracture driving force, where the
negative driving forces are neglected. Additionally, to fulfill thermodynamic consistency, a local irreversibility
condition is enforced. This constraint prohibits the negative evolution of the phase-field parameter. This type
of formulation is used to model fracture in elastic–plastic solids by different authors. For instance, Duda et al.
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[17] studied brittle fracture in elasto-plastic solids. In their work, only the degradation of the elastic energy is
taken into consideration, and the plastic energy remains untouched in the fully broken medium. Based on this
assumption, the total energy per unit volume at time tn+1 has the form

w = g(d)ψe
0(C

e) + ψp(α) + gcγ (d,∇d). (18)

Following this assumption, the plastic energy has no contribution to the local driving force acting on the
crack tip. In other words, the crack propagates in the region with the highest elastic energy. However, in e.g.,
ductile metals, a classical observation is that shear bands are formed prior to crack propagation. Hence, one
can conclude that ignoring the degradation of plastic energy could be an acceptable assumption just in case of
brittle fracture. Ambati et al. [5] and Ambati et al. [6] proposed a modified degradation function consisting of
both, damage parameter d and accumulative plastic strainα. This type ofmodification is offered to postpone the
phase-field parameter’s evolution to take place after a certain amount of plastic work. However, this assumption
makes the stress-like internal variable defined in equation (62) to be dependent on the elastic energy which is
physically questionable. On the other hand, Kuhn et al. [37] and Borden et al. [9] considered both, elastic and
plastic energies to degrade. Based on this assumption, the total energy per unit volume has the form

w = g(d)(ψe
0(C

e) + ψ
p
0 (α)) + gcγ (d,∇d). (19)

where in Kuhn et al. [37], a higher-order degradation function is used. Although being thermodynamically
consistent, such kinds of formulations have been numerically shown not to be �-convergent [45]. One reason
for the lack of �-convergence in this type of formulations is the enforcement of local irreversibility [50].

3.1.4 Locally irreversible phase-field parameter accompanied by a modified fracture threshold

The fourth group of formulations is a modified version of the third group, see Miehe et al. [50]. Using this
modification, the total energy per unit volume has the form

w = g(d)(ψe
0(C

e) + ψ
p
0 (α)) + (1 − g(d))wc + 2wcl f γ (d,∇d), (20)

where wc is the constant crack threshold parameter. This results in a non-zero energy w = 2wc in the case of
fully broken material. However, this modification enables to postpone the evolution of phase-field parameter
to take place after a certain amount of energy is reached. Furthermore, a local irreversibility constraint is
considered, which does not allow the local reduction of the phase-field parameter. This means that the phase-
field parameter would only evolve in the region, where the minimum energy threshold is reached and the
irreversibility is enforced within this region. Although this modification bounds the irreversibility of the phase-
field parameter to a specific localized region, the issue attributed to the enforcement of local irreversibility is
not resolved completely and is just reduced to a smaller scale. In case that more localization has taken place
within this region, this results in a sharper gradient of the phase-field parameter and, consequently, a higher
micromechanical stress vector ϒ. However, the presence of the local irreversibility constraint would result in
an under-approximated micromechanical stress vector. Moreover, to the best of our knowledge, discretized
forms of this modification have not been proven to be �-convergent.

3.2 Proposed phase-field formulation

In this section, a modified phase-field fracture approach is proposed. Whereas classical approaches define the
crack surface as a singular surface, in this framework, the crack surface is defined as a volumetric domain
where 0 < d < 1. Actually, this approach reflects the fact that a crack is not a macroscopic singular surface in
reality which is due to the microstructure, leading to complex patterns in the crack neighborhood. Therefore,
it is more in line with the basic conception of phase-field approaches, since the crack is described as diffuse
interface. In fact, it appears only natural to also consider the crack surface, i.e., where d = 1, as a diffuse
zone. Furthermore, in contrast to the by now classical phase-field fracture approaches, where the local damage
parameter can only increase, in the proposed modification the phase-field parameter is considered to smear a
crack rather than describing a continuous degradation of the material. Therefore, the phase-field parameter is
locally assumed to be able to do both, increase or decrease, before it reaches the value d = 1.0. Of course,
the crack shall not be allowed to heal and thus, the phase-field parameter shall not reduce at points where d
has reached the value. This is addressed later on by an a priori global irreversibility in the sense that global
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dissipation will not have negative evolution. This can be interpreted as a pure phase-transformation, where a
fully intact phase with density ρ = ρ0 could transform to a fully cracked phase with zero mass and therefore
zero density ρ = 0. This motivates the definition of the phase-field parameter using the mass density, similar
to the theory of mixtures

d = ρ0 − ρ

ρ0
with 0 < ρ ≤ ρ0. (21)

where ρ0 denotes the mass density of the intact material and ρ corresponds to the mass density in the diffuse
crack. For the limit of a sharp crack, the phase-field parameter can be defined using a step function

d =
{
0 for ρ = ρ0 (fully intact),
1 for ρ = 0 (fully cracked). (22)

Here, it is even physically meaningful to state that ρ = 0 for the fully cracked scenario corresponds to a
realistic state, since d = 1 is allowed in a volumetric domain and mass density is only defined on a volume.
The values between zero and one characterize the diffuse region in between; d = 1 represents the crack surface
in a smeared sense. Motivated thereby, we define the spatial distribution of the damage parameter to follow
the tangent hyperbolicus function

d(x) = 1

2

(
1 + tanh

(
x − x0
l f

))
, (23)

where according to the Allen–Cahn theory, the crack surface is the diffuse interface between fully intact and
fully broken phases, as depicted for the 1D case in Fig. 1a. This distribution can be obtained as minimizer of
the crack surface

�l f (d) =
∫ ∞

−∞
6

l f
d2(1 − d)2 + 3

2
l f |∂xd|2 dX, (24)

where x0 is the position of the crack interface. Note that this functional has already been proposed in Mosler et
al. [53] for the description of homogenized two-phase materials. It represents a rescaled form of the Modica–
Mortola-type functional proposed by [11], see also [52], which has been shown to be �-convergent. Extending
this crack surface to the three-dimensional setting following [53] and considering the Griffith constant gc, the
crack surface energy reads

Dl f (d) =
∫




gcγ (d,∇d) dV with γ (d,∇d) = 6

l f
d2(1 − d)2 + 3

2
l f |∇d|2 (25)

Here the positive constant l f is the length scale of the crack surface that regularizes a sharp crack into a
smeared one. In contrast to the definition of the crack surface energy following [47] (see (72) in Appendix A),
this functional is based on a double-well potential. Similar to continuum damage mechanics, we consider the
degradation function initially introduced in [47] as

g(d) = (1 − d)2, (26)

which has the properties

g(d) ≥ 0 with g(1) = g′(1) = 0, g(0) = 1. (27)

The first equality in equation (27) is obtained from the fact that in the fully damaged material, both the
stored energy and the thermodynamic force are zero. In order to avoid numerical instabilities associated with
ill-conditioned boundary value problems resulting from d = 1, a residual energy per unit volume is often
considered to remain in the fully cracked material point. This residual energy density is said to be a small
portion of the strain energy density in the intact zone, that is ψex = εψ0, where 0 < ε 	 1 is a positive
constant. Miehe et al. [47] considered this parameter to be present for all values of d and consequently, the
degradation function is modified as

gmod
MWH(d) = g(d) + ε. (28)
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Fig. 1 Distribution of a phase-field parameter d and b part of the micromechanical internal force (second additive term on the
right-hand side of (39)) over a one-dimensional bar with l f = 0.05, x0 = 0.5L

Some other authors have defined the residual energy not to be present everywhere, i.e., not when the material
is intact. Therefore, Spetz et al. [65] used the definition gmod

SDTD(d) = ε + g(d)(1 − ε). However, these types
of degradation functions results in a loss of stiffness before fracture occurs, which is not desirable for the
modeling of fracture in brittle materials. Hence, for such materials Kuhn et al. [36] introduced a multi-well
degradation function. Although this type of degradation function will diminish the stiffness loss before the
crack nucleation, it results in more admissible solutions. Therefore, on top of that, a numerical perturbation is
introduced. However, the effect of such a numerical treatment on the quality of solution is not well studied.
Hence, we build our model based on the degradation function proposed in (28).

Using the quadratic degradation function and applying it to the bulk strain energy density [9,37], the total
energy density is given as

w = g(d)(ψe
0(C

e) + ψ
p
0 (α)) + d2(1 − d)2

ψ
p
cr

l f
+ gcγ (d,∇d), (29)

where ψe
0 is the fictitiously undamaged, elastic part of the strain energy density depending on the elastic part

of the right Cauchy-Green tensor Ce, and ψ
p
0 is the fictitiously undamaged plastic part associated to hardening

which depends on the accumulated plastic strainsα. For details regarding the specific elasto-plastic formulation
considered in this paper see Appendix A. In the context of ductile crack propagation, usually plastic shear
bands form prior to the crack. In order to postpone the crack evolution to only happen for higher values of
plastic energy, the additional term d2(1−d)2ψ

p
cr/ l f is added. Herein,ψ

p
cr is a material parameter representing

a threshold associated with the plastic energy. The additional term is chosen such that it does not modify the

energy density whenever d = 0 and d = 1. However, if ψ
p
cr
l f

is much greater than gc, which may physically
be required, the gradient regularization term becomes insignificant. Therefore, the plastic energy threshold is
additionally multiplied with the gradient term rescaled by a factor of 1/4, i.e.,

w = g(d)(ψe
0(C

e) + ψ
p
0 (α)) + ψ

p
cr

l f
[d2(1 − d)2 + 1

4
l2f |∇d|2] + gcγ (d,∇d). (30)

Taking this modification into account, the equation (30) reduces to

w = g(d)(ψe
0(C

e) + ψ
p
0 (α)) + (gc + ψ

p
cr/6)γ (d,∇d), (31)

which is in line with Irwin’s approach (1) for ductile fracture. Note that this energy density vanishes in the
domain of the smeared crack, i.e., whenever d = 1, and we obtain the physically reasonable limiting cases

w =
{

ψe
0 + ψ

p
0 if d = 0,

0, if d = 1,
(32)
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except for the points infinitely close to the interface 0 < d < 1. Furthermore, the damage parameter does not
affect the yield function defined in equation (63) due to applying the degradation to both, ψe

0 and ψ
p
0 .

The micromechanical internal force in line with the Allen–Cahn theory is obtained as the driving force
conjugated to ḋ, i.e.,

− ∂w

∂d
= 2(1 − d)

(
ψe
0(C

e) + ψ
p
0 (α)

)
− 12

l f
(gc + ψ

p
cr/6)

[
2d3 − 3d2 + d

]
. (33)

Therefore, the micromechanical internal force vanishes automatically for the fully damaged and the unloaded
intact case, i.e.,

− ∂w

∂d
=

{
0 if d = 0 ∧ ψe

0 = ψ
p
0 = 0,

0 if d = 1,
(34)

and no special treatment in terms of additional case distinctions is required. Furthermore, in contrast to the
classical approaches as discussed in Sect. 3.1.3, one could reasonably erode the elements in the fully cracked
region with d = 1.0 since the energy stored there as well as the driving force are zero. The micromechanical
stress vector conjugate to ∇ḋ reads

ϒ = ∂w

∂∇d
= 3(gc + ψ

p
cr/6)l f ∇d. (35)

Fulfilling the dissipation inequality requires that the dissipation becomes zero if local reversibility is allowed.
Therefore, we consider the split of the dissipation inequality

D f = 1

2

[
κ

( |ḋ| + ḋ

2

)2

+ η

(
ḋ − |ḋ|

2

)2]
≥ 0, (36)

for κ ≥ 0 and η ≥ 0. This dissipation is identical to (11) if η = κ . Remember that κ is the interface mobility
parameter which controls the evolution rate of the phase-field parameter. The split allows to specifically address
a separate parameter η to the case where ḋ < 0. However, here, we assume that the local reversibility should
not produce dissipation, cf. Sect. 3.1, and thus, η is set to zero and the dissipation inequality reads

D f = 1

2
κ〈ḋ〉2, (37)

with the Macauley brackets defined as 〈(•)〉 := (|(•)| + (•))/2. Following the balance of micromechanical
forces (12) in the absence of external forces, and ∂ḋD

f = κ〈ḋ〉, the Allen–Cahn-type equation can be obtained

κ〈ḋ〉 = −∂w

∂d
+ ∇ · ϒ. (38)

Note that this evolution equation is identical to the classical balance of micro-forces in the context of the Allen–
Cahn or time-dependent Ginzburg–Landau theory if the Macauley brackets are omitted, see (12) and (13). The
small difference in terms of the Macauley brackets, already included in the definition of the dissipation (37), is
however physically important. Since the original theory is meant for phase transformations, where a negative
evolution of the phase-field parameter results in positive change of dissipation, omitting the Macauley bracket
is actually physical since phases can transform back upon further dissipation. In case of our fracture model,
where the phase-field parameter is only meant to regularize a sharp crack, not to describe stress-softening, this
is different. Then a negative evolution of the phase-field parameter is locally allowed, however, no dissipation
should be produced. By a direct comparison with the original formulation (12), one can see that the left-
hand side in (38) vanishes, which could be reached in the original framework by setting the mobility κ to
zero. This dependence on ḋ is automatically included here. This equation can be solved as additional partial
differential equation using the finite element method to obtain the distribution of the damage parameter. One
major difference with the preexisting models by Bourdin [10], Miehe et al. [47] and Miehe et al. [50] is the
fact that neither local nor crack irreversibility constraint is needed. This can be shown by considering a one-
dimensional problem. Let us consider a bar fully cracked on the right-hand side and fully intact on the left
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side. According to equation (23), the phase-field parameter is distributed according to a tangent-hyperbolic-
type function depicted in Fig. 1a. Replacing the phase-field parameter into the equations of micromechanical
internal force and stress in Eqs. (33) and (35), respectively, the right-hand side of equation (38) is obtained as

κ〈ḋ〉 = −∂w

∂d
+ ∇ · ϒ = 2(1 − d)

(
ψe
0(C

e) + ψ
p
0 (α)

)
− 6

l f
(gc + ψ

p
cr/6)

[
2d3 − 3d2 + d

]
. (39)

The first additive term in the right-hand side of this equation is always non-negative. The resultant of the
micromechanical force according to the second additive term acting on the whole interface reads

t = 6

l f
(gc + ψ

p
cr/6)

∫ L

0
(2d3 − 3d2 + d)dX = 0 (40)

and always vanishes due to the point symmetry of the distribution, in this context see also Fig. 1b. Therefore,
only the first additive term influences the evolution of the crack. In the specific example considered here,
where the crack exists on the right-hand side of the bar, the non-negativity of the first additive term results in
a micromechanical force acting on the interface which pushes the interface from right to left, not vice versa.
That is, the intact phase with the phase-field parameter d = 0 could only transform to the cracked phase with
the phase-field parameter d = 1. This shows that crack irreversibility is automatically fulfilled and hence,
the lack of �-convergence associated with irreversibility constraints is a priori removed using the proposed
formulation. Furthermore, it is necessary to emphasize, that the phase-field parameter is between zero and one
only at the interface between fully intact and cracked domains and away from the interface it is either zero or
one.

3.3 Micromorphic extension for ductile fracture

The evolution of accumulative plastic strains could result in localized shear bands, which would have a strong
impact on the subsequent crack propagation process in case of ductile fracture. In order to overcome the
numerical difficulties associated with the localization, micromorphic approaches have been developed. The
main idea there is the coupling of an additional global field to the local field via a length scale parameter
and the gradient of the new global field. Thereby, this approach shares structural similarities with phase-field
formulations. However, major difference can be seen in the micromechanical origin in the physics behind the
two approaches yielding different energy potentials. The concept of adding additional degrees of freedom,
representing the effects of microstructure on the macroscopic deformation, goes back to the 1960s, cf. [18,51].
The micromorphic setting in the general sense has been proposed in Forest [19]. The micromorphic theory
originates fromEringen’s definition of amicrodeformation tensor, where it is extended to other global variables
such as the accumulative plastic strains α [19].

Although in the proposed formulation in Sect. 3.2, the material length scale l f , the gradient of damage
parameter, and the viscosity term for the evolution of the phase-field variable are incorporated, there exists
no direct control of the evolution of the accumulative plastic strains to prevent localization. This would be
important, if the damage evolution starts after a higher amount of plastic work has taken place as it is the
case in ductile materials. Hence, the implementation of ductile fracture formulation proposed in this paper
is extended here by considering a new nonlocal plastic variable α̃ which can be interpreted as accumulative
plastic micro-strain. Therefore, the followingmicromorphic plastic energy density term ψ̃

p
0 (α, α̃, ∇α̃) is added

to the plastic energy density defined in (67). This additional energy considers a quadratic term which connects
the local and nonlocal variables and a term which is quadratic in the gradients of the nonlocal variable. The
additional energy density reads

ψ̃
p
0 (α, α̃) = χ

2l p
(α − α̃)2 + χl p∇α̃ · ∇α̃, (41)

cf. [19] and [16], wherein, χ and l p are material constants. Since the micromorphic energy should also be
influenced by the evolution of damage, it is multiplied with the degradation function. In other words, the
fictitious micromorphic energy will also degrade as the phase-field parameter grows. Therefore, equation (31)
is modified as

w = g(d)(ψe
0(C

e) + ψ
p
0 (α) + ψ̃

p
0 (α, α̃, ∇α̃)) + (gc + ψ

p
cr/6)γ (d,∇d), (42)
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and the micromechanical internal force in equation (33) reads

− ∂w

∂d
= 2(1 − d)

(
ψe
0(C

e) + ψ
p
0 (α) + ψ̃

p
0 (α, α̃, ∇α̃)

)
− 12

l f
(gc + ψ

p
cr/6)

[
2d3 − 3d2 + d

]
. (43)

Note that although the micromechanical stress vector remains unchanged, the micromechanical internal force
is affected by the fictitious micromorphic energy. Moreover, the thermodynamic force associated to the accu-
mulative plastic strain in equation (62) is rewritten as

Q := ∂ψ0

∂α
= ∂ψ

p
0 (α) + ψ̃

p
0 (α, α̃, ∇α̃)

∂α
= ∂ψ

p
0 (α)

∂α
+ χ

l p
(α − α̃), (44)

where the term
χ

l p
can be interpreted as the size-dependent linear isotropic hardening modulus. This extra

term affects also the plastic yield condition and thus, the overall plastic response. As a consequence of that,
the plastic zone, which would have been prone to localization for the unregularized model, will become more
diffuse but mesh-independent.

3.4 Algorithmic implementation

In order to solve a boundary value problemusing the proposed formulation in this paper, the rate-type variational
principle is used, that is to find the minima of the function (76), accompanied by a local maximization. In this
setting, the global fields are the rates of deformation mapping ϕ, phase-field parameter d and the micromorphic
variable α̃. To obtain the discretized form of the formulation proposed in this paper, during which the internal
and state variables evolve with time, the incremental variational setting must be developed. This incremental
setting is given in the time interval [0, T ] such that the discrete time step τn+1 is introduced as

τn+1 = tn+1 − tn > 0. (45)

Each state variable is considered at each discrete time point 0, t1, t2, ..., tn, tn+1, ..., T . Furthermore, the field
variables are assumed to be known at time tn . In general, the incremental form of the rate of stored energy,
external power and dissipation are obtained as

E inc(ϕ, d) =
∫




[
ψn+1(Fn+1, dn+1, α̃n+1) − ψn(Fn, dn, α̃n)

]
dV =: En+1 − En, (46)

where En+1 and En are the values of the stored energy at time tn+1 and tn , respectively. Furthermore, the global
field α̃ is coupled to the local field α. The plastic deformation gradient and the accumulative plastic strain are
computed locally at each Gauß integration point and the elastic deformation gradient and the elasto-plastic
tangent Cep

0 are updated. That is, for each Newton iteration at each Gauß-integration point the yield condition
is checked and if the admissible domain φ ≤ 0 is not fulfilled, then the evolution equation (64) together with
φ = 0 are solved, where the evolution equation is discretized using the implicit backward Euler integration
scheme

Fp
n+1 := Fp

n + �λNn+1 · Fp
n+1. (47)

This results in a system of ten equations and ten unknowns (the components of plastic deformation gradient
at time tn+1 and the increment of plastic multiplier �λ), which is solved iteratively and based on that, the
accumulative plastic strain at time tn+1 is obtained as

αn+1 = αn + �λ. (48)

The incremental form of external power is derived in analogy to (46) as

P inc(ϕ) :=
∫ tn+1

tn
Ṗ dt =

∫



ρ0b · (ϕn+1 − ϕn) dV +
∫

∂


T · (ϕn+1 − ϕn) d A. (49)
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The general incremental form of a dissipation functional is obtained as

D inc(d) =
∫




[
γn+1(dn+1, ∇dn+1) − γn(dn, ∇dn)

]
dV . (50)

Finally, the incremental total potential energy can be written as

W inc(ϕ, d, α̃) = E inc(ϕ, d, α̃) + D inc(d) − P inc(ϕ), (51)

whose infimum is sought in each time step with respect to the primary variables which include the deforma-
tions ϕ, the damage phase-field parameter d as well as the nonlocal accumulated plastic strains α̃. For this
purpose, the first variation with respect to dn+1, Fn+1 and α̃n+1 is computed as

δ(F,d,α̃)W
inc = ∂W inc

∂F
: δF + ∂W inc

∂d
δd + ∂W inc

∂α̃
δα̃ = 0, (52)

where, for the sake of simplicity, the subscript n+1 is dropped. For the solution of this nonlinear equation, the
Newton–Raphson scheme is used here. For this purpose, the linearization of (52) results in the linear increment

�(F,d,ᾱ)δ(F,d,ᾱ)W
inc = �F : ∂2W inc

∂F∂F
: δF + �d

∂2W inc

∂d2
δd + �α̃

∂2E inc

∂α̃2 δα̃

+ �d
∂2E inc

∂d∂α̃
δα̃ + �d

∂2E inc

∂d∂F
: δF + �F : ∂2E inc

∂F∂α̃
δα̃

+ �α̃
∂2E inc

∂d∂α̃
δd + �F : ∂2E inc

∂d∂F
δd + �α̃

∂2E inc

∂F∂α̃
: δF.

(53)

The linearized equation δ(F,d,α̃)W
inc + �(F,d,ᾱ)δ(F,d,ᾱ)W

inc = 0 is here solved using finite elements with a
linear approximation of the primary variables. The increments and variations of the deformation gradients�F
and δF, are computed from the associated increments and variations of the deformations �ϕ and δϕ, respec-
tively. Considering arbitrary values for the variations of the primary variables and assembling over all finite
elements yields the system of equations

⎡
⎣Kϕϕ Kϕd Kϕα̃

K dϕ K dd K dα̃

K α̃ϕ K α̃d K α̃α̃

⎤
⎦

⎡
⎣�Dϕ

�Dd
�Dα̃

⎤
⎦ =

⎡
⎣Rϕ

Rd
Rα̃

⎤
⎦ , (54)

which has to be solved within each Newton step to obtain the updated solution until a predefined tolerance in
terms of the norm of the linear increment is reached. The individual terms of the stiffness matrix K and the
residual vector R are obtained from the individual terms in the linearized equation in the classical manner. For
instance, when considering the approximation for the deformations leading to the approximated form of the
deformation gradients written in matrix form as δF = Bedeϕ with the well-known B-matrix Be including the
derivatives of the shape functions and the element-wise vector of deformation degrees of freedom deϕ , the first
term in (53) yields the term δdeTϕ keϕϕ�deϕ with the element stiffness matrix keϕϕ = ∫


e Be,Tg(d)CepBedV .
Assembling keϕϕ and �deϕ in global counterparts yields the entries in Kϕϕ and �Dϕ , respectively. All other
terms in (53) are reformulated in matrix form accordingly to obtain the coupled system of equations (54). This
strategy has been implemented in ABAQUS/Standard [1] and based thereon, the boundary value problems
analyzed in the following section are solved using a monolithic scheme. The evolution equations are integrated
using backward Euler in a multilevel Newton context. For the phase field and the micromorphic field purely
zero Neumann conditions are defined at the boundary.

Remark To solve the phase-field fracture problem governing an incremental setting, some authors have used a
one-pass operator-splitting algorithm, cf. Aldakheel et al. [2], Gültekin et al. [22,23], Spetz et al. [65], Miehe
et al. [48], Ambati et al. [6], Proserpio et al. [59]. The splitting algorithm reduces the problem into a decoupled
one. However, considering a dissipation inequality enables the monolithic solution of the coupled problem.
The dissipation inequality is discussed in Sects. 2 and 3.2.
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Fig. 2 The geometry and boundary conditions of the double-notched specimen

Table 1 Geometrical dimensions of the unsymmetrical double-notched specimen depicted in Fig. 2

Geometrical parameter Value in mm

L 10
t 0.3
R1 2.5
R2 2.0
a 1.0

4 Simulation and results

To show the efficiency and numerical robustness of the proposed formulation, FE simulations for two bench-
mark problems are performed and the results are discussed in detail. The modified model is implemented in
ABAQUS, defining the phase-field parameter as the fourth degree of freedom in a three-dimensional 8-node
element via a user element subroutine (UEL). The problems are solved fully coupled and monolithically using
the multilevel Newton–Raphson method and automatic adaptive load stepping.

4.1 Tensile test of an unsymmetric double-notched specimen

In the first analysis, a three-dimensional unsymmetric double-notched specimen is chosen, subject to the
displacement ū = 0.152 mm at the top and left surfaces, which are applied in 317 load steps. The bottom and
right surfaces are clamped. An illustration of the boundary value problem is given in Fig. 2 and the geometrical
dimensions of the specimen are given in Table 1. A number of 6032 finite elements is used for the discretization
of the specimen. The characteristic element length he is chosen to be he < l f /2 in the whole region, where the
crack is expected to form and propagate. The numerical analysis is performed using the material parameters
given in Table 2.

It is observed that the accumulative plastic strains get localized at the notches, cf. Figure3a.1. As a conse-
quence, the phase-field parameter also gets localized and forms a crack path within those regions as shown in
Fig. 3b. The final crack path as shown in Fig. 3b.2 is qualitatively very close to the results provided in Seupel
et al. [63], where a gradient-enhanced damage formulation has been applied. The same test is also investigated
by Aldakheel et al. [3], where a modified Gurson-type plasticity is used, coupled with the type of phase-field
formulation discussed in 3.1.4. However, using that type of formulation, the crack starts to grow from the
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Table 2 Material parameters used in the numerical simulations for the double-notched specimen

Symbol Name Value Unit

K Bulk modulus 194883.0 MPa
μ Shear modulus 90000.0 MPa
σ0 Initial yield stress 1073.47 MPa
σ∞ Ultimate stress 1289.57 MPa
h Linear hardening 67.22 MPa
ζ Saturation parameter 1394.84 –
ψ

p
cr Critical plastic fracture threshold 60.0 MPa·mm

gc Griffith constant 10.0 MPa·mm
l f Crack surface length scale 0.2 mm
κ Interface mobility parameter 11700 MPa·s

Fig. 3 a Evolution of accumulative plastic strain α and b phase-field parameter d for applied displacements of (1) 0.056 mm and
(2) 0.152 mm in the tensile test of a double-notched specimen

upper notch first toward the upper surface, and then turns toward the lower part of the lower notch as depicted
in Fig. 4 by black lines. This deviation in the crack pattern could be associated to the local irreversibility
condition governed by Aldakheel et al. [3], which appears to drive the crack in a deviated direction. In contrast,
the formulation provided in this paper does not require a local irreversibility constraint and thus, allows for a
correction of the diffuse damage parameter fields yielding a correct crack path.

4.2 Tensile test of a dogbone-shaped specimen

The second benchmark problem investigated in this paper is a uniaxial tensile test of a dogbone-shaped
specimen with an initial hole. The geometry of this specimen is depicted in Fig. 5. The 3D specimen with the
thickness t = 0.1mm, is subject to an external displacement ū = 0.12 mm, which is adaptively increased at
the top surface in 476 load steps. The bottom of the specimen is fixed in all directions. Furthermore, there is
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Fig. 4 Comparison of the crack path using the proposed formulation in this paper (colored path) versus the path (black lines)
predicted using the formulation proposed by Aldakheel et al. [3]. (Color figure online)

Fig. 5 Geometry of a dogbone-shaped specimen (left) with an unsymmetrically placed initial hole and boundary conditions (right)

a hole close to the center of the specimen with a rectangular cross-section of 0.1 by 0.1mm. The geometrical
dimensions of the specimen are given in Table 3. Themaximum characteristic element length in this simulation
is he = 0.1mm and the considered material parameters are provided in Table 4. For the simulations, 72528
finite elements are used for the discretization of the specimen.

At the beginning of the process, the accumulative plastic strain α starts to evolve in the vicinity of the
hole in the diagonal directions. It forms diagonal shear bands, as shown in Fig. 6a. The phase-field parameter
evolves at a low rate in a very diffuse manner in the entire model depicted in Fig. 6d. By increasing the applied
displacement, the accumulative plastic strains start to get localized in one of the diagonal directions, as shown
in Fig. 6b, which is due to the fact that a slight asymmetry is included through the non-perfectly centered
position of the initial hole. As a consequence, the phase-field parameter also starts getting localized within this
diagonal band, as shown in Fig. 6e. Upon further stretching the specimen, the accumulative plastic strain is
further localized within this band (Fig. 6c). The phase-field parameter reaches the value d = 1 in the vicinity of
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Table 3 Geometrical dimensions of the dogbone-shaped specimen

Geometrical parameter Value in mm

H 7.86
t 0.1
W 3.0
l 1.5
r 0.3

Table 4 Material parameters used in the numerical simulation of a dogbone-shaped specimen

Symbol Name Value Unit

K Bulk modulus 194883.0 MPa
μ Shear modulus 90000.0 MPa
σ0 Initial yield stress 1073.47 MPa
σ∞ Ultimate stress 1289.57 MPa
h Linear hardening 67.22 MPa
ζ Saturation parameter 1394.84 –
ψ

p
cr Critical plastic fracture threshold 85.0 MPa·mm

gc Griffith constant 8.0 MPa·mm
l f Crack surface length scale 0.1 mm
κ Interface mobility parameter 10000 MPa·s

Fig. 6 Evolution of a accumulative plastic strains α and b phase-field parameter d for applied external displacements of (1)
0.051mm, (2) 0.064mm, and (3) 0.085mm in the tensile test of a dogbone-shaped specimen

the hole. It evolves within the diagonal shear band (Fig. 6f), as was expected from experimental and numerical
observations, cf. [50] and [72]. Moreover, away from this region, the phase-field parameter reduces back to
zero. Additionally, the simulation is repeated for varying numbers of elements and the reaction forces in the
clamped edges are plotted over the applied displacements. Interestingly, the results as shown in Fig. 7 do
not converge despite the relatively large number of finite elements, although regularization in terms of the
phase-field approach is included. The convergence is studied for two further, different values of the mobility,
i.e., κ = 2000 MPa·s and κ = 50000 MPa·s. As can be seen in the according results shown in Figs. 8 and 9,
larger values of κ lead to a slower rate of crack propagation. Similarly, Kuhn and Müller [35] have studied
the effect of the mobility parameter and observed that larger values of κ delays the start of crack propagation
in brittle materials. As already observed in [72], the unregularized formation of localized shear bands leads
to mesh-dependent results even if a mesh-independent crack propagation approach is considered. This turns
out to be even independent on the choice of the mobility parameter and thus, on the viscosity of the damage
evolution. The reason is that due to the specific boundary value problem, there may already be localized
accumulations of plastic strains even before a crack evolves or propagates. Then, the regularization of crack
propagation in terms of phase-field fracture does not help with the localized plastic strains. This motivates to
extend the plasticity model by a micromorphic formulation, which is analyzed in the following section.
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Fig. 7 Resultant reaction force at clamped boundary versus applied displacements for κ = 10000 MPa·s. A mesh-dependency is
observed

Fig. 8 Resultant reaction force at clamped boundary versus applied displacement for κ = 2000 MPa·s. A mesh-dependency is
observed

Fig. 9 Resultant reaction force at clamped boundary versus applied displacements for κ = 50000 MPa·s. A mesh-dependency is
observed
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Table 5 Material parameters used in the numerical simulations with the micromorphic extension

Symbol Name Value Unit

K Bulk modulus 194883.0 MPa
μ Shear modulus 90000.0 MPa
σ0 Initial yield stress 1073.47 MPa
σ∞ Ultimate stress 1289.57 MPa
h Linear hardening 67.22 MPa
ζ Saturation parameter 1394.84 –
ψ

p
cr Critical plastic fracture threshold 70 MPa·mm

gc Griffith constant 7.0 MPa·mm
l f Crack surface length scale 0.1 mm
χ Micromorph constant 1600 MPa
l p Micromorph length scale 0.065 mm
κ Interface mobility parameter 6000 MPa·s

Fig. 10 Evolution of a accumulative plastic strains α and b phase-field parameter d for applied external displacements of (1)
0.06mm, (2) 0.08mm, and (3) 0.096mm in the tensile test of a dogbone-shaped specimen using the micromorphic extension

4.3 Tensile test using micromorphic extension

To evaluate the formulation with the micromorphic extension, an 8-node user element with five nodal degrees
of freedom has been implemented, where the global field α̃ is the fifth nodal degree of freedom. The numerical
experiment for a dogbone-shaped specimen is repeated here using the same geometry, where the material
properties provided in Table 5 are chosen such that one can compare the FE-convergence curves with and
without the micromorphic extension. As a result of the micromorphic extension, the localization of the shear
bands is reduced. Furthermore, it is observed that the crack propagates again in an almost diagonal direction,
however, with a lower slope, see Fig. 10. Again, the analysis is performed for different numbers of elements
and the curve of the reaction forces at the clamped boundary versus the applied displacements is plotted in
Fig. 11. When using the micromorphic extension, the localization of shear bands is appropriately regularized
such that a mesh-independent crack propagation can be calculated using the proposed phase-field approach.

5 Conclusion

In this work, a new phase-field fracture framework based on the Allen–Cahn theory of diffusive interfaces has
been introduced and successfully tested. The framework is based on the model initially proposed by Miehe et
al. [47]. In the proposed formulation, a new definition of the phase-field parameter d is provided, where the bulk
material is split into twopartswhich are separated by an interface. That is, the intact domain is characterizedwith
d = 0, the fully cracked domain with d = 1 and the crack surface is specifically considered to be diffuse with
0 ≤ d ≤ 1, respectively. Additionally, the crack surface energy is defined by a classical Modica–Mortola-type
functional, which is known to be�-convergent. This type of definition is in agreement with the excess interface
energy of the Allen–Cahn theory of diffuse interfaces. Furthermore, it is shown that the global irreversibility
of the phase-field parameter is automatically fulfilled within this modified framework. In other words, healing
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Fig. 11 Resultant reaction force at clamped boundary versus applied displacements. When using the micromorphic extension,
clearly, mesh convergence can be obtained

of the crack is not allowed automatically and no local irreversibility constraint is needed. This formulation
results in a phase-transition problem where only the intact phase can transform into the fully cracked phase.
This modified formulation not only fulfills the balance of micromechanical forces but was also shown to
be thermodynamically consistent in a nonlocal sense. Specifically for ductile problems, where localization
of plastic strains may precede crack propagation and thus lead to mesh-dependent results, a micromorphic
extension of the plasticity model has been included. Numerical analysis of the proposed formulation in several
benchmark problems has shown that indeed reasonable, mesh-independent ductile crack propagation results
can be achieved. It has been furthermore shown that crack path deviations, which may be caused by overly
rigid local irreversibility constraints, can be avoided with the proposed approach.
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Appendix

A Continuum mechanical framework for ductile materials

Here, the continuum mechanical basis for the phase field model proposed in this paper as well as the con-
sidered elasto-plastic material model are described. Generally, a fictitiously undamaged strain energy density
functional ψ0, defined per unit reference volume, can be written as a function of a deformation gradient
F = GradX (ϕ) = ∇Xϕ. The deformation mapping ϕ maps the point X ∈ 
 in the reference (undeformed)
configuration to the point x ∈ ϕ(
) in the current (deformed) configuration. In addition, the plastic defor-
mation is an inelastic stress-free process. Therefore, an intermediate stress-free configuration is considered,
which results in a multiplicative decomposition of the deformation gradient into a plastic and elastic one, i.e.,

F = Fe · Fp, (55)

cf. [40]. Based on this decomposition, it is clear that the plastic deformation gradient has no contribution to
the stored elastic energy. Furthermore, in some materials such as metals, the plastic deformation is volume
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preserving, i.e., det(Fp) = 1. Therefore, the plastic incompressibility condition has to be satisfied. The strain
energy density can thus be decomposed additively into an elastic and plastic term

ψ0(F, Fp, α) = ψe
0(F, Fp) + ψ

p
0 (α). (56)

Herein, α is a strain-like internal variable. To fulfill objectivity, the elastic part is rewritten as a function of
the elastic right Cauchy-Green tensor Ce = FeT · Fe = Fp−T · C · Fp−1

with the right Cauchy-Green tensor
C := FT · F, such that ψe

0 = ψe
0(F

eT · Fe) = ψ0(Ce). By means of the postulate of minimum total potential
energy and assuming conservative external forces, the deformation mapping is computed by

ϕ = arg

{
inf

(∫



ψ0
(
Ce, α

)
dV −

∫



ρ0 b · ϕdV −
∫

∂N


T · ϕ dA

)}
, (57)

where ρ0, ρ0b, T are the material density in reference configuration, body forces and the traction vector,
respectively. Considering the second law of thermodynamics for isothermal conditions

D = P0 : Ḟ − ψ̇0 ≥ 0, (58)

with the first Piola–Kirchhoff stress tensor P0. Inserting the time derivative of ψ0 yields(
P0 − ∂ψ0

∂F

)
: Ḟ − ∂ψ0

∂Fp : Ḟp − ∂ψ0

∂α
α̇ ≥ 0. (59)

Applying the Coleman–Noll procedure leads to the constitutive equation for the first Piola–Kirchhoff stress
tensor

P0 = ∂ψe
0

∂F
= Pe

0 · Fp−T
(60)

wherein Pe
0 := ∂Feψe

0 and ∂F Fe = Fp−T
. Defining the Mandel stress tensor [44] in the intermediate config-

uration �e = FeT · Pe and the plastic spatial velocity gradient Lp = Ḟp · Fp−1
yields the reduced dissipation

inequality

D = �e : Lp − Qα̇ ≥ 0, (61)

where Q is the thermodynamic force of the internal variable α, i.e.,

Q := ∂ψ0

∂α
= ∂ψ

p
0

∂α
. (62)

For the description of elasto-plasticity, an admissible domain is defined in terms of the yield function φ ≤ 0.
If the yield function is less than zero, i.e., φ < 0, no plastic deformation takes place [43]. Furthermore, φ = 0
represents the yield surface, where plastic deformations evolve. In case of metal plasticity with isotropic
hardening, this state function is considered to have the form

φ(�e, Q) := ||dev�e|| − Q. (63)

Application of the principle of maximum dissipation and considering an associative flow rule, the evolution
equations are obtained as

Lp = λ̇N, λ̇ = α̇, (64)

where N := ∂�eφ is a second-order tensor imposing a constraint on the direction of plastic deformation and λ
is the plastic multiplier. Applying the principle of maximum dissipation yields the well-known Kuhn-Tucker
conditions

λ̇ ≥ 0, λ̇φ̇ ≥ 0, (65)

which need to be fulfilled. In order to fulfill the plastic incompressibility condition observed in metals, expo-
nential integration is often used, cf. de Souza Neto [14]. An alternative can be obtained by noting that the
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plastic incompressibility condition is automatically fulfilled if N is traceless [27]. In our model this will be
the case. As a specification of the model, we consider a Neo-Hookean type energy density function

ψe
0 = μ

2

(
tr

(
Ce) − 3

) + λ
J e

2 − 1

4
−

(
λ

2
+ μ

)
ln(J e), J e = det(Fe) > 0. (66)

The plastic energy density is assumed to have the form [68]

ψ
p
0 = 1

2
hα2 + (σ∞ − σy)

[
α + exp(−ζα) − 1

ζ

]
+ σyα, (67)

considering a saturation parameter ζ , a linear hardening parameter h, the initial yield stress σy , and a further
parameter σ∞, which is associated with themodeling of the transition between an initially negative exponential
hardening to a linear hardening. Note that the method proposed in this paper is not restricted to this choice
of ψe

0 and ψ
p
0 .

B Details of phase-field modeling for brittle fracture

For the case of a hyperelastic material, the stored energy can be obtained by multiplying the degradation
function with the Helmholtz free energy density of the intact material ψ0. This leads to the stored energy of
the body given by

E(F, d) =
∫




g(d)ψ0(F) dV, (68)

Moreover, using the chain rule and the time derivative of (68), the rate of degraded stored energy reads

E (F, d, Ḟ, ḋ) =
∫




(
P : Ḟ − f f ḋ

)
dV, (69)

where the first Piola–Kirchhoff stress tensor is given by P = g(d)P0. The fracture driving force f f being the
work conjugate to the phase-field parameter [22,47] reads

f f := −∂ψ

∂d
= −g′(d)ψ0. (70)

In addition, considering the long and short-range forces acting on the body, the external power is obtained as

P =
∫




ρ0 b · ϕ̇ dV +
∫

∂N


T · ϕ̇ dA. (71)

Furthermore, the regularized crack surface energy is defined using the critical fracture energy constant gc. This
energy is required to convert a fully intact matter into a fully cracked one. Considering constant gc and the
crack surface density functional, the crack energy is obtained

D(d) =
∫




gcγ (d,∇d) dV . (72)

Therefore, using the time derivative and the chain rule, the dissipation functionalD for elastic materials reads

D(ḋ) =
∫




gcγ̇ dV =
∫




gc
∂γ

∂d
ḋ dV, (73)

where according to the second law of thermodynamics, only the non-negative values of the dissipation func-
tional are admissible, i.e., D(ḋ) ≥ 0. Furthermore, Miehe et al. [47] enforced an irreversibility condition
locally by defining a ramp-type energy function, that explodes for a negative evolution of the phase-field
parameter. That means, the phase-field parameter is not allowed to reduce at any material point. Furthermore,
the derivative of the crack surface density functional with respect to the phase-field parameter reads

∂γ

∂d
= 1

ls

(
d − l2f �d

)
, (74)
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where �d is the material Laplacian of the phase-field parameter. At this stage, using the rate of stored energy
functional (69), the external power (71) and the dissipation functional (73), the balance of mechanical power
can be described as

�(ϕ̇, ḋ) := E (ϕ̇, ḋ) + D(ḋ) − P(ϕ̇). (75)

Hence, the rates of deformation and damage parameter can be obtained from the variational principle

(ϕ̇, ḋ) = arg{ inf
ϕ̇∈Wϕ

inf
ḋ∈Wd

�(ϕ̇, ḋ)}, (76)

where the following Dirichlet-type boundary condition is satisfied for the state variables

ϕ̇ ∈ Wϕ :=
{
ϕ̇|ϕ̇ = 0 on ∂N
ϕ

}
and ḋ ∈ Wd :=

{
ḋ|ḋ = 0 on ∂N
d

}
. (77)

The variation of the balance of mechanical power leads to two equations: the balance of linear momentum

Div P + ρ0 b = 0. (78)

and the Kuhn–Tucker complementary conditions ḋ ≥ 0, f f − gcδdγ ≤ 0, and ( f f − gcδdγ )ḋ = 0. That
means the crack does not propagate as soon as f f − gcδdγ < 0. On the other hand, as soon as the driving
force reaches the critical value f f = gcδdγ , the crack propagates. Remembering f f = −g′(d)ψ0, i.e., (70),
the case distinction can be formulated as{

ḋ = 0 if − g′(d)ψ0 − gcδdγ < 0,
ḋ > 0 if − g′(d)ψ0 = gcδdγ.

(79)

Due to the local irreversibility, this type of formulation may lead to an unrealistic evolution of the phase-field
parameter far away from the localization area in the case of ductile fracture. Moreover, May et al. [45] have
shown numerically that discretized forms of such type of formulation are not necessarily �-convergent. This
is also rooted in the local irreversibility condition, see [42]. This flaw was to some extent removed in Miehe
et al. [50] by considering a fracture energy threshold. This threshold is imposed by a material constantwc. That
means, the phase-field parameter would evolve just in the material points, which possess energies beyond this
threshold. Furthermore, the local irreversibility constraint is only enforced within this region which will vary
throughout the crack formation in the general case. Taking this threshold into account, the thermodynamic
force in (70) is modified to

f f := −g′(d)(ψ0 − wc). (80)

This formulation is sensitive to the definition of the material parameter wc. In other words, the phase-field
parameter would only evolve in the region, primarily determined by this material parameter. Not only this, but
also the damage parameter is not allowed to get more localized within this region. Additionally, the discrete
form of this formulation is not proven to be �-convergent.
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